Skip to main content
Top
Published in: BMC Cancer 1/2013

Open Access 01-12-2013 | Research article

Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D

Authors: Jennifer Laurent, Céline Frongia, Martine Cazales, Odile Mondesert, Bernard Ducommun, Valérie Lobjois

Published in: BMC Cancer | Issue 1/2013

Login to get access

Abstract

Background

MultiCellular Tumor Spheroid (MCTS) mimics the organization of a tumor and is considered as an invaluable model to study cancer cell biology and to evaluate new antiproliferative drugs. Here we report how the characteristics of MCTS in association with new technological developments can be used to explore the regionalization and the activation of cell cycle checkpoints in 3D.

Methods

Cell cycle and proliferation parameters were investigated in Capan-2 spheroids by immunofluorescence staining, EdU incorporation and using cells engineered to express Fucci-red and -green reporters.

Results

We describe in details the changes in proliferation and cell cycle parameters during spheroid growth and regionalization. We report the kinetics and regionalized aspects of cell cycle arrest in response to checkpoint activation induced by EGF starvation, lovastatin treatment and etoposide-induced DNA damage.

Conclusion

Our data present the power and the limitation of spheroids made of genetically modified cells to explore cell cycle checkpoints. This study paves the way for the investigation of molecular aspects and dynamic studies of the response to novel antiproliferative agents in 3D models.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dubessy C, Merlin JM, Marchal C, Guillemin F: Spheroids in radiobiology and photodynamic therapy. Crit Rev Oncol Hematol. 2000, 36 (2-3): 179-192. 10.1016/S1040-8428(00)00085-8.CrossRefPubMed Dubessy C, Merlin JM, Marchal C, Guillemin F: Spheroids in radiobiology and photodynamic therapy. Crit Rev Oncol Hematol. 2000, 36 (2-3): 179-192. 10.1016/S1040-8428(00)00085-8.CrossRefPubMed
2.
go back to reference Sutherland RM: Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 1988, 240 (4849): 177-184. 10.1126/science.2451290.CrossRefPubMed Sutherland RM: Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 1988, 240 (4849): 177-184. 10.1126/science.2451290.CrossRefPubMed
3.
go back to reference Friedrich J, Ebner R, Kunz-Schughart LA: Experimental anti-tumor therapy in 3-D: spheroids-old hat or new challenge?. Int J Radiat Biol. 2007, 83 (11-12): 849-871. 10.1080/09553000701727531.CrossRefPubMed Friedrich J, Ebner R, Kunz-Schughart LA: Experimental anti-tumor therapy in 3-D: spheroids-old hat or new challenge?. Int J Radiat Biol. 2007, 83 (11-12): 849-871. 10.1080/09553000701727531.CrossRefPubMed
4.
go back to reference Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA: Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010, 148 (1): 3-15. 10.1016/j.jbiotec.2010.01.012.CrossRefPubMed Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA: Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010, 148 (1): 3-15. 10.1016/j.jbiotec.2010.01.012.CrossRefPubMed
5.
go back to reference Desoize B, Jardillier J: Multicellular resistance: a paradigm for clinical resistance?. Crit Rev Oncol Hematol. 2000, 36 (2-3): 193-207. 10.1016/S1040-8428(00)00086-X.CrossRefPubMed Desoize B, Jardillier J: Multicellular resistance: a paradigm for clinical resistance?. Crit Rev Oncol Hematol. 2000, 36 (2-3): 193-207. 10.1016/S1040-8428(00)00086-X.CrossRefPubMed
6.
go back to reference Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R: The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen. 2004, 9 (4): 273-285. 10.1177/1087057104265040.CrossRefPubMed Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R: The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen. 2004, 9 (4): 273-285. 10.1177/1087057104265040.CrossRefPubMed
7.
go back to reference Dai Y, Grant S: New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin Cancer Res. 2010, 16 (2): 376-383. 10.1158/1078-0432.CCR-09-1029.CrossRefPubMedPubMedCentral Dai Y, Grant S: New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin Cancer Res. 2010, 16 (2): 376-383. 10.1158/1078-0432.CCR-09-1029.CrossRefPubMedPubMedCentral
8.
go back to reference Malumbres M, Barbacid M: Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009, 9 (3): 153-166.CrossRefPubMed Malumbres M, Barbacid M: Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009, 9 (3): 153-166.CrossRefPubMed
9.
go back to reference Degenhardt Y, Lampkin T: Targeting Polo-like kinase in cancer therapy. Clin Cancer Res. 2010, 16 (2): 384-389. 10.1158/1078-0432.CCR-09-1380.CrossRefPubMed Degenhardt Y, Lampkin T: Targeting Polo-like kinase in cancer therapy. Clin Cancer Res. 2010, 16 (2): 384-389. 10.1158/1078-0432.CCR-09-1380.CrossRefPubMed
10.
go back to reference Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144 (5): 646-674. 10.1016/j.cell.2011.02.013.CrossRefPubMed Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144 (5): 646-674. 10.1016/j.cell.2011.02.013.CrossRefPubMed
11.
go back to reference Carpinelli P, Moll J: Aurora kinases and their inhibitors: more than one target and one drug. Adv Exp Med Biol. 2008, 610: 54-73. 10.1007/978-0-387-73898-7_5.CrossRefPubMed Carpinelli P, Moll J: Aurora kinases and their inhibitors: more than one target and one drug. Adv Exp Med Biol. 2008, 610: 54-73. 10.1007/978-0-387-73898-7_5.CrossRefPubMed
12.
go back to reference Cicenas J, Valius M: The CDK inhibitors in cancer research and therapy. J Cancer Res Clin Oncol. 2011, 137 (10): 1409-1418. 10.1007/s00432-011-1039-4.CrossRefPubMed Cicenas J, Valius M: The CDK inhibitors in cancer research and therapy. J Cancer Res Clin Oncol. 2011, 137 (10): 1409-1418. 10.1007/s00432-011-1039-4.CrossRefPubMed
14.
go back to reference Vassilev LT: Cell cycle synchronization at the G2/M phase border by reversible inhibition of CDK1. Cell Cycle. 2006, 5 (22): 2555-2556. 10.4161/cc.5.22.3463.CrossRefPubMed Vassilev LT: Cell cycle synchronization at the G2/M phase border by reversible inhibition of CDK1. Cell Cycle. 2006, 5 (22): 2555-2556. 10.4161/cc.5.22.3463.CrossRefPubMed
15.
go back to reference Carrassa L, Damia G: Unleashing Chk1 in cancer therapy. Cell Cycle. 2011, 10 (13): 2121-2128. 10.4161/cc.10.13.16398.CrossRefPubMed Carrassa L, Damia G: Unleashing Chk1 in cancer therapy. Cell Cycle. 2011, 10 (13): 2121-2128. 10.4161/cc.10.13.16398.CrossRefPubMed
16.
go back to reference Ma CX, Janetka JW, Piwnica-Worms H: Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med. 2011, 17 (2): 88-96. 10.1016/j.molmed.2010.10.009.CrossRefPubMed Ma CX, Janetka JW, Piwnica-Worms H: Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med. 2011, 17 (2): 88-96. 10.1016/j.molmed.2010.10.009.CrossRefPubMed
17.
go back to reference Dufau I, Frongia C, Sicard F, Dedieu L, Cordelier P, Ausseil F, Ducommun B, Valette A: Multicellular Tumor Spheroid model to evaluate spatio-temporal dynamics effect of chemotherapeutics. Application to the gemcitabine / CHK1 inhibitor combination in pancreatic cancer. BMC Cancer. 2012, 12 (1): 15-10.1186/1471-2407-12-15.CrossRefPubMedPubMedCentral Dufau I, Frongia C, Sicard F, Dedieu L, Cordelier P, Ausseil F, Ducommun B, Valette A: Multicellular Tumor Spheroid model to evaluate spatio-temporal dynamics effect of chemotherapeutics. Application to the gemcitabine / CHK1 inhibitor combination in pancreatic cancer. BMC Cancer. 2012, 12 (1): 15-10.1186/1471-2407-12-15.CrossRefPubMedPubMedCentral
18.
go back to reference Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA: Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol. 2010, 11 (2): 174-183. 10.1016/S1470-2045(09)70262-1.CrossRefPubMed Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA: Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol. 2010, 11 (2): 174-183. 10.1016/S1470-2045(09)70262-1.CrossRefPubMed
19.
go back to reference Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H: Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. 2008, 132 (3): 487-498. 10.1016/j.cell.2007.12.033.CrossRefPubMed Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H: Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. 2008, 132 (3): 487-498. 10.1016/j.cell.2007.12.033.CrossRefPubMed
20.
go back to reference Javanmoghadam-Kamrani S, Keyomarsi K: Synchronization of the cell cycle using lovastatin. Cell Cycle. 2008, 7 (15): 2434-2440.CrossRefPubMed Javanmoghadam-Kamrani S, Keyomarsi K: Synchronization of the cell cycle using lovastatin. Cell Cycle. 2008, 7 (15): 2434-2440.CrossRefPubMed
21.
go back to reference Zhong WB, Hsu SP, Ho PY, Liang YC, Chang TC, Lee WS: Lovastatin inhibits proliferation of anaplastic thyroid cancer cells through up-regulation of p27 by interfering with the Rho/ROCK-mediated pathway. Biochem Pharmacol. 2011, 82 (11): 1663-1672. 10.1016/j.bcp.2011.08.021.CrossRefPubMed Zhong WB, Hsu SP, Ho PY, Liang YC, Chang TC, Lee WS: Lovastatin inhibits proliferation of anaplastic thyroid cancer cells through up-regulation of p27 by interfering with the Rho/ROCK-mediated pathway. Biochem Pharmacol. 2011, 82 (11): 1663-1672. 10.1016/j.bcp.2011.08.021.CrossRefPubMed
22.
go back to reference LaRue KE, Khalil M, Freyer JP: Microenvironmental regulation of proliferation in multicellular spheroids is mediated through differential expression of cyclin-dependent kinase inhibitors. Cancer Res. 2004, 64 (5): 1621-1631. 10.1158/0008-5472.CAN-2902-2.CrossRefPubMed LaRue KE, Khalil M, Freyer JP: Microenvironmental regulation of proliferation in multicellular spheroids is mediated through differential expression of cyclin-dependent kinase inhibitors. Cancer Res. 2004, 64 (5): 1621-1631. 10.1158/0008-5472.CAN-2902-2.CrossRefPubMed
23.
go back to reference Xouri G, Lygerou Z, Nishitani H, Pachnis V, Nurse P, Taraviras S: Cdt1 and geminin are down-regulated upon cell cycle exit and are over-expressed in cancer-derived cell lines. Eur J Biochem. 2004, 271 (16): 3368-3378. 10.1111/j.1432-1033.2004.04271.x.CrossRefPubMed Xouri G, Lygerou Z, Nishitani H, Pachnis V, Nurse P, Taraviras S: Cdt1 and geminin are down-regulated upon cell cycle exit and are over-expressed in cancer-derived cell lines. Eur J Biochem. 2004, 271 (16): 3368-3378. 10.1111/j.1432-1033.2004.04271.x.CrossRefPubMed
24.
go back to reference Frongia C, Lorenzo C, Gianni F, Prevost GP, Ducommun B, Lobjois V: 3D imaging of the response to CDC25 inhibition in multicellular spheroids. Cancer Biol Ther. 2009, 8 (23): 2230-2236.CrossRefPubMed Frongia C, Lorenzo C, Gianni F, Prevost GP, Ducommun B, Lobjois V: 3D imaging of the response to CDC25 inhibition in multicellular spheroids. Cancer Biol Ther. 2009, 8 (23): 2230-2236.CrossRefPubMed
25.
go back to reference Walker F, Zhang HH, Burgess AW: Identification of a novel EGF-sensitive cell cycle checkpoint. Exp Cell Res. 2007, 313 (3): 511-526. 10.1016/j.yexcr.2006.10.026.CrossRefPubMed Walker F, Zhang HH, Burgess AW: Identification of a novel EGF-sensitive cell cycle checkpoint. Exp Cell Res. 2007, 313 (3): 511-526. 10.1016/j.yexcr.2006.10.026.CrossRefPubMed
Metadata
Title
Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D
Authors
Jennifer Laurent
Céline Frongia
Martine Cazales
Odile Mondesert
Bernard Ducommun
Valérie Lobjois
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2013
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-73

Other articles of this Issue 1/2013

BMC Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine