Skip to main content
Top
Published in: BMC Cancer 1/2014

Open Access 01-12-2014 | Research article

Genetic inhibition of the atypical kinase Wee1 selectively drives apoptosis of p53 inactive tumor cells

Authors: William N Pappano, Qian Zhang, Lora A Tucker, Chris Tse, Jieyi Wang

Published in: BMC Cancer | Issue 1/2014

Login to get access

Abstract

Background

Tumorigenesis is the result of genomic or epigenomic insults and subsequent loss of the proper mechanisms to respond to these alterations leading to unscheduled growth. Tumors arising from these mutations often have altered cell cycles that offer proliferative advantages and lead to the accumulation of additional mutations that can lead to more aggressive phenotypes. Nevertheless, tumor cells must still adhere to the basic tenets of the cell cycle program to ensure their survival by DNA duplication, chromosomal segregation and cytokinesis. The atypical tyrosine kinase Wee1 plays a key role in regulating the cell cycle at the DNA synthesis and mitotic checkpoints via phosphorylation and subsequent inactivation of cyclin-dependent kinases (CDKs) in both healthy and tumorigenic cells.

Methods

To assess the role of Wee1 in tumor cell proliferation we performed small interfering RNA (siRNA) experiments in a panel of diverse cell lines derived from various tissue origins. We also tested the hypothesis that any potential effects would be as a result of the kinase activity of Wee1 by siRNA rescue studies with wild-type or kinase-dead versions of Wee1.

Results

We find that, in general, cells with wild-type p53 activity are not susceptible to loss of Wee1 protein via siRNA. However, Wee1 siRNA treatment in tumor cells with an inherent loss of p53 activity results in a deregulated cell cycle that causes simultaneous DNA synthesis and premature mitosis and that these effects are kinase dependent. These cumulative effects lead to potent inhibition of cellular proliferation and ultimately caspase-dependent apoptosis in the absence of co-treatment with cytotoxic agents.

Conclusions

These results suggest that, while Wee1 acts as a tumor suppressor in the context of normal cell growth and its functional loss can be compensated by p53-dependent DNA damage repairing mechanisms, specific inhibition of Wee1 has deleterious effects on the proliferation and survival of p53 inactive tumors. In total, targeting the atypical kinase Wee1 with an siRNA-based therapeutic or a selective ATP competitive small molecule inhibitor would be a feasible approach to targeting p53 inactive tumors in the clinic.
Appendix
Available only for authorised users
Literature
1.
go back to reference Malumbres M, Barbacid M: Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009, 9 (3): 153-166. 10.1038/nrc2602.CrossRefPubMed Malumbres M, Barbacid M: Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009, 9 (3): 153-166. 10.1038/nrc2602.CrossRefPubMed
2.
go back to reference Hunter T, Pines J: Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell. 1994, 79 (4): 573-582. 10.1016/0092-8674(94)90543-6.CrossRefPubMed Hunter T, Pines J: Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell. 1994, 79 (4): 573-582. 10.1016/0092-8674(94)90543-6.CrossRefPubMed
3.
4.
go back to reference Hochegger H, Takeda S, Hunt T: Cyclin-dependent kinases and cell-cycle transitions: does one fit all?. Nat Rev. 2008, 9 (11): 910-916. 10.1038/nrm2510.CrossRef Hochegger H, Takeda S, Hunt T: Cyclin-dependent kinases and cell-cycle transitions: does one fit all?. Nat Rev. 2008, 9 (11): 910-916. 10.1038/nrm2510.CrossRef
5.
go back to reference Squire CJ, Dickson JM, Ivanovic I, Baker EN: Structure and inhibition of the human cell cycle checkpoint kinase, Wee1A kinase: an atypical tyrosine kinase with a key role in CDK1 regulation. Structure. 2005, 13 (4): 541-550. 10.1016/j.str.2004.12.017.CrossRefPubMed Squire CJ, Dickson JM, Ivanovic I, Baker EN: Structure and inhibition of the human cell cycle checkpoint kinase, Wee1A kinase: an atypical tyrosine kinase with a key role in CDK1 regulation. Structure. 2005, 13 (4): 541-550. 10.1016/j.str.2004.12.017.CrossRefPubMed
6.
go back to reference Coleman TR, Dunphy WG: Cdc2 regulatory factors. Curr Opin Cell Biol. 1994, 6 (6): 877-882. 10.1016/0955-0674(94)90060-4.CrossRefPubMed Coleman TR, Dunphy WG: Cdc2 regulatory factors. Curr Opin Cell Biol. 1994, 6 (6): 877-882. 10.1016/0955-0674(94)90060-4.CrossRefPubMed
7.
go back to reference Watanabe N, Broome M, Hunter T: Regulation of the human WEE1Hu CDK tyrosine 15-kinase during the cell cycle. Embo J. 1995, 14 (9): 1878-1891.PubMedPubMedCentral Watanabe N, Broome M, Hunter T: Regulation of the human WEE1Hu CDK tyrosine 15-kinase during the cell cycle. Embo J. 1995, 14 (9): 1878-1891.PubMedPubMedCentral
8.
go back to reference Hirai H, Iwasawa Y, Okada M, Arai T, Nishibata T, Kobayashi M, Kimura T, Kaneko N, Ohtani J, Yamanaka K, Itadani H, Takahashi-Suzuki I, Fukasawa K, Oki H, Nambu T, Jiang J, Sakai T, Arakawa H, Sakamoto T, Sagara T, Yoshizumi T, Mizuarai S, Kotani H: Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol Cancer Ther. 2009, 8 (11): 2992-3000. 10.1158/1535-7163.MCT-09-0463.CrossRefPubMed Hirai H, Iwasawa Y, Okada M, Arai T, Nishibata T, Kobayashi M, Kimura T, Kaneko N, Ohtani J, Yamanaka K, Itadani H, Takahashi-Suzuki I, Fukasawa K, Oki H, Nambu T, Jiang J, Sakai T, Arakawa H, Sakamoto T, Sagara T, Yoshizumi T, Mizuarai S, Kotani H: Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol Cancer Ther. 2009, 8 (11): 2992-3000. 10.1158/1535-7163.MCT-09-0463.CrossRefPubMed
9.
go back to reference Li J, Wang Y, Sun Y, Lawrence TS: Wild-type TP53 inhibits G(2)-phase checkpoint abrogation and radiosensitization induced by PD0166285, a WEE1 kinase inhibitor. Radiat Res. 2002, 157 (3): 322-330. 10.1667/0033-7587(2002)157[0322:WTTIGP]2.0.CO;2.CrossRefPubMed Li J, Wang Y, Sun Y, Lawrence TS: Wild-type TP53 inhibits G(2)-phase checkpoint abrogation and radiosensitization induced by PD0166285, a WEE1 kinase inhibitor. Radiat Res. 2002, 157 (3): 322-330. 10.1667/0033-7587(2002)157[0322:WTTIGP]2.0.CO;2.CrossRefPubMed
10.
go back to reference Mir SE, De Witt Hamer PC, Krawczyk PM, Balaj L, Claes A, Niers JM, Van Tilborg AA, Zwinderman AH, Geerts D, Kaspers GJ, Peter Vandertop W, Cloos J, Tannous BA, Wesseling P, Aten JA, Noske DP, Van Noorden CJ, Wurdinger T: In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell. 2010, 18 (3): 244-257. 10.1016/j.ccr.2010.08.011.CrossRefPubMedPubMedCentral Mir SE, De Witt Hamer PC, Krawczyk PM, Balaj L, Claes A, Niers JM, Van Tilborg AA, Zwinderman AH, Geerts D, Kaspers GJ, Peter Vandertop W, Cloos J, Tannous BA, Wesseling P, Aten JA, Noske DP, Van Noorden CJ, Wurdinger T: In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell. 2010, 18 (3): 244-257. 10.1016/j.ccr.2010.08.011.CrossRefPubMedPubMedCentral
11.
go back to reference Wang Y, Decker SJ, Sebolt-Leopold J: Knockdown of Chk1, Wee1 and Myt1 by RNA interference abrogates G2 checkpoint and induces apoptosis. Cancer Biol Ther. 2004, 3 (3): 305-313. 10.4161/cbt.3.3.697.CrossRefPubMed Wang Y, Decker SJ, Sebolt-Leopold J: Knockdown of Chk1, Wee1 and Myt1 by RNA interference abrogates G2 checkpoint and induces apoptosis. Cancer Biol Ther. 2004, 3 (3): 305-313. 10.4161/cbt.3.3.697.CrossRefPubMed
12.
go back to reference Wang Y, Li J, Booher RN, Kraker A, Lawrence T, Leopold WR, Sun Y: Radiosensitization of p53 mutant cells by PD0166285, a novel G(2) checkpoint abrogator. Cancer Res. 2001, 61 (22): 8211-8217.PubMed Wang Y, Li J, Booher RN, Kraker A, Lawrence T, Leopold WR, Sun Y: Radiosensitization of p53 mutant cells by PD0166285, a novel G(2) checkpoint abrogator. Cancer Res. 2001, 61 (22): 8211-8217.PubMed
13.
go back to reference Pappano WN, Jung PM, Meulbroek JA, Wang YC, Hubbard RD, Zhang Q, Grudzien MM, Soni NB, Johnson EF, Sheppard GS, Donawho C, Buchanan FG, Davidsen SK, Bell RL, Wang J: Reversal of oncogene transformation and suppression of tumor growth by the novel IGF1R kinase inhibitor A-928605. BMC Cancer. 2009, 9: 314-10.1186/1471-2407-9-314.CrossRefPubMedPubMedCentral Pappano WN, Jung PM, Meulbroek JA, Wang YC, Hubbard RD, Zhang Q, Grudzien MM, Soni NB, Johnson EF, Sheppard GS, Donawho C, Buchanan FG, Davidsen SK, Bell RL, Wang J: Reversal of oncogene transformation and suppression of tumor growth by the novel IGF1R kinase inhibitor A-928605. BMC Cancer. 2009, 9: 314-10.1186/1471-2407-9-314.CrossRefPubMedPubMedCentral
14.
go back to reference Beck H, Nahse V, Larsen MS, Groth P, Clancy T, Lees M, Jorgensen M, Helleday T, Syljuasen RG, Sorensen CS: Regulators of cyclin-dependent kinases are crucial for maintaining genome integrity in S phase. J Cell Biol. 2010, 188 (5): 629-638. 10.1083/jcb.200905059.CrossRefPubMedPubMedCentral Beck H, Nahse V, Larsen MS, Groth P, Clancy T, Lees M, Jorgensen M, Helleday T, Syljuasen RG, Sorensen CS: Regulators of cyclin-dependent kinases are crucial for maintaining genome integrity in S phase. J Cell Biol. 2010, 188 (5): 629-638. 10.1083/jcb.200905059.CrossRefPubMedPubMedCentral
15.
go back to reference Morgan-Lappe SE, Tucker LA, Huang X, Zhang Q, Sarthy AV, Zakula D, Vernetti L, Schurdak M, Wang J, Fesik SW: Identification of Ras-related nuclear protein, targeting protein for xenopus kinesin-like protein 2, and stearoyl-CoA desaturase 1 as promising cancer targets from an RNAi-based screen. Cancer Res. 2007, 67 (9): 4390-4398. 10.1158/0008-5472.CAN-06-4132.CrossRefPubMed Morgan-Lappe SE, Tucker LA, Huang X, Zhang Q, Sarthy AV, Zakula D, Vernetti L, Schurdak M, Wang J, Fesik SW: Identification of Ras-related nuclear protein, targeting protein for xenopus kinesin-like protein 2, and stearoyl-CoA desaturase 1 as promising cancer targets from an RNAi-based screen. Cancer Res. 2007, 67 (9): 4390-4398. 10.1158/0008-5472.CAN-06-4132.CrossRefPubMed
16.
go back to reference Watanabe N, Arai H, Nishihara Y, Taniguchi M, Watanabe N, Hunter T, Osada H: M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc Natl Acad Sci U S A. 2004, 101 (13): 4419-4424. 10.1073/pnas.0307700101.CrossRefPubMedPubMedCentral Watanabe N, Arai H, Nishihara Y, Taniguchi M, Watanabe N, Hunter T, Osada H: M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc Natl Acad Sci U S A. 2004, 101 (13): 4419-4424. 10.1073/pnas.0307700101.CrossRefPubMedPubMedCentral
18.
go back to reference Kessis TD, Slebos RJ, Nelson WG, Kastan MB, Plunkett BS, Han SM, Lorincz AT, Hedrick L, Cho KR: Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc Natl Acad Sci U S A. 1993, 90 (9): 3988-3992. 10.1073/pnas.90.9.3988.CrossRefPubMedPubMedCentral Kessis TD, Slebos RJ, Nelson WG, Kastan MB, Plunkett BS, Han SM, Lorincz AT, Hedrick L, Cho KR: Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc Natl Acad Sci U S A. 1993, 90 (9): 3988-3992. 10.1073/pnas.90.9.3988.CrossRefPubMedPubMedCentral
19.
go back to reference Cramer LP, Mitchison TJ: Investigation of the mechanism of retraction of the cell margin and rearward flow of nodules during mitotic cell rounding. Mol Biol Cell. 1997, 8 (1): 109-119. 10.1091/mbc.8.1.109.CrossRefPubMedPubMedCentral Cramer LP, Mitchison TJ: Investigation of the mechanism of retraction of the cell margin and rearward flow of nodules during mitotic cell rounding. Mol Biol Cell. 1997, 8 (1): 109-119. 10.1091/mbc.8.1.109.CrossRefPubMedPubMedCentral
20.
go back to reference Meek DW: Tumour suppression by p53: a role for the DNA damage response?. Nat Rev Cancer. 2009, 9 (10): 714-723.PubMed Meek DW: Tumour suppression by p53: a role for the DNA damage response?. Nat Rev Cancer. 2009, 9 (10): 714-723.PubMed
21.
go back to reference Brosh R, Rotter V: When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009, 9 (10): 701-713.PubMed Brosh R, Rotter V: When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009, 9 (10): 701-713.PubMed
22.
go back to reference Kaelin WG: The emerging p53 gene family. J Natl Cancer Inst. 1999, 91 (7): 594-598. 10.1093/jnci/91.7.594.CrossRefPubMed Kaelin WG: The emerging p53 gene family. J Natl Cancer Inst. 1999, 91 (7): 594-598. 10.1093/jnci/91.7.594.CrossRefPubMed
23.
go back to reference Anderson HJ, Andersen RJ, Roberge M: Inhibitors of the G2 DNA damage checkpoint and their potential for cancer therapy. Prog Cell Cycle Res. 2003, 5: 423-430.PubMed Anderson HJ, Andersen RJ, Roberge M: Inhibitors of the G2 DNA damage checkpoint and their potential for cancer therapy. Prog Cell Cycle Res. 2003, 5: 423-430.PubMed
Metadata
Title
Genetic inhibition of the atypical kinase Wee1 selectively drives apoptosis of p53 inactive tumor cells
Authors
William N Pappano
Qian Zhang
Lora A Tucker
Chris Tse
Jieyi Wang
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2014
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-430

Other articles of this Issue 1/2014

BMC Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine