Skip to main content
Top
Published in: BMC Cancer 1/2013

Open Access 01-12-2013 | Research article

Overexpression of peptide deformylase in breast, colon, and lung cancers

Authors: Harsharan Randhawa, Shireen Chikara, Drew Gehring, Tuba Yildirim, Jyotsana Menon, Katie M Reindl

Published in: BMC Cancer | Issue 1/2013

Login to get access

Abstract

Background

Human mitochondrial peptide deformylase (PDF) has been proposed as a novel cancer therapeutic target. However, very little is known about its expression and regulation in human tissues. The purpose of this study was to characterize the expression pattern of PDF in cancerous tissues and to identify mechanisms that regulate its expression.

Methods

The mRNA expression levels of PDF and methionine aminopeptidase 1D (MAP1D), an enzyme involved in a related pathway with PDF, were determined using tissue panels containing cDNA from patients with various types of cancer (breast, colon, kidney, liver, lung, ovarian, prostate, or thyroid) and human cell lines. Protein levels of PDF were also determined in 2 colon cancer patients via western blotting. Colon cancer cells were treated with inhibitors of ERK, Akt, and mTOR signaling pathways and the resulting effects on PDF and MAP1D mRNA levels were determined by qPCR for colon and lung cancer cell lines. Finally, the effects of a PDF inhibitor, actinonin, on the proliferation of breast, colon, and prostate cell lines were determined using the CyQUANT assay.

Results

PDF and MAP1D mRNA levels were elevated in cancer cell lines compared to non-cancer lines. PDF mRNA levels were significantly increased in breast, colon, and lung cancer samples while MAP1D mRNA levels were increased in just colon cancers. The expression of PDF and MAP1D varied with stage in these cancers. Further, PDF protein expression was elevated in colon cancer tissue samples. Inhibition of the MEK/ERK, but not PI3K or mTOR, pathway reduced the expression of PDF and MAP1D in both colon and lung cancer cell lines. Further, inhibition of PDF with actinonin resulted in greater reduction of breast, colon, and prostate cancer cell proliferation than non-cancer cell lines.

Conclusions

This is the first report showing that PDF is over-expressed in breast, colon, and lung cancers, and the first evidence that the MEK/ERK pathway plays a role in regulating the expression of PDF and MAP1D. The over-expression of PDF in several cancers and the inhibition of cancer cell growth by a PDF inhibitor suggest this enzyme may act as an oncogene to promote cancer cell proliferation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Solbiati J, Chapman-Smith A, Miller JL, Miller CG, Cronan JE: Processing of the N termini of nascent polypeptide chains requires deformylation prior to methionine removal. J Mol Biol. 1999, 290 (3): 607-614. 10.1006/jmbi.1999.2913.CrossRefPubMed Solbiati J, Chapman-Smith A, Miller JL, Miller CG, Cronan JE: Processing of the N termini of nascent polypeptide chains requires deformylation prior to methionine removal. J Mol Biol. 1999, 290 (3): 607-614. 10.1006/jmbi.1999.2913.CrossRefPubMed
2.
go back to reference Nguyen KT, Hu X, Colton C, Chakrabarti R, Zhu MX, Pei D: Characterization of a human peptide deformylase: implications for antibacterial drug design. Biochemistry. 2003, 42 (33): 9952-9958. 10.1021/bi0346446.CrossRefPubMed Nguyen KT, Hu X, Colton C, Chakrabarti R, Zhu MX, Pei D: Characterization of a human peptide deformylase: implications for antibacterial drug design. Biochemistry. 2003, 42 (33): 9952-9958. 10.1021/bi0346446.CrossRefPubMed
3.
go back to reference Giglione C, Meinnel T: Peptide deformylase as an emerging target for antiparasitic agents. Expert Opin Ther Targets. 2001, 5 (1): 41-57. 10.1517/14728222.5.1.41.PubMed Giglione C, Meinnel T: Peptide deformylase as an emerging target for antiparasitic agents. Expert Opin Ther Targets. 2001, 5 (1): 41-57. 10.1517/14728222.5.1.41.PubMed
4.
go back to reference Giglione C, Pierre M, Meinnel T: Peptide deformylase as a target for new generation, broad spectrum antimicrobial agents. Mol Microbiol. 2000, 36 (6): 1197-1205.CrossRefPubMed Giglione C, Pierre M, Meinnel T: Peptide deformylase as a target for new generation, broad spectrum antimicrobial agents. Mol Microbiol. 2000, 36 (6): 1197-1205.CrossRefPubMed
5.
go back to reference Leeds JA, Dean CR: Peptide deformylase as an antibacterial target: a critical assessment. Curr Opin Pharmacol. 2006, 6 (5): 445-452. 10.1016/j.coph.2006.06.003.CrossRefPubMed Leeds JA, Dean CR: Peptide deformylase as an antibacterial target: a critical assessment. Curr Opin Pharmacol. 2006, 6 (5): 445-452. 10.1016/j.coph.2006.06.003.CrossRefPubMed
6.
go back to reference Giglione C, Serero A, Pierre M, Boisson B, Meinnel T: Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms. EMBO J. 2000, 19 (21): 5916-5929. 10.1093/emboj/19.21.5916.CrossRefPubMedPubMedCentral Giglione C, Serero A, Pierre M, Boisson B, Meinnel T: Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms. EMBO J. 2000, 19 (21): 5916-5929. 10.1093/emboj/19.21.5916.CrossRefPubMedPubMedCentral
7.
go back to reference Serero A, Giglione C, Meinnel T: Distinctive features of the two classes of eukaryotic peptide deformylases. J Mol Biol. 2001, 314 (4): 695-708. 10.1006/jmbi.2001.5175.CrossRefPubMed Serero A, Giglione C, Meinnel T: Distinctive features of the two classes of eukaryotic peptide deformylases. J Mol Biol. 2001, 314 (4): 695-708. 10.1006/jmbi.2001.5175.CrossRefPubMed
8.
go back to reference Serero A, Giglione C, Sardini A, Martinez-Sanz J, Meinnel T: An unusual peptide deformylase features in the human mitochondrial N-terminal methionine excision pathway. J Biol Chem. 2003, 278 (52): 52953-52963. 10.1074/jbc.M309770200.CrossRefPubMed Serero A, Giglione C, Sardini A, Martinez-Sanz J, Meinnel T: An unusual peptide deformylase features in the human mitochondrial N-terminal methionine excision pathway. J Biol Chem. 2003, 278 (52): 52953-52963. 10.1074/jbc.M309770200.CrossRefPubMed
9.
go back to reference Lee MD, Antczak C, Li Y, Sirotnak FM, Bornmann WG, Scheinberg DA: A new human peptide deformylase inhibitable by actinonin. Biochem Biophys Res Commun. 2003, 312 (2): 309-315. 10.1016/j.bbrc.2003.10.123.CrossRefPubMed Lee MD, Antczak C, Li Y, Sirotnak FM, Bornmann WG, Scheinberg DA: A new human peptide deformylase inhibitable by actinonin. Biochem Biophys Res Commun. 2003, 312 (2): 309-315. 10.1016/j.bbrc.2003.10.123.CrossRefPubMed
10.
go back to reference Carroll J, Fearnley IM, Walker JE: Definition of the mitochondrial proteome by measurement of molecular masses of membrane proteins. Proc Natl Acad Sci USA. 2006, 103 (44): 16170-16175. 10.1073/pnas.0607719103.CrossRefPubMedPubMedCentral Carroll J, Fearnley IM, Walker JE: Definition of the mitochondrial proteome by measurement of molecular masses of membrane proteins. Proc Natl Acad Sci USA. 2006, 103 (44): 16170-16175. 10.1073/pnas.0607719103.CrossRefPubMedPubMedCentral
11.
go back to reference Escobar-Alvarez S, Gardner J, Sheth A, Manfredi G, Yang G, Ouerfelli O, Heaney ML, Scheinberg DA: Inhibition of human peptide deformylase disrupts mitochondrial function. Mol Cell Biol. 2010, 30 (21): 5099-5109. 10.1128/MCB.00469-10.CrossRefPubMedPubMedCentral Escobar-Alvarez S, Gardner J, Sheth A, Manfredi G, Yang G, Ouerfelli O, Heaney ML, Scheinberg DA: Inhibition of human peptide deformylase disrupts mitochondrial function. Mol Cell Biol. 2010, 30 (21): 5099-5109. 10.1128/MCB.00469-10.CrossRefPubMedPubMedCentral
12.
go back to reference Leszczyniecka M, Bhatia U, Cueto M, Nirmala NR, Towbin H, Vattay A, Wang B, Zabludoff S, Phillips PE: MAP1D, a novel methionine aminopeptidase family member is overexpressed in colon cancer. Oncogene. 2006, 25 (24): 3471-3478. 10.1038/sj.onc.1209383.CrossRefPubMed Leszczyniecka M, Bhatia U, Cueto M, Nirmala NR, Towbin H, Vattay A, Wang B, Zabludoff S, Phillips PE: MAP1D, a novel methionine aminopeptidase family member is overexpressed in colon cancer. Oncogene. 2006, 25 (24): 3471-3478. 10.1038/sj.onc.1209383.CrossRefPubMed
13.
go back to reference Lee MD, She Y, Soskis MJ, Borella CP, Gardner JR, Hayes PA, Dy BM, Heaney ML, Philips MR, Bornmann WG, et al: Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics. J Clin Invest. 2004, 114 (8): 1107-1116.CrossRefPubMedPubMedCentral Lee MD, She Y, Soskis MJ, Borella CP, Gardner JR, Hayes PA, Dy BM, Heaney ML, Philips MR, Bornmann WG, et al: Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics. J Clin Invest. 2004, 114 (8): 1107-1116.CrossRefPubMedPubMedCentral
14.
go back to reference Antczak C, Shum D, Bassit B, Frattini MG, Li Y, Stanchina E, Scheinberg DA, Djaballah H: Identification of benzofuran-4,5-diones as novel and selective non-hydroxamic acid, non-peptidomimetic based inhibitors of human peptide deformylase. Bioorg Med Chem Lett. 2011, 21 (15): 4528-4532. 10.1016/j.bmcl.2011.05.129.CrossRefPubMedPubMedCentral Antczak C, Shum D, Bassit B, Frattini MG, Li Y, Stanchina E, Scheinberg DA, Djaballah H: Identification of benzofuran-4,5-diones as novel and selective non-hydroxamic acid, non-peptidomimetic based inhibitors of human peptide deformylase. Bioorg Med Chem Lett. 2011, 21 (15): 4528-4532. 10.1016/j.bmcl.2011.05.129.CrossRefPubMedPubMedCentral
15.
go back to reference Antczak C, Shum D, Escobar S, Bassit B, Kim E, Seshan VE, Wu N, Yang G, Ouerfelli O, Li YM, et al: High-throughput identification of inhibitors of human mitochondrial peptide deformylase. J Biomol Screen. 2007, 12 (4): 521-535. 10.1177/1087057107300463.CrossRefPubMedPubMedCentral Antczak C, Shum D, Escobar S, Bassit B, Kim E, Seshan VE, Wu N, Yang G, Ouerfelli O, Li YM, et al: High-throughput identification of inhibitors of human mitochondrial peptide deformylase. J Biomol Screen. 2007, 12 (4): 521-535. 10.1177/1087057107300463.CrossRefPubMedPubMedCentral
16.
go back to reference Escobar-Alvarez S, Goldgur Y, Yang G, Ouerfelli O, Li Y, Scheinberg DA: Structure and activity of human mitochondrial peptide deformylase, a novel cancer target. J Mol Biol. 2009, 387 (5): 1211-1228. 10.1016/j.jmb.2009.02.032.CrossRefPubMedPubMedCentral Escobar-Alvarez S, Goldgur Y, Yang G, Ouerfelli O, Li Y, Scheinberg DA: Structure and activity of human mitochondrial peptide deformylase, a novel cancer target. J Mol Biol. 2009, 387 (5): 1211-1228. 10.1016/j.jmb.2009.02.032.CrossRefPubMedPubMedCentral
Metadata
Title
Overexpression of peptide deformylase in breast, colon, and lung cancers
Authors
Harsharan Randhawa
Shireen Chikara
Drew Gehring
Tuba Yildirim
Jyotsana Menon
Katie M Reindl
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2013
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-321

Other articles of this Issue 1/2013

BMC Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine