Skip to main content
Top
Published in: BMC Cancer 1/2013

Open Access 01-12-2013 | Research article

Association between polymorphisms in ERCC2 gene and oral cancer risk: evidence from a meta-analysis

Authors: Enjiao Zhang, Zhigang Cui, Zhongfei Xu, Weiyi Duan, Shaohui Huang, Xuexin Tan, Zhihua Yin, Changfu Sun, Li Lu

Published in: BMC Cancer | Issue 1/2013

Login to get access

Abstract

Background

Excision repair cross-complementing group 2 (ERCC2) plays important roles in the repair of DNA damage and adducts. Single nucleotide polymorphisms (SNPs) of ERCC2 gene are suspected to influence the risks of oral cancer. We performed a meta-analysis to systematically summarize the possible association of ERCC2 rs1799793 and rs13181 polymorphisms with oral cancer risks.

Methods

We retrieved the relevant articles from PubMed and Embase databases. Studies were selected using specific criteria. ORs and 95% CIs were calculated to assess the association. All analyses were performed using the Stata software.

Results

Six studies were included in this meta-analysis. There were no significant associations between ERCC2 rs1799793 and rs13181 polymorphism with overall oral cancer risk. In the stratified analysis by ethnicity, no significant associations were found. In the stratified analysis by tumor type, the risk of oral leukoplakia was significant associated with rs13181 polymorphism (AC vs. AA: OR = 1.28, 95% CI = 1.01-1.62, P = 0.546 for heterogeneity, I2 = 0.0%; CC vs. AA: OR = 1.94, 95% CI = 0.99-3.79, P = 0.057 for heterogeneity, I2 = 60.1%; dominant model AC + CC vs. AA: OR = 1.35, 95% CI = 1.08–1.69, P = 0.303 for heterogeneity, I2 = 17.6%; allele C vs. A: OR = 1.38, 95% CI = 1.04–1.82. P = 0.043 for heterogeneity, I2 = 56.4%).

Conclusion

Rs13181 in ERCC2 gene might be associated with oral leukoplakia risk.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61: 69-90. 10.3322/caac.20107.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61: 69-90. 10.3322/caac.20107.CrossRefPubMed
3.
go back to reference Gupta PC, Mehta FS, Pindborg JJ, Bhonsle RB, Murti PR, Daftary DK, Aghi MB: Primary prevention trial of oral cancer in india: a 10-year follow-up study. J Oral Pathol Med. 1992, 21: 433-439. 10.1111/j.1600-0714.1992.tb00970.x.CrossRefPubMed Gupta PC, Mehta FS, Pindborg JJ, Bhonsle RB, Murti PR, Daftary DK, Aghi MB: Primary prevention trial of oral cancer in india: a 10-year follow-up study. J Oral Pathol Med. 1992, 21: 433-439. 10.1111/j.1600-0714.1992.tb00970.x.CrossRefPubMed
4.
go back to reference Cheng L, Eicher SA, Guo Z, Hong WK, Spitz MR, Wei Q: Reduced DNA repair capacity in head and neck cancer patients. Cancer Epidemiol Biomarkers Prev. 1998, 7: 465-468.PubMed Cheng L, Eicher SA, Guo Z, Hong WK, Spitz MR, Wei Q: Reduced DNA repair capacity in head and neck cancer patients. Cancer Epidemiol Biomarkers Prev. 1998, 7: 465-468.PubMed
5.
go back to reference Cheng L, Spitz MR, Hong WK, Wei Q: Reduced expression levels of nucleotide excision repair genes in lung cancer: a case–control analysis. Carcinogenesis. 2000, 21: 1527-1530. 10.1093/carcin/21.8.1527.CrossRefPubMed Cheng L, Spitz MR, Hong WK, Wei Q: Reduced expression levels of nucleotide excision repair genes in lung cancer: a case–control analysis. Carcinogenesis. 2000, 21: 1527-1530. 10.1093/carcin/21.8.1527.CrossRefPubMed
6.
go back to reference Poirier MC: Chemical-induced DNA damage and human cancer risk. Discov Med. 2012, 14: 283-288.PubMed Poirier MC: Chemical-induced DNA damage and human cancer risk. Discov Med. 2012, 14: 283-288.PubMed
8.
go back to reference Berwick M, Vineis P: Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review. J Natl Cancer Inst. 2000, 92: 874-897. 10.1093/jnci/92.11.874.CrossRefPubMed Berwick M, Vineis P: Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review. J Natl Cancer Inst. 2000, 92: 874-897. 10.1093/jnci/92.11.874.CrossRefPubMed
9.
go back to reference Friedberg EC, Walker GC, Siede W: DNA Repair and Mutagenesis, Chapters 1–7. 1995, Washington, DC: ASM Press Friedberg EC, Walker GC, Siede W: DNA Repair and Mutagenesis, Chapters 1–7. 1995, Washington, DC: ASM Press
10.
go back to reference Mahimkar MB, Samant TA, Kannan S, Patil T: Influence of genetic polymorphisms on frequency of micronucleated buccal epithelial cells in leukoplakia patients. Oral Oncol. 2010, 46: 761-766. 10.1016/j.oraloncology.2010.08.009.CrossRefPubMed Mahimkar MB, Samant TA, Kannan S, Patil T: Influence of genetic polymorphisms on frequency of micronucleated buccal epithelial cells in leukoplakia patients. Oral Oncol. 2010, 46: 761-766. 10.1016/j.oraloncology.2010.08.009.CrossRefPubMed
11.
go back to reference Wang Y, Spitz MR, Lee JJ, Huang M, Lippman SM, Wu X: Nucleotide excision repair pathway genes and oral premalignant lesions. Clin Cancer Res. 2007, 13: 3753-3758. 10.1158/1078-0432.CCR-06-1911.CrossRefPubMed Wang Y, Spitz MR, Lee JJ, Huang M, Lippman SM, Wu X: Nucleotide excision repair pathway genes and oral premalignant lesions. Clin Cancer Res. 2007, 13: 3753-3758. 10.1158/1078-0432.CCR-06-1911.CrossRefPubMed
12.
go back to reference Majumder M, Sikdar N, Ghosh S, Roy B: Polymorphisms at XPD and XRCC1 DNA repair loci and increased risk of oral leukoplakia and cancer among NAT2 slow acetylators. Int J Cancer. 2007, 120: 2148-2156. 10.1002/ijc.22547.CrossRefPubMed Majumder M, Sikdar N, Ghosh S, Roy B: Polymorphisms at XPD and XRCC1 DNA repair loci and increased risk of oral leukoplakia and cancer among NAT2 slow acetylators. Int J Cancer. 2007, 120: 2148-2156. 10.1002/ijc.22547.CrossRefPubMed
13.
go back to reference Kietthubthew S, Sriplung H, Au WW, Ishida T: Polymorphism in DNA repair genes and oral squamous cell carcinoma in Thailand. Int J Hyg Environ Health. 2006, 209: 21-29. 10.1016/j.ijheh.2005.06.002.CrossRefPubMed Kietthubthew S, Sriplung H, Au WW, Ishida T: Polymorphism in DNA repair genes and oral squamous cell carcinoma in Thailand. Int J Hyg Environ Health. 2006, 209: 21-29. 10.1016/j.ijheh.2005.06.002.CrossRefPubMed
14.
go back to reference Bau DT, Tsai MH, Huang CY, Lee CC, Tseng HC, Lo YL, Tsai Y, Tsai FJ: Relationship between polymorphisms of nucleotide excision repair genes and oral cancer risk in Taiwan: evidence for modification of smoking habit. Chin J Physiol. 2007, 50: 294-300.PubMed Bau DT, Tsai MH, Huang CY, Lee CC, Tseng HC, Lo YL, Tsai Y, Tsai FJ: Relationship between polymorphisms of nucleotide excision repair genes and oral cancer risk in Taiwan: evidence for modification of smoking habit. Chin J Physiol. 2007, 50: 294-300.PubMed
15.
go back to reference Ramachandran S, Ramadas K, Hariharan R, Rejnish Kumar R, Radhakrishna Pillai M: Single nucleotide polymorphisms of DNA repair genes XRCC1 and XPD and its molecular mapping in Indian oral cancer. Oral Oncol. 2006, 42: 350-362. 10.1016/j.oraloncology.2005.08.010.CrossRefPubMed Ramachandran S, Ramadas K, Hariharan R, Rejnish Kumar R, Radhakrishna Pillai M: Single nucleotide polymorphisms of DNA repair genes XRCC1 and XPD and its molecular mapping in Indian oral cancer. Oral Oncol. 2006, 42: 350-362. 10.1016/j.oraloncology.2005.08.010.CrossRefPubMed
16.
go back to reference Akaike H: Fitting autoregressive models for prediction. Ann Inst Stat Math. 1969, 21: 243-247. 10.1007/BF02532251.CrossRef Akaike H: Fitting autoregressive models for prediction. Ann Inst Stat Math. 1969, 21: 243-247. 10.1007/BF02532251.CrossRef
17.
go back to reference De Silva IU, McHugh PJ, Clingen PH, Hartley JA: Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol. 2000, 20: 7980-7990. 10.1128/MCB.20.21.7980-7990.2000.CrossRefPubMedPubMedCentral De Silva IU, McHugh PJ, Clingen PH, Hartley JA: Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol. 2000, 20: 7980-7990. 10.1128/MCB.20.21.7980-7990.2000.CrossRefPubMedPubMedCentral
18.
go back to reference Braithwaite E, Wu X, Wang Z: Repair of DNA lesions: mechanisms and relative repair efficiencies. Mutat Res. 1999, 424: 207-219. 10.1016/S0027-5107(99)00020-2.CrossRefPubMed Braithwaite E, Wu X, Wang Z: Repair of DNA lesions: mechanisms and relative repair efficiencies. Mutat Res. 1999, 424: 207-219. 10.1016/S0027-5107(99)00020-2.CrossRefPubMed
19.
go back to reference Chen ZP, Malapetsa A, McQuillan A, Marcantonio D, Bello V, Mohr G, Remack J, Brent TP, Panasci LC: Evidence for nucleotide excision repair as a modifying factor of O6-methylguanine-DNA methyltransferase-mediated innate chloroethylnitrosourea resistance in human tumor cell lines. Mol Pharmacol. 1997, 52: 815-820. 10.1124/mol.52.5.815.CrossRefPubMed Chen ZP, Malapetsa A, McQuillan A, Marcantonio D, Bello V, Mohr G, Remack J, Brent TP, Panasci LC: Evidence for nucleotide excision repair as a modifying factor of O6-methylguanine-DNA methyltransferase-mediated innate chloroethylnitrosourea resistance in human tumor cell lines. Mol Pharmacol. 1997, 52: 815-820. 10.1124/mol.52.5.815.CrossRefPubMed
20.
go back to reference Benhamou S, Sarasin A: ERCC2/XPD gene polymorphisms and cancer risk. Mutagenesis. 2002, 17: 463-469. 10.1093/mutage/17.6.463.CrossRefPubMed Benhamou S, Sarasin A: ERCC2/XPD gene polymorphisms and cancer risk. Mutagenesis. 2002, 17: 463-469. 10.1093/mutage/17.6.463.CrossRefPubMed
21.
go back to reference Lunn RW, Helzlsouer KJ, Parshad R, Umbach DM, Harris EL, Sanford KK, Bell DA: XPD polymorphisms: effect on DNA repair proficiency. Carcinogenesis. 2000, 21: 551-555. 10.1093/carcin/21.4.551.CrossRefPubMed Lunn RW, Helzlsouer KJ, Parshad R, Umbach DM, Harris EL, Sanford KK, Bell DA: XPD polymorphisms: effect on DNA repair proficiency. Carcinogenesis. 2000, 21: 551-555. 10.1093/carcin/21.4.551.CrossRefPubMed
22.
go back to reference Hou SM, Falt S, Angelini S, Yang K, Nyberg F, Lambert B, Hemminki K: The XPD variant alleles are associated with increased aromatic DNA adduct level and lung cancer risk. Carcinogenesis. 2002, 23: 599-603. 10.1093/carcin/23.4.599.CrossRefPubMed Hou SM, Falt S, Angelini S, Yang K, Nyberg F, Lambert B, Hemminki K: The XPD variant alleles are associated with increased aromatic DNA adduct level and lung cancer risk. Carcinogenesis. 2002, 23: 599-603. 10.1093/carcin/23.4.599.CrossRefPubMed
23.
go back to reference Au WW, Salama SA, Sierra-Torres CH: Functional characterization of polymorphisms in DNA repair genes using cytogenetic challenge assays. Environ Health Perspect. 2003, 111: 1843-1850. 10.1289/ehp.6632.CrossRefPubMedPubMedCentral Au WW, Salama SA, Sierra-Torres CH: Functional characterization of polymorphisms in DNA repair genes using cytogenetic challenge assays. Environ Health Perspect. 2003, 111: 1843-1850. 10.1289/ehp.6632.CrossRefPubMedPubMedCentral
24.
go back to reference Spitz MR, Wu X, Wang Y, Wang LE, Shete S, Amos CI, Guo Z, Lei L, Mohrenweiser H, Wei Q: Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients. Cancer Res. 2001, 61: 1354-1357.PubMed Spitz MR, Wu X, Wang Y, Wang LE, Shete S, Amos CI, Guo Z, Lei L, Mohrenweiser H, Wei Q: Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients. Cancer Res. 2001, 61: 1354-1357.PubMed
Metadata
Title
Association between polymorphisms in ERCC2 gene and oral cancer risk: evidence from a meta-analysis
Authors
Enjiao Zhang
Zhigang Cui
Zhongfei Xu
Weiyi Duan
Shaohui Huang
Xuexin Tan
Zhihua Yin
Changfu Sun
Li Lu
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2013
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-594

Other articles of this Issue 1/2013

BMC Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine