Skip to main content
Top
Published in: BMC Cancer 1/2013

Open Access 01-12-2013 | Research article

FOXO/TXNIP pathway is involved in the suppression of hepatocellular carcinoma growth by glutamate antagonist MK-801

Authors: Fuminori Yamaguchi, Yuko Hirata, Hossain Akram, Kazuyo Kamitori, Youyi Dong, Li Sui, Masaaki Tokuda

Published in: BMC Cancer | Issue 1/2013

Login to get access

Abstract

Background

Accumulating evidence has suggested the importance of glutamate signaling in cancer growth, yet the signaling pathway has not been fully elucidated. N-methyl-D-aspartic acid (NMDA) receptor activates intracellular signaling pathways such as the extracellular-signal-regulated kinase (ERK) and forkhead box, class O (FOXO). Suppression of lung carcinoma growth by NMDA receptor antagonists via the ERK pathway has been reported. However, series of evidences suggested the importance of FOXO pathways for the regulation of normal and cancer cell growth. In the liver, FOXO1 play important roles for the cell proliferation such as hepatic stellate cells as well as liver metabolism. Our aim was to investigate the involvement of the FOXO pathway and the target genes in the growth inhibitory effects of NMDA receptor antagonist MK-801 in human hepatocellular carcinoma.

Methods

Expression of NMDAR1 in cancer cell lines from different tissues was examined by Western blot. NMDA receptor subunits in HepG2, HuH-7, and HLF were examined by reverse transcriptase polymerase chain reaction (RT-PCR), and growth inhibition by MK-801 and NBQX was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of MK-801 on the cell cycle were examined by flow cytometry and Western blot analysis. Expression of thioredoxin-interacting protein (TXNIP) and p27 was determined by real-time PCR and Western blotting. Activation of the FOXO pathway and TXNIP induction were examined by Western blotting, fluorescence microscopy, Chromatin immunoprecipitation (ChIP) assay, and reporter gene assay. The effects of TXNIP on growth inhibition were examined using the gene silencing technique.

Results

NMDA receptor subunits were expressed in all cell lines examined, and MK-801, but not NBQX, inhibited cell growth of hepatocellular carcinomas. Cell cycle analysis showed that MK-801 induced G1 cell cycle arrest by down-regulating cyclin D1 and up-regulating p27. MK-801 dephosphorylated Thr24 in FOXO1 and induced its nuclear translocation, thus increasing transcription of TXNIP, a tumor suppressor gene. Knock-down of TXNIP ameliorated the growth inhibitory effects of MK-801.

Conclusions

Our results indicate that functional NMDA receptors are expressed in hepatocellular carcinomas and that the FOXO pathway is involved in the growth inhibitory effects of MK-801. This mechanism could be common in hepatocellular carcinomas examined, but other mechanisms such as ERK pathway could exist in other cancer cells as reported in lung carcinoma cells. Altered expression levels of FOXO target genes including cyclin D1 and p27 may contribute to the inhibition of G1/S cell cycle transition. Induction of the tumor suppressor gene TXNIP plays an important role in the growth inhibition by MK-801. Our report provides new evidence that FOXO-TXNIP pathway play a role in the inhibition of the hepatocellular carcinoma growth by MK-801.
Appendix
Available only for authorised users
Literature
1.
go back to reference Anwyl R: Synaptic plasticity, A molecular switch for memory. Curr Biol. 1994, 4 (9): 854-856. 10.1016/S0960-9822(00)00192-5.CrossRefPubMed Anwyl R: Synaptic plasticity, A molecular switch for memory. Curr Biol. 1994, 4 (9): 854-856. 10.1016/S0960-9822(00)00192-5.CrossRefPubMed
2.
go back to reference Riedel G, Platt B, Micheau J: Glutamate receptor function in learning and memory. Behav Brain Res. 2003, 140 (1–2): 1-47.CrossRefPubMed Riedel G, Platt B, Micheau J: Glutamate receptor function in learning and memory. Behav Brain Res. 2003, 140 (1–2): 1-47.CrossRefPubMed
3.
go back to reference Hinoi E, Takarada T, Ueshima T, Tsuchihashi Y, Yoneda Y: Glutamate signaling in peripheral tissues. Eur J Biochem. 2004, 271 (1): 1-13.CrossRefPubMed Hinoi E, Takarada T, Ueshima T, Tsuchihashi Y, Yoneda Y: Glutamate signaling in peripheral tissues. Eur J Biochem. 2004, 271 (1): 1-13.CrossRefPubMed
4.
go back to reference Skerry TM, Genever PG: Glutamate signalling in non-neuronal tissues. Trends Pharmacol Sci. 2001, 22 (4): 174-181. 10.1016/S0165-6147(00)01642-4.CrossRefPubMed Skerry TM, Genever PG: Glutamate signalling in non-neuronal tissues. Trends Pharmacol Sci. 2001, 22 (4): 174-181. 10.1016/S0165-6147(00)01642-4.CrossRefPubMed
5.
go back to reference Siegel S, Sanacora G: The roles of glutamate receptors across major neurological and psychiatric disorders. Pharmacol Biochem Behav. 2012, 100 (4): 653-655. 10.1016/j.pbb.2011.11.002.CrossRefPubMed Siegel S, Sanacora G: The roles of glutamate receptors across major neurological and psychiatric disorders. Pharmacol Biochem Behav. 2012, 100 (4): 653-655. 10.1016/j.pbb.2011.11.002.CrossRefPubMed
6.
go back to reference Javitt DC: Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry. 2004, 979 (11): 984-997.CrossRef Javitt DC: Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry. 2004, 979 (11): 984-997.CrossRef
7.
go back to reference Stepulak A, Luksch H, Gebhardt C, Uckermann O, Marzahn J, Sifringer M, Rzeski W, Staufner C, Brocke KS, Turski L, et al: Expression of glutamate receptor subunits in human cancers. Histochem Cell Biol. 2009, 132 (4): 435-445. 10.1007/s00418-009-0613-1.CrossRefPubMed Stepulak A, Luksch H, Gebhardt C, Uckermann O, Marzahn J, Sifringer M, Rzeski W, Staufner C, Brocke KS, Turski L, et al: Expression of glutamate receptor subunits in human cancers. Histochem Cell Biol. 2009, 132 (4): 435-445. 10.1007/s00418-009-0613-1.CrossRefPubMed
8.
go back to reference Samuels Y, Prickett T: Molecular pathways: dysregulated glutamatergic signaling pathways in cancer. Clin Cancer Res. 2012, 18 (16): 4240-4246. 10.1158/1078-0432.CCR-11-1217.CrossRefPubMedPubMedCentral Samuels Y, Prickett T: Molecular pathways: dysregulated glutamatergic signaling pathways in cancer. Clin Cancer Res. 2012, 18 (16): 4240-4246. 10.1158/1078-0432.CCR-11-1217.CrossRefPubMedPubMedCentral
9.
go back to reference Seidlitz EP, Sharma MK, Saikali Z, Ghert M, Singh G: Cancer cell lines release glutamate into the extracellular environment. Clin Exp Metastasis. 2009, 26 (7): 781-787. 10.1007/s10585-009-9277-4.CrossRefPubMed Seidlitz EP, Sharma MK, Saikali Z, Ghert M, Singh G: Cancer cell lines release glutamate into the extracellular environment. Clin Exp Metastasis. 2009, 26 (7): 781-787. 10.1007/s10585-009-9277-4.CrossRefPubMed
10.
go back to reference Herner A, Sauliunaite D, Michalski CW, Erkan M, De Oliveira T, Abiatari I, Kong B, Esposito I, Friess H, Kleeff J: Glutamate increases pancreatic cancer cell invasion and migration via AMPA receptor activation and Kras-MAPK signaling. Int J Cancer. 2011, 129 (10): 2349-2359. 10.1002/ijc.25898.CrossRefPubMed Herner A, Sauliunaite D, Michalski CW, Erkan M, De Oliveira T, Abiatari I, Kong B, Esposito I, Friess H, Kleeff J: Glutamate increases pancreatic cancer cell invasion and migration via AMPA receptor activation and Kras-MAPK signaling. Int J Cancer. 2011, 129 (10): 2349-2359. 10.1002/ijc.25898.CrossRefPubMed
11.
go back to reference Hollmann M, O’Shea-Greenfield A, Rogers SW, Heinemann S: Cloning by functional expression of a member of the glutamate receptor family. Nature. 1989, 342 (6250): 643-648. 10.1038/342643a0.CrossRefPubMed Hollmann M, O’Shea-Greenfield A, Rogers SW, Heinemann S: Cloning by functional expression of a member of the glutamate receptor family. Nature. 1989, 342 (6250): 643-648. 10.1038/342643a0.CrossRefPubMed
12.
go back to reference Nakanishi N, Shneider NA, Axel R: A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron. 1990, 5 (5): 569-581. 10.1016/0896-6273(90)90212-X.CrossRefPubMedPubMedCentral Nakanishi N, Shneider NA, Axel R: A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron. 1990, 5 (5): 569-581. 10.1016/0896-6273(90)90212-X.CrossRefPubMedPubMedCentral
13.
go back to reference Lynch DR, Guttmann RP: NMDA receptor pharmacology: perspectives from molecular biology. Curr Drug Targets. 2001, 2 (3): 215-231. 10.2174/1389450013348434.CrossRefPubMed Lynch DR, Guttmann RP: NMDA receptor pharmacology: perspectives from molecular biology. Curr Drug Targets. 2001, 2 (3): 215-231. 10.2174/1389450013348434.CrossRefPubMed
14.
go back to reference Hardingham GE, Bading H: Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci. 2010, 11 (10): 682-696. 10.1038/nrn2911.CrossRefPubMedPubMedCentral Hardingham GE, Bading H: Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci. 2010, 11 (10): 682-696. 10.1038/nrn2911.CrossRefPubMedPubMedCentral
15.
go back to reference Sheth SS, Bodnar JS, Ghazalpour A, Thipphavong CK, Tsutsumi S, Tward AD, Demant P, Kodama T, Aburatani H, Lusis AJ: Hepatocellular carcinoma in Txnip-deficient mice. Oncogene. 2006, 25 (25): 3528-3536. 10.1038/sj.onc.1209394.CrossRefPubMed Sheth SS, Bodnar JS, Ghazalpour A, Thipphavong CK, Tsutsumi S, Tward AD, Demant P, Kodama T, Aburatani H, Lusis AJ: Hepatocellular carcinoma in Txnip-deficient mice. Oncogene. 2006, 25 (25): 3528-3536. 10.1038/sj.onc.1209394.CrossRefPubMed
16.
go back to reference Watanabe R, Nakamura H, Masutani H, Yodoi J: Anti-oxidative, anti-cancer and anti-inflammatory actions by thioredoxin 1 and thioredoxin-binding protein-2. Pharmacol Ther. 2010, 127 (3): 261-270. 10.1016/j.pharmthera.2010.04.004.CrossRefPubMed Watanabe R, Nakamura H, Masutani H, Yodoi J: Anti-oxidative, anti-cancer and anti-inflammatory actions by thioredoxin 1 and thioredoxin-binding protein-2. Pharmacol Ther. 2010, 127 (3): 261-270. 10.1016/j.pharmthera.2010.04.004.CrossRefPubMed
17.
go back to reference Papadia S, Soriano FX, Leveille F, Martel MA, Dakin KA, Hansen HH, Kaindl A, Sifringer M, Fowler J, Stefovska V, et al: Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci. 2008, 11 (4): 476-487. 10.1038/nn2071.CrossRefPubMedPubMedCentral Papadia S, Soriano FX, Leveille F, Martel MA, Dakin KA, Hansen HH, Kaindl A, Sifringer M, Fowler J, Stefovska V, et al: Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci. 2008, 11 (4): 476-487. 10.1038/nn2071.CrossRefPubMedPubMedCentral
18.
go back to reference Chen KS, DeLuca HF: Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3. Biochim Biophys Acta. 1994, 1219 (1): 26-32. 10.1016/0167-4781(94)90242-9.CrossRefPubMed Chen KS, DeLuca HF: Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3. Biochim Biophys Acta. 1994, 1219 (1): 26-32. 10.1016/0167-4781(94)90242-9.CrossRefPubMed
19.
go back to reference Ikarashi M, Takahashi Y, Ishii Y, Nagata T, Asai S, Ishikawa K: Vitamin D3 up-regulated protein 1 (VDUP1) expression in gastrointestinal cancer and its relation to stage of disease. Anticancer Res. 2002, 22 (6C): 4045-4048.PubMed Ikarashi M, Takahashi Y, Ishii Y, Nagata T, Asai S, Ishikawa K: Vitamin D3 up-regulated protein 1 (VDUP1) expression in gastrointestinal cancer and its relation to stage of disease. Anticancer Res. 2002, 22 (6C): 4045-4048.PubMed
20.
go back to reference Escrich E, Moral R, Garcia G, Costa I, Sanchez JA, Solanas M: Identification of novel differentially expressed genes by the effect of a high-fat n-6 diet in experimental breast cancer. Mol Carcinog. 2004, 40 (2): 73-78. 10.1002/mc.20028.CrossRefPubMed Escrich E, Moral R, Garcia G, Costa I, Sanchez JA, Solanas M: Identification of novel differentially expressed genes by the effect of a high-fat n-6 diet in experimental breast cancer. Mol Carcinog. 2004, 40 (2): 73-78. 10.1002/mc.20028.CrossRefPubMed
21.
go back to reference Yamaguchi F, Takata M, Kamitori K, Nonaka M, Dong Y, Sui L, Tokuda M: Rare sugar D-allose induces specific up-regulation of TXNIP and subsequent G1 cell cycle arrest in hepatocellular carcinoma cells by stabilization of p27kip1. Int J Oncol. 2008, 32 (2): 377-385.PubMed Yamaguchi F, Takata M, Kamitori K, Nonaka M, Dong Y, Sui L, Tokuda M: Rare sugar D-allose induces specific up-regulation of TXNIP and subsequent G1 cell cycle arrest in hepatocellular carcinoma cells by stabilization of p27kip1. Int J Oncol. 2008, 32 (2): 377-385.PubMed
22.
go back to reference Aronica E, Yankaya B, Jansen GH, Leenstra S, van Veelen CW, Gorter JA, Troost D: Ionotropic and metabotropic glutamate receptor protein expression in glioneuronal tumours from patients with intractable epilepsy. Neuropathol Appl Neurobiol. 2001, 27 (3): 223-237. 10.1046/j.0305-1846.2001.00314.x.CrossRefPubMed Aronica E, Yankaya B, Jansen GH, Leenstra S, van Veelen CW, Gorter JA, Troost D: Ionotropic and metabotropic glutamate receptor protein expression in glioneuronal tumours from patients with intractable epilepsy. Neuropathol Appl Neurobiol. 2001, 27 (3): 223-237. 10.1046/j.0305-1846.2001.00314.x.CrossRefPubMed
23.
go back to reference Choi SW, Park SY, Hong SP, Pai H, Choi JY, Kim SG: The expression of NMDA receptor 1 is associated with clinicopathological parameters and prognosis in the oral squamous cell carcinoma. J Oral Pathol Med. 2004, 33 (9): 533-537. 10.1111/j.1600-0714.2004.00226.x.CrossRefPubMed Choi SW, Park SY, Hong SP, Pai H, Choi JY, Kim SG: The expression of NMDA receptor 1 is associated with clinicopathological parameters and prognosis in the oral squamous cell carcinoma. J Oral Pathol Med. 2004, 33 (9): 533-537. 10.1111/j.1600-0714.2004.00226.x.CrossRefPubMed
24.
go back to reference Liu JW, Kim MS, Nagpal J, Yamashita K, Poeta L, Chang X, Lee J, Park HL, Jeronimo C, Westra WH, et al: Quantitative hypermethylation of NMDAR2B in human gastric cancer. Int J Cancer. 2007, 121 (9): 1994-2000. 10.1002/ijc.22934.CrossRefPubMed Liu JW, Kim MS, Nagpal J, Yamashita K, Poeta L, Chang X, Lee J, Park HL, Jeronimo C, Westra WH, et al: Quantitative hypermethylation of NMDAR2B in human gastric cancer. Int J Cancer. 2007, 121 (9): 1994-2000. 10.1002/ijc.22934.CrossRefPubMed
25.
go back to reference Abdul M, Hoosein N: N-methyl-D-aspartate receptor in human prostate cancer. J Membr Biol. 2005, 205 (3): 125-128. 10.1007/s00232-005-0777-0.CrossRefPubMed Abdul M, Hoosein N: N-methyl-D-aspartate receptor in human prostate cancer. J Membr Biol. 2005, 205 (3): 125-128. 10.1007/s00232-005-0777-0.CrossRefPubMed
26.
go back to reference Kalariti N, Pissimissis N, Koutsilieris M: The glutamatergic system outside the CNS and in cancer biology. Expert Opin Investig Drugs. 2005, 14 (12): 1487-1496. 10.1517/13543784.14.12.1487.CrossRefPubMed Kalariti N, Pissimissis N, Koutsilieris M: The glutamatergic system outside the CNS and in cancer biology. Expert Opin Investig Drugs. 2005, 14 (12): 1487-1496. 10.1517/13543784.14.12.1487.CrossRefPubMed
27.
28.
go back to reference Stepulak A, Sifringer M, Rzeski W, Endesfelder S, Gratopp A, Pohl EE, Bittigau P, Felderhoff-Mueser U, Kaindl AM, Buhrer C, et al: NMDA antagonist inhibits the extracellular signal-regulated kinase pathway and suppresses cancer growth. Proc Natl Acad Sci USA. 2005, 102 (43): 15605-15610. 10.1073/pnas.0507679102.CrossRefPubMedPubMedCentral Stepulak A, Sifringer M, Rzeski W, Endesfelder S, Gratopp A, Pohl EE, Bittigau P, Felderhoff-Mueser U, Kaindl AM, Buhrer C, et al: NMDA antagonist inhibits the extracellular signal-regulated kinase pathway and suppresses cancer growth. Proc Natl Acad Sci USA. 2005, 102 (43): 15605-15610. 10.1073/pnas.0507679102.CrossRefPubMedPubMedCentral
29.
go back to reference Greer EL, Brunet A: FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005, 24 (50): 7410-7425. 10.1038/sj.onc.1209086.CrossRefPubMed Greer EL, Brunet A: FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005, 24 (50): 7410-7425. 10.1038/sj.onc.1209086.CrossRefPubMed
30.
go back to reference Reagan-Shaw S, Ahmad N: The role of Forkhead-box Class O (FoxO) transcription factors in cancer: a target for the management of cancer. Toxicol Appl Pharmacol. 2007, 224 (3): 360-368. 10.1016/j.taap.2006.12.003.CrossRefPubMed Reagan-Shaw S, Ahmad N: The role of Forkhead-box Class O (FoxO) transcription factors in cancer: a target for the management of cancer. Toxicol Appl Pharmacol. 2007, 224 (3): 360-368. 10.1016/j.taap.2006.12.003.CrossRefPubMed
31.
go back to reference Adachi M, Osawa Y, Uchinami H, Kitamura T, Accili D, Brenner DA: The forkhead transcription factor FoxO1 regulates proliferation and transdifferentiation of hepatic stellate cells. Gastroenterology. 2007, 132 (4): 1434-1446. 10.1053/j.gastro.2007.01.033.CrossRefPubMed Adachi M, Osawa Y, Uchinami H, Kitamura T, Accili D, Brenner DA: The forkhead transcription factor FoxO1 regulates proliferation and transdifferentiation of hepatic stellate cells. Gastroenterology. 2007, 132 (4): 1434-1446. 10.1053/j.gastro.2007.01.033.CrossRefPubMed
32.
go back to reference Gross DN, van den Heuvel AP, Birnbaum MJ: The role of FoxO in the regulation of metabolism. Oncogene. 2008, 27 (16): 2320-2336. 10.1038/onc.2008.25.CrossRefPubMed Gross DN, van den Heuvel AP, Birnbaum MJ: The role of FoxO in the regulation of metabolism. Oncogene. 2008, 27 (16): 2320-2336. 10.1038/onc.2008.25.CrossRefPubMed
33.
go back to reference Gill SS, Pulido OM, Mueller RW, McGuire PF: Molecular and immunochemical characterization of the ionotropic glutamate receptors in the rat heart. Brain Res Bull. 1998, 46 (5): 429-434. 10.1016/S0361-9230(98)00012-4.CrossRefPubMed Gill SS, Pulido OM, Mueller RW, McGuire PF: Molecular and immunochemical characterization of the ionotropic glutamate receptors in the rat heart. Brain Res Bull. 1998, 46 (5): 429-434. 10.1016/S0361-9230(98)00012-4.CrossRefPubMed
34.
go back to reference Jeon JH, Lee KN, Hwang CY, Kwon KS, You KH, Choi I: Tumor suppressor VDUP1 increases p27(kip1) stability by inhibiting JAB1. Cancer Res. 2005, 65 (11): 4485-4489. 10.1158/0008-5472.CAN-04-2271.CrossRefPubMed Jeon JH, Lee KN, Hwang CY, Kwon KS, You KH, Choi I: Tumor suppressor VDUP1 increases p27(kip1) stability by inhibiting JAB1. Cancer Res. 2005, 65 (11): 4485-4489. 10.1158/0008-5472.CAN-04-2271.CrossRefPubMed
35.
go back to reference Zhao X, Gan L, Pan H, Kan D, Majeski M, Adam SA, Unterman TG: Multiple elements regulate nuclear/cytoplasmic shuttling of FOXO1: characterization of phosphorylation- and 14-3-3-dependent and -independent mechanisms. Biochem J. 2004, 378 (Pt 3): 839-849.CrossRefPubMedPubMedCentral Zhao X, Gan L, Pan H, Kan D, Majeski M, Adam SA, Unterman TG: Multiple elements regulate nuclear/cytoplasmic shuttling of FOXO1: characterization of phosphorylation- and 14-3-3-dependent and -independent mechanisms. Biochem J. 2004, 378 (Pt 3): 839-849.CrossRefPubMedPubMedCentral
36.
go back to reference Ishiuchi S, Yoshida Y, Sugawara K, Aihara M, Ohtani T, Watanabe T, Saito N, Tsuzuki K, Okado H, Miwa A, et al: Ca2 + -permeable AMPA receptors regulate growth of human glioblastoma via Akt activation. J Neurosci. 2007, 27 (30): 7987-8001. 10.1523/JNEUROSCI.2180-07.2007.CrossRefPubMed Ishiuchi S, Yoshida Y, Sugawara K, Aihara M, Ohtani T, Watanabe T, Saito N, Tsuzuki K, Okado H, Miwa A, et al: Ca2 + -permeable AMPA receptors regulate growth of human glioblastoma via Akt activation. J Neurosci. 2007, 27 (30): 7987-8001. 10.1523/JNEUROSCI.2180-07.2007.CrossRefPubMed
37.
go back to reference Lukas J, Pagano M, Staskova Z, Draetta G, Bartek J: Cyclin D1 protein oscillates and is essential for cell cycle progression in human tumour cell lines. Oncogene. 1994, 9 (3): 707-718.PubMed Lukas J, Pagano M, Staskova Z, Draetta G, Bartek J: Cyclin D1 protein oscillates and is essential for cell cycle progression in human tumour cell lines. Oncogene. 1994, 9 (3): 707-718.PubMed
38.
go back to reference Waldman T, Kinzler KW, Vogelstein B: p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 1995, 55 (22): 5187-5190.PubMed Waldman T, Kinzler KW, Vogelstein B: p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 1995, 55 (22): 5187-5190.PubMed
39.
go back to reference Coats S, Flanagan WM, Nourse J, Roberts JM: Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science. 1996, 272 (5263): 877-880. 10.1126/science.272.5263.877.CrossRefPubMed Coats S, Flanagan WM, Nourse J, Roberts JM: Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science. 1996, 272 (5263): 877-880. 10.1126/science.272.5263.877.CrossRefPubMed
40.
go back to reference Tran H, Brunet A, Griffith EC, Greenberg ME: The many forks in FOXO’s road. Sci STKE. 2003, 2003 (172): RE5-PubMed Tran H, Brunet A, Griffith EC, Greenberg ME: The many forks in FOXO’s road. Sci STKE. 2003, 2003 (172): RE5-PubMed
41.
go back to reference Stahl M, Dijkers PF, Kops GJ, Lens SM, Coffer PJ, Burgering BM, Medema RH: The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol. 2002, 168 (10): 5024-5031.CrossRefPubMed Stahl M, Dijkers PF, Kops GJ, Lens SM, Coffer PJ, Burgering BM, Medema RH: The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol. 2002, 168 (10): 5024-5031.CrossRefPubMed
42.
go back to reference Medema RH, Kops GJ, Bos JL, Burgering BM: AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature. 2000, 404 (6779): 782-787. 10.1038/35008115.CrossRefPubMed Medema RH, Kops GJ, Bos JL, Burgering BM: AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature. 2000, 404 (6779): 782-787. 10.1038/35008115.CrossRefPubMed
43.
go back to reference Ramaswamy S, Nakamura N, Sansal I, Bergeron L, Sellers WR: A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell. 2002, 2 (1): 81-91. 10.1016/S1535-6108(02)00086-7.CrossRefPubMed Ramaswamy S, Nakamura N, Sansal I, Bergeron L, Sellers WR: A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell. 2002, 2 (1): 81-91. 10.1016/S1535-6108(02)00086-7.CrossRefPubMed
44.
go back to reference Xuan Z, Zhang MQ: From worm to human: bioinformatics approaches to identify FOXO target genes. Mech Ageing Dev. 2005, 126 (1): 209-215. 10.1016/j.mad.2004.09.021.CrossRefPubMed Xuan Z, Zhang MQ: From worm to human: bioinformatics approaches to identify FOXO target genes. Mech Ageing Dev. 2005, 126 (1): 209-215. 10.1016/j.mad.2004.09.021.CrossRefPubMed
Metadata
Title
FOXO/TXNIP pathway is involved in the suppression of hepatocellular carcinoma growth by glutamate antagonist MK-801
Authors
Fuminori Yamaguchi
Yuko Hirata
Hossain Akram
Kazuyo Kamitori
Youyi Dong
Li Sui
Masaaki Tokuda
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2013
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-468

Other articles of this Issue 1/2013

BMC Cancer 1/2013 Go to the issue

Reviewer acknowledgement

Reviewer Acknowledgements

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine