Skip to main content
Top
Published in: BMC Cancer 1/2013

Open Access 01-12-2013 | Research article

Nuclear-encoded mitochondrial MTO1 and MRPL41 are regulated in an opposite epigenetic mode based on estrogen receptor status in breast cancer

Authors: Tae Woo Kim, Byungtak Kim, Ju Hee Kim, Seongeun Kang, Sung-Bin Park, Gookjoo Jeong, Han-Sung Kang, Sun Jung Kim

Published in: BMC Cancer | Issue 1/2013

Login to get access

Abstract

Background

MTO1 and MRPL41 are nuclear-encoded mitochondrial genes encoding a mitochondrial tRNA-modifying enzyme and a mitochondrial ribosomal protein, respectively. Although both genes have been known to have potential roles in cancer, little is known about their molecular regulatory mechanism, particularly from an epigenetic approach. In this study, we aimed to address their epigenetic regulation through the estrogen receptor (ER) in breast cancer.

Methods

Digital differential display (DDD) was conducted to identify mammary gland-specific gene candidates including MTO1 and MRPL41. Promoter CpG methylation and expression in breast cancer cell lines and tissues were examined by methylation-specific PCR and real time RT-PCR. Effect of estradiol (E2), tamoxifen, and trichostatin A (TSA) on gene expression was examined in ER + and ER- breast cancer cell lines. Chromatin immunoprecipitation and luciferase reporter assay were performed to identify binding and influencing of the ER to the promoters.

Results

Examination of both cancer tissues and cell lines revealed that the two genes showed an opposite expression pattern according to ER status; higher expression of MTO1 and MRPL41 in ER- and ER+ cancer types, respectively, and their expression levels were inversely correlated with promoter methylation. Tamoxifen, E2, and TSA upregulated MTO1 expression only in ER+ cells with no significant changes in ER- cells. However, these chemicals upregulated MRPL41 expression only in ER- cells without significant changes in ER+ cells, except for tamoxifen that induced downregulation. Chromatin immunoprecipitation and luciferase reporter assay identified binding and influencing of the ER to the promoters and the binding profiles were differentially regulated in ER+ and ER- cells.

Conclusions

These results indicate that different epigenetic status including promoter methylation and different responses through the ER are involved in the differential expression of MTO1 and MRPL41 in breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cui X, Schiff R, Arpino G, Osborne CK, Lee AV: Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol. 2005, 23: 7721-7735.CrossRefPubMed Cui X, Schiff R, Arpino G, Osborne CK, Lee AV: Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol. 2005, 23: 7721-7735.CrossRefPubMed
2.
go back to reference Murphy LC, Leygue E: The role of estrogen receptor-beta in breast cancer. Semin Reprod Med. 2012, 30: 5-13.CrossRefPubMed Murphy LC, Leygue E: The role of estrogen receptor-beta in breast cancer. Semin Reprod Med. 2012, 30: 5-13.CrossRefPubMed
3.
go back to reference Creighton CJ, Kent Osborne C, Van De Vijver MJ, Foekens JA, Klijn JG, Horlings HM, Nuyten D, Wang Y, Zhang Y, Chamness GC, et al: Molecular profiles of progesterone receptor loss in human breast tumors. Breast Cancer Res Treat. 2009, 114: 287-299.CrossRefPubMed Creighton CJ, Kent Osborne C, Van De Vijver MJ, Foekens JA, Klijn JG, Horlings HM, Nuyten D, Wang Y, Zhang Y, Chamness GC, et al: Molecular profiles of progesterone receptor loss in human breast tumors. Breast Cancer Res Treat. 2009, 114: 287-299.CrossRefPubMed
4.
go back to reference Tsunashima R, Naoi Y, Kishi K, Baba Y, Shimomura A, Maruyama N, Nakayama T, Shimazu K, Kim SJ, Tamaki Y, et al: Estrogen receptor positive breast cancer identified by 95-gene classifier as at high risk for relapse shows better response to neoadjuvant chemotherapy. Cancer Lett. 2012, 324: 42-47.CrossRefPubMed Tsunashima R, Naoi Y, Kishi K, Baba Y, Shimomura A, Maruyama N, Nakayama T, Shimazu K, Kim SJ, Tamaki Y, et al: Estrogen receptor positive breast cancer identified by 95-gene classifier as at high risk for relapse shows better response to neoadjuvant chemotherapy. Cancer Lett. 2012, 324: 42-47.CrossRefPubMed
5.
go back to reference Li L, Lee KM, Han W, Choi JY, Lee JY, Kang GH, Park SK, Noh DY, Yoo KY, Kang D: Estrogen and progesterone receptor status affect genome-wide DNA methylation profile in breast cancer. Hum Mol Genet. 2010, 19: 4273-4277.CrossRefPubMed Li L, Lee KM, Han W, Choi JY, Lee JY, Kang GH, Park SK, Noh DY, Yoo KY, Kang D: Estrogen and progesterone receptor status affect genome-wide DNA methylation profile in breast cancer. Hum Mol Genet. 2010, 19: 4273-4277.CrossRefPubMed
6.
go back to reference Allred DC, Brown P, Medina D: The origins of estrogen receptor alpha-positive and estrogen receptor alpha-negative human breast cancer. Breast Cancer Res. 2004, 6: 240-245.CrossRefPubMedPubMedCentral Allred DC, Brown P, Medina D: The origins of estrogen receptor alpha-positive and estrogen receptor alpha-negative human breast cancer. Breast Cancer Res. 2004, 6: 240-245.CrossRefPubMedPubMedCentral
7.
go back to reference Chen Y, Chen C, Yang B, Xu Q, Wu F, Liu F, Ye X, Meng X, Mougin B, Liu G, et al: Estrogen receptor-related genes as an important panel of predictors for breast cancer response to neoadjuvant chemotherapy. Cancer Lett. 2011, 302: 63-68.CrossRefPubMed Chen Y, Chen C, Yang B, Xu Q, Wu F, Liu F, Ye X, Meng X, Mougin B, Liu G, et al: Estrogen receptor-related genes as an important panel of predictors for breast cancer response to neoadjuvant chemotherapy. Cancer Lett. 2011, 302: 63-68.CrossRefPubMed
8.
go back to reference Ghezzi D, Baruffini E, Haack TB, Invernizzi F, Melchionda L, Dallabona C, Strom TM, Parini R, Burlina AB, Meitinger T, et al: Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am J Hum Genet. 2012, 90: 1079-1087.CrossRefPubMedPubMedCentral Ghezzi D, Baruffini E, Haack TB, Invernizzi F, Melchionda L, Dallabona C, Strom TM, Parini R, Burlina AB, Meitinger T, et al: Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am J Hum Genet. 2012, 90: 1079-1087.CrossRefPubMedPubMedCentral
9.
go back to reference Wang X, Yan Q, Guan MX: Combination of the loss of cmnm5U34 with the lack of s2U34 modifications of tRNALys, tRNAGlu, and tRNAGln altered mitochondrial biogenesis and respiration. J Mol Biol. 2010, 395: 1038-1048.CrossRefPubMed Wang X, Yan Q, Guan MX: Combination of the loss of cmnm5U34 with the lack of s2U34 modifications of tRNALys, tRNAGlu, and tRNAGln altered mitochondrial biogenesis and respiration. J Mol Biol. 2010, 395: 1038-1048.CrossRefPubMed
10.
go back to reference Vasta V, Merritt JL, Saneto RP, Hahn SH: Next-generation sequencing for mitochondrial diseases: a wide diagnostic spectrum. Pediatr Int. 2012, 54: 585-601.CrossRefPubMed Vasta V, Merritt JL, Saneto RP, Hahn SH: Next-generation sequencing for mitochondrial diseases: a wide diagnostic spectrum. Pediatr Int. 2012, 54: 585-601.CrossRefPubMed
11.
go back to reference Yoo YA, Kim MJ, Park JK, Chung YM, Lee JH, Chi SG, Kim JS, Yoo YD: Mitochondrial ribosomal protein L41 suppresses cell growth in association with p53 and p27Kip1. Mol Cell Biol. 2005, 25: 6603-6616.CrossRefPubMedPubMedCentral Yoo YA, Kim MJ, Park JK, Chung YM, Lee JH, Chi SG, Kim JS, Yoo YD: Mitochondrial ribosomal protein L41 suppresses cell growth in association with p53 and p27Kip1. Mol Cell Biol. 2005, 25: 6603-6616.CrossRefPubMedPubMedCentral
12.
go back to reference Conde JA, Claunch CJ, Romo HE, Benito-Martin A, Ballestero RP, Gonzalez-Garcia M: Identification of a motif in BMRP required for interaction with Bcl-2 by site-directed mutagenesis studies. J Cell Biochem. 2012, 113: 3498-3508.CrossRefPubMed Conde JA, Claunch CJ, Romo HE, Benito-Martin A, Ballestero RP, Gonzalez-Garcia M: Identification of a motif in BMRP required for interaction with Bcl-2 by site-directed mutagenesis studies. J Cell Biochem. 2012, 113: 3498-3508.CrossRefPubMed
13.
go back to reference Chintharlapalli SR, Jasti M, Malladi S, Parsa KV, Ballestero RP, Gonzalez-Garcia M: BMRP is a Bcl-2 binding protein that induces apoptosis. J Cell Biochem. 2005, 94: 611-626.CrossRefPubMed Chintharlapalli SR, Jasti M, Malladi S, Parsa KV, Ballestero RP, Gonzalez-Garcia M: BMRP is a Bcl-2 binding protein that induces apoptosis. J Cell Biochem. 2005, 94: 611-626.CrossRefPubMed
14.
go back to reference Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J, et al: Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009, 69: 1302-1313.CrossRefPubMedPubMedCentral Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J, et al: Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009, 69: 1302-1313.CrossRefPubMedPubMedCentral
15.
go back to reference Kim SJ, Kelly WK, Fu A, Haines K, Hoffman A, Zheng T, Zhu Y: Genome-wide methylation analysis identifies involvement of TNF-alpha mediated cancer pathways in prostate cancer. Cancer Lett. 2011, 302: 47-53.CrossRefPubMed Kim SJ, Kelly WK, Fu A, Haines K, Hoffman A, Zheng T, Zhu Y: Genome-wide methylation analysis identifies involvement of TNF-alpha mediated cancer pathways in prostate cancer. Cancer Lett. 2011, 302: 47-53.CrossRefPubMed
16.
go back to reference Stossi F, Likhite VS, Katzenellenbogen JA, Katzenellenbogen BS: Estrogen-occupied estrogen receptor represses cyclin G2 gene expression and recruits a repressor complex at the cyclin G2 promoter. J Biol Chem. 2006, 281: 16272-16278.CrossRefPubMed Stossi F, Likhite VS, Katzenellenbogen JA, Katzenellenbogen BS: Estrogen-occupied estrogen receptor represses cyclin G2 gene expression and recruits a repressor complex at the cyclin G2 promoter. J Biol Chem. 2006, 281: 16272-16278.CrossRefPubMed
17.
go back to reference Xiang TX, Yuan Y, Li LL, Wang ZH, Dan LY, Chen Y, Ren GS, Tao Q: Aberrant promoter CpG methylation and its translational applications in breast cancer. Chin J Cancer. 2013, 32: 12-20.CrossRefPubMedPubMedCentral Xiang TX, Yuan Y, Li LL, Wang ZH, Dan LY, Chen Y, Ren GS, Tao Q: Aberrant promoter CpG methylation and its translational applications in breast cancer. Chin J Cancer. 2013, 32: 12-20.CrossRefPubMedPubMedCentral
18.
19.
go back to reference Shigetomi H, Oonogi A, Tsunemi T, Tanase Y, Yamada Y, Kajihara H, Yoshizawa Y, Furukawa N, Haruta S, Yoshida S, et al: The role of components of the chromatin modification machinery in carcinogenesis of clear cell carcinoma of the ovary (Review). Oncol Lett. 2011, 2: 591-597.PubMedPubMedCentral Shigetomi H, Oonogi A, Tsunemi T, Tanase Y, Yamada Y, Kajihara H, Yoshizawa Y, Furukawa N, Haruta S, Yoshida S, et al: The role of components of the chromatin modification machinery in carcinogenesis of clear cell carcinoma of the ovary (Review). Oncol Lett. 2011, 2: 591-597.PubMedPubMedCentral
21.
go back to reference Bonneville R, Jin VX: A hidden Markov model to identify combinatorial epigenetic regulation patterns for estrogen receptor alpha target genes. Bioinformatics. 2013, 29: 22-28.CrossRefPubMed Bonneville R, Jin VX: A hidden Markov model to identify combinatorial epigenetic regulation patterns for estrogen receptor alpha target genes. Bioinformatics. 2013, 29: 22-28.CrossRefPubMed
22.
go back to reference Keen JC, Garrett-Mayer E, Pettit C, Mack KM, Manning J, Herman JG, Davidson NE: Epigenetic regulation of protein phosphatase 2A (PP2A), lymphotactin (XCL1) and estrogen receptor alpha (ER) expression in human breast cancer cells. Cancer Biol Ther. 2004, 3: 1304-1312.CrossRefPubMed Keen JC, Garrett-Mayer E, Pettit C, Mack KM, Manning J, Herman JG, Davidson NE: Epigenetic regulation of protein phosphatase 2A (PP2A), lymphotactin (XCL1) and estrogen receptor alpha (ER) expression in human breast cancer cells. Cancer Biol Ther. 2004, 3: 1304-1312.CrossRefPubMed
23.
24.
go back to reference Boudot A, Kerdivel G, Habauzit D, Eeckhoute J, Le Dily F, Flouriot G, Samson M, Pakdel F: Differential estrogen-regulation of CXCL12 chemokine receptors, CXCR4 and CXCR7, contributes to the growth effect of estrogens in breast cancer cells. PLoS One. 2011, 6: e20898-CrossRefPubMedPubMedCentral Boudot A, Kerdivel G, Habauzit D, Eeckhoute J, Le Dily F, Flouriot G, Samson M, Pakdel F: Differential estrogen-regulation of CXCL12 chemokine receptors, CXCR4 and CXCR7, contributes to the growth effect of estrogens in breast cancer cells. PLoS One. 2011, 6: e20898-CrossRefPubMedPubMedCentral
25.
go back to reference Lappano R, Rosano C, De Marco P, De Francesco EM, Pezzi V, Maggiolini M: Estriol acts as a GPR30 antagonist in estrogen receptor-negative breast cancer cells. Mol Cell Endocrinol. 2010, 320: 162-170.CrossRefPubMed Lappano R, Rosano C, De Marco P, De Francesco EM, Pezzi V, Maggiolini M: Estriol acts as a GPR30 antagonist in estrogen receptor-negative breast cancer cells. Mol Cell Endocrinol. 2010, 320: 162-170.CrossRefPubMed
26.
go back to reference Cohen I, Maly B, Simon I, Meirovitz A, Pikarsky E, Zcharia E, Peretz T, Vlodavsky I, Elkin M: Tamoxifen induces heparanase expression in estrogen receptor-positive breast cancer. Clin Cancer Res. 2007, 13: 4069-4077.CrossRefPubMed Cohen I, Maly B, Simon I, Meirovitz A, Pikarsky E, Zcharia E, Peretz T, Vlodavsky I, Elkin M: Tamoxifen induces heparanase expression in estrogen receptor-positive breast cancer. Clin Cancer Res. 2007, 13: 4069-4077.CrossRefPubMed
27.
go back to reference Ramaswamy B, Majumder S, Roy S, Ghoshal K, Kutay H, Datta J, Younes M, Shapiro CL, Motiwala T, Jacob ST: Estrogen-mediated suppression of the gene encoding protein tyrosine phosphatase PTPRO in human breast cancer: mechanism and role in tamoxifen sensitivity. Mol Endocrinol. 2009, 23: 176-187.CrossRefPubMed Ramaswamy B, Majumder S, Roy S, Ghoshal K, Kutay H, Datta J, Younes M, Shapiro CL, Motiwala T, Jacob ST: Estrogen-mediated suppression of the gene encoding protein tyrosine phosphatase PTPRO in human breast cancer: mechanism and role in tamoxifen sensitivity. Mol Endocrinol. 2009, 23: 176-187.CrossRefPubMed
28.
go back to reference Dong E, Guidotti A, Grayson DR, Costa E: Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc Natl Acad Sci U S A. 2007, 104: 4676-4681.CrossRefPubMedPubMedCentral Dong E, Guidotti A, Grayson DR, Costa E: Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc Natl Acad Sci U S A. 2007, 104: 4676-4681.CrossRefPubMedPubMedCentral
29.
go back to reference Fuks F: DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev. 2005, 15: 490-495.CrossRefPubMed Fuks F: DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev. 2005, 15: 490-495.CrossRefPubMed
30.
go back to reference Morimoto-Kamata R, Mizoguchi S, Ichisugi T, Yui S: Cathepsin G induces cell aggregation of human breast cancer MCF-7 cells via a 2-step mechanism: catalytic site-independent binding to the cell surface and enzymatic activity-dependent induction of the cell aggregation. Mediators Inflamm. 2012, 2012: 456462-CrossRefPubMedPubMedCentral Morimoto-Kamata R, Mizoguchi S, Ichisugi T, Yui S: Cathepsin G induces cell aggregation of human breast cancer MCF-7 cells via a 2-step mechanism: catalytic site-independent binding to the cell surface and enzymatic activity-dependent induction of the cell aggregation. Mediators Inflamm. 2012, 2012: 456462-CrossRefPubMedPubMedCentral
31.
go back to reference Motrich RD, Castro GM, Caputto BL: Old Players with a Newly Defined Function: Fra-1 and c-Fos Support Growth of Human Malignant Breast Tumors by Activating Membrane Biogenesis at the Cytoplasm. PLoS One. 2013, 8: e53211-CrossRefPubMedPubMedCentral Motrich RD, Castro GM, Caputto BL: Old Players with a Newly Defined Function: Fra-1 and c-Fos Support Growth of Human Malignant Breast Tumors by Activating Membrane Biogenesis at the Cytoplasm. PLoS One. 2013, 8: e53211-CrossRefPubMedPubMedCentral
32.
go back to reference Hu DG, Mackenzie PI: Estrogen receptor alpha, fos-related antigen-2, and c-Jun coordinately regulate human UDP glucuronosyltransferase 2B15 and 2B17 expression in response to 17beta-estradiol in MCF-7 cells. Mol Pharmacol. 2009, 76: 425-439.CrossRefPubMed Hu DG, Mackenzie PI: Estrogen receptor alpha, fos-related antigen-2, and c-Jun coordinately regulate human UDP glucuronosyltransferase 2B15 and 2B17 expression in response to 17beta-estradiol in MCF-7 cells. Mol Pharmacol. 2009, 76: 425-439.CrossRefPubMed
33.
go back to reference Mandal S, Davie JR: Estrogen regulated expression of the p21 Waf1/Cip1 gene in estrogen receptor positive human breast cancer cells. J Cell Physiol. 2010, 224: 28-32.PubMed Mandal S, Davie JR: Estrogen regulated expression of the p21 Waf1/Cip1 gene in estrogen receptor positive human breast cancer cells. J Cell Physiol. 2010, 224: 28-32.PubMed
34.
go back to reference Guido C, Panza S, Santoro M, Avena P, Panno ML, Perrotta I, Giordano F, Casaburi I, Catalano S, De Amicis F, et al: Estrogen receptor beta (ERbeta) produces autophagy and necroptosis in human seminoma cell line through the binding of the Sp1 on the phosphatase and tensin homolog deleted from chromosome 10 (PTEN) promoter gene. Cell Cycle. 2012, 11: 2911-2921.CrossRefPubMed Guido C, Panza S, Santoro M, Avena P, Panno ML, Perrotta I, Giordano F, Casaburi I, Catalano S, De Amicis F, et al: Estrogen receptor beta (ERbeta) produces autophagy and necroptosis in human seminoma cell line through the binding of the Sp1 on the phosphatase and tensin homolog deleted from chromosome 10 (PTEN) promoter gene. Cell Cycle. 2012, 11: 2911-2921.CrossRefPubMed
35.
go back to reference Suzuki A, Sanda N, Miyawaki Y, Fujimori Y, Yamada T, Takagi A, Murate T, Saito H, Kojima T: Down-regulation of PROS1 gene expression by 17beta-estradiol via estrogen receptor alpha (ERalpha)-Sp1 interaction recruiting receptor-interacting protein 140 and the corepressor-HDAC3 complex. J Biol Chem. 2010, 285: 13444-13453.CrossRefPubMedPubMedCentral Suzuki A, Sanda N, Miyawaki Y, Fujimori Y, Yamada T, Takagi A, Murate T, Saito H, Kojima T: Down-regulation of PROS1 gene expression by 17beta-estradiol via estrogen receptor alpha (ERalpha)-Sp1 interaction recruiting receptor-interacting protein 140 and the corepressor-HDAC3 complex. J Biol Chem. 2010, 285: 13444-13453.CrossRefPubMedPubMedCentral
Metadata
Title
Nuclear-encoded mitochondrial MTO1 and MRPL41 are regulated in an opposite epigenetic mode based on estrogen receptor status in breast cancer
Authors
Tae Woo Kim
Byungtak Kim
Ju Hee Kim
Seongeun Kang
Sung-Bin Park
Gookjoo Jeong
Han-Sung Kang
Sun Jung Kim
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2013
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-502

Other articles of this Issue 1/2013

BMC Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine