Skip to main content
Top
Published in: BMC Cancer 1/2013

Open Access 01-12-2013 | Research article

N-glycosylation of ICAM-2 is required for ICAM-2-mediated complete suppression of metastatic potential of SK-N-AS neuroblastoma cells

Authors: Joseph M Feduska, Patrick L Garcia, Stephanie B Brennan, Su Bu, Leona N Council, Karina J Yoon

Published in: BMC Cancer | Issue 1/2013

Login to get access

Abstract

Background

Cell adhesion molecules (CAMs) are expressed ubiquitously. Each of the four families of CAMs is comprised of glycosylated, membrane-bound proteins that participate in multiple cellular processes including cell-cell communication, cell motility, inside-out and outside-in signaling, tumorigenesis, angiogenesis and metastasis. Intercellular adhesion molecule-2 (ICAM-2), a member of the immunoglobulin superfamily of CAMs, has six N-linked glycosylation sites at amino acids (asparagines) 47, 82, 105, 153, 178 and 187. Recently, we demonstrated a previously unknown function for ICAM-2 in tumor cells. We showed that ICAM-2 suppressed neuroblastoma cell motility and growth in soft agar, and induced a juxtamembrane distribution of F-actin in vitro. We also showed that ICAM-2 completely suppressed development of disseminated tumors in vivo in a murine model of metastatic NB. These effects of ICAM-2 on NB cell phenotype in vitro and in vivo depended on the interaction of ICAM-2 with the cytoskeletal linker protein α-actinin. Interestingly, ICAM-2 did not suppress subcutaneous growth of tumors in mice, suggesting that ICAM-2 affects the metastatic but not the tumorigenic potential of NB cells. The goal of the study presented here was to determine if the glycosylation status of ICAM-2 influenced its function in neuroblastoma cells.

Methods

Because it is well documented that glycosylation facilitates essential steps in tumor progression and metastasis, we investigated whether the glycosylation status of ICAM-2 affected the phenotype of NB cells. We used site-directed mutagenesis to express hypo- or non-glycosylated variants of ICAM-2, by substituting alanine for asparagine at glycosylation sites, and compared the impact of each variant on NB cell motility, anchorage-independent growth, interaction with intracellular proteins, effect on F-actin distribution and metastatic potential in vivo.

Results

The in vitro and in vivo phenotypes of cells expressing glycosylation site variants differed from cells expressing fully-glycosylated ICAM-2 or no ICAM-2. Most striking was the finding that mice injected intravenously with NB cells expressing glycosylation site variants survived longer (P ≤ 0.002) than mice receiving SK-N-AS cells with undetectable ICAM-2. However, unlike fully-glycosylated ICAM-2, glycosylation site variants did not completely suppress disseminated tumor development.

Conclusions

Reduced glycosylation of ICAM-2 significantly attenuated, but did not abolish, its ability to suppress metastatic properties of NB cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kawauchi T: Cell adhesion and its endocytic regulation in cell migration during neural development and cancer metastasis. Int J Mol Sci. 2012, 13 (4): 4564-4590.CrossRefPubMedPubMedCentral Kawauchi T: Cell adhesion and its endocytic regulation in cell migration during neural development and cancer metastasis. Int J Mol Sci. 2012, 13 (4): 4564-4590.CrossRefPubMedPubMedCentral
2.
go back to reference Dallas MR, Liu G, Chen WC, Thomas SN, Wirtz D, Huso DL, Konstantopoulos K: Divergent roles of CD44 and carcinoembryonic antigen in colon cancer metastasis. FASEB J. 2012, 26 (6): 2648-2656. 10.1096/fj.12-203786.CrossRefPubMedPubMedCentral Dallas MR, Liu G, Chen WC, Thomas SN, Wirtz D, Huso DL, Konstantopoulos K: Divergent roles of CD44 and carcinoembryonic antigen in colon cancer metastasis. FASEB J. 2012, 26 (6): 2648-2656. 10.1096/fj.12-203786.CrossRefPubMedPubMedCentral
3.
go back to reference Leda J, Yokoyama S, Tamura K, Takifuji K, Hotta T, Matsuda K, Oku Y, Nasu T, Kiriyama S, Yamamoto N, Nakamura Y, Shively JE, Yamaue H: Re-expression of CEACAM1 long cytoplasmic domain isoform is associated with invasion and migration of colorectal cancer. Int J Cancer. 2011, 129 (6): 1351-1361. 10.1002/ijc.26072.CrossRef Leda J, Yokoyama S, Tamura K, Takifuji K, Hotta T, Matsuda K, Oku Y, Nasu T, Kiriyama S, Yamamoto N, Nakamura Y, Shively JE, Yamaue H: Re-expression of CEACAM1 long cytoplasmic domain isoform is associated with invasion and migration of colorectal cancer. Int J Cancer. 2011, 129 (6): 1351-1361. 10.1002/ijc.26072.CrossRef
4.
go back to reference Ngora H, Galli UM, Miyazaki K, Zoller M: Membrane-bound and exosomal metastasis-associated C4.4A promotes migration by associating with the α(6)β(4) integrin and MT1-MMP. Neoplasia. 2012, 14 (2): 95-107.CrossRefPubMedPubMedCentral Ngora H, Galli UM, Miyazaki K, Zoller M: Membrane-bound and exosomal metastasis-associated C4.4A promotes migration by associating with the α(6)β(4) integrin and MT1-MMP. Neoplasia. 2012, 14 (2): 95-107.CrossRefPubMedPubMedCentral
5.
go back to reference Dalva MB, McClelland AC, Kayser MS: Cell adhesion molecules: signaling functions at the synapse. Nature Rev Neuroasience. 2007, 8: 206-220.CrossRef Dalva MB, McClelland AC, Kayser MS: Cell adhesion molecules: signaling functions at the synapse. Nature Rev Neuroasience. 2007, 8: 206-220.CrossRef
6.
go back to reference Williams AF, Barclay AN: The immunoglobulin superfamily-domains for cell surface recognition. Ann Rev Immunol. 1988, 6: 381-405. 10.1146/annurev.iy.06.040188.002121.CrossRef Williams AF, Barclay AN: The immunoglobulin superfamily-domains for cell surface recognition. Ann Rev Immunol. 1988, 6: 381-405. 10.1146/annurev.iy.06.040188.002121.CrossRef
7.
go back to reference Casasnovas JM, Springer TA, Liu J, Harrison SC, Wang J: Crystal structure of ICAM-2 reveals a distinctive integrin recognition surface. Nature. 1997, 387 (15): 312-315.CrossRefPubMed Casasnovas JM, Springer TA, Liu J, Harrison SC, Wang J: Crystal structure of ICAM-2 reveals a distinctive integrin recognition surface. Nature. 1997, 387 (15): 312-315.CrossRefPubMed
8.
go back to reference Nortamo P, Salcedo R, Timonen T, Patarroyo M, Gahmberg CG: A monoclonal antibody to the human leukocyte adhesion molecule intercellular adhesion molecule-2. J Immunol. 1991, 146: 2530-2535.PubMed Nortamo P, Salcedo R, Timonen T, Patarroyo M, Gahmberg CG: A monoclonal antibody to the human leukocyte adhesion molecule intercellular adhesion molecule-2. J Immunol. 1991, 146: 2530-2535.PubMed
9.
go back to reference de Fougerolles AR, Stacker SA, Schwarting R, Springer TA: Characterization of ICAM-2 and evidence for a third counter-receptor for LFA-1. J Exp Med. 1991, 174: 253-257. 10.1084/jem.174.1.253.CrossRefPubMed de Fougerolles AR, Stacker SA, Schwarting R, Springer TA: Characterization of ICAM-2 and evidence for a third counter-receptor for LFA-1. J Exp Med. 1991, 174: 253-257. 10.1084/jem.174.1.253.CrossRefPubMed
10.
go back to reference Kotovuori A, Pessa-Morikawa T, Kotovuori P, Nortamo P, Gahmberg CG: ICAM-2 and a peptide from its binding domain are efficient activators of leukocyte adhesion and integrin affinity. J Immunol. 1999, 162 (11): 6613-6620.PubMed Kotovuori A, Pessa-Morikawa T, Kotovuori P, Nortamo P, Gahmberg CG: ICAM-2 and a peptide from its binding domain are efficient activators of leukocyte adhesion and integrin affinity. J Immunol. 1999, 162 (11): 6613-6620.PubMed
11.
go back to reference Reiss Y, Engelhardt B: T cell interaction with ICAM-1-deficient endothelium in vitro: transendothelial migration of endothelial ICAM-1 and ICAM-2. Int Immunol. 1999, 11 (9): 1527-1539. 10.1093/intimm/11.9.1527.CrossRefPubMed Reiss Y, Engelhardt B: T cell interaction with ICAM-1-deficient endothelium in vitro: transendothelial migration of endothelial ICAM-1 and ICAM-2. Int Immunol. 1999, 11 (9): 1527-1539. 10.1093/intimm/11.9.1527.CrossRefPubMed
12.
go back to reference Huang M-T, Larbi KY, Scheiermann C, Woodfin A, Gerwin N, et al: ICAM-2 mediates neutrophils transmigration in vivo: evidence for stimulus specificity and a role in PECAM-2-independent transmigration. Blood. 2006, 107: 4721-4727. 10.1182/blood-2005-11-4683.CrossRefPubMed Huang M-T, Larbi KY, Scheiermann C, Woodfin A, Gerwin N, et al: ICAM-2 mediates neutrophils transmigration in vivo: evidence for stimulus specificity and a role in PECAM-2-independent transmigration. Blood. 2006, 107: 4721-4727. 10.1182/blood-2005-11-4683.CrossRefPubMed
13.
go back to reference Yoon KJ, Phelps DA, Bush RA, Remack JS, Billups CA, Khoury JD: ICAM-2 expression mediates a membrane-actin link, confers a nonmetastatic phenotype and reflects favorable tumor stage or histology in neuroblastoma. PLoS One. 2008, 3 (11): e3629-10.1371/journal.pone.0003629.CrossRefPubMedPubMedCentral Yoon KJ, Phelps DA, Bush RA, Remack JS, Billups CA, Khoury JD: ICAM-2 expression mediates a membrane-actin link, confers a nonmetastatic phenotype and reflects favorable tumor stage or histology in neuroblastoma. PLoS One. 2008, 3 (11): e3629-10.1371/journal.pone.0003629.CrossRefPubMedPubMedCentral
14.
go back to reference Huang MT, Mason JC, Birdsey GM, Amsellem V, Gerwin N, Haskard DO, Ridley AJ, Randi AM: Endothelial intercellular adhesion molecule (ICAM)-2 regulates angiogenesis. Blood. 2005, 106 (5): 1636-1643. 10.1182/blood-2004-12-4716.CrossRefPubMed Huang MT, Mason JC, Birdsey GM, Amsellem V, Gerwin N, Haskard DO, Ridley AJ, Randi AM: Endothelial intercellular adhesion molecule (ICAM)-2 regulates angiogenesis. Blood. 2005, 106 (5): 1636-1643. 10.1182/blood-2004-12-4716.CrossRefPubMed
15.
go back to reference Yonemura S, Hirao M, Doi Y, Takahashi N, Kondo T, et al: Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J Cell Biol. 1998, 40: 885-895.CrossRef Yonemura S, Hirao M, Doi Y, Takahashi N, Kondo T, et al: Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J Cell Biol. 1998, 40: 885-895.CrossRef
16.
go back to reference Heiska L, Kantor C, Parr T, Critchley DR, Vilja P, et al: Binding of the cytoplasmic domain of intercellular adhesion molecule-2 (ICAM-2) to a-actinin. J Biol Chem. 1999, 271: 26214-26219. Heiska L, Kantor C, Parr T, Critchley DR, Vilja P, et al: Binding of the cytoplasmic domain of intercellular adhesion molecule-2 (ICAM-2) to a-actinin. J Biol Chem. 1999, 271: 26214-26219.
17.
go back to reference Jimenez D, Roda-Navarro P, Springer TA, Casasnovas JM: Contribution of N-linked glycans to the conformation and function of intercellular adhesion molecules (ICAMs). J Biol Chem. 2005, 280 (7): 5854-5861.CrossRefPubMed Jimenez D, Roda-Navarro P, Springer TA, Casasnovas JM: Contribution of N-linked glycans to the conformation and function of intercellular adhesion molecules (ICAMs). J Biol Chem. 2005, 280 (7): 5854-5861.CrossRefPubMed
18.
go back to reference Jamal BT, Nita-Lazar M, Gao Z, Amin B, Walker J, Kukuruzinska MA: N-glycosylation status of E-cadherin controls cytoskeletal dynamics through the organization of distinct β-catenin-and γ-catenin-containing AJs. Cell Health Cytoskelet. 2009, 1: 67-80.CrossRef Jamal BT, Nita-Lazar M, Gao Z, Amin B, Walker J, Kukuruzinska MA: N-glycosylation status of E-cadherin controls cytoskeletal dynamics through the organization of distinct β-catenin-and γ-catenin-containing AJs. Cell Health Cytoskelet. 2009, 1: 67-80.CrossRef
19.
go back to reference Zhao H, Liang Y, Xu Z, Wang L, Zhou F, Li Z, Jin J, Yang Y, Fang Z, Hu Y, Zhang L, Su J, Zha X: N-glycosylation affects the adhesive function of E-cadherin through modifying the composition of adherens junctions (AJs) in human breast carcinoma cell line MDA-MB-435. J Cell Biochem. 2008, 104: 162-175. 10.1002/jcb.21608.CrossRefPubMed Zhao H, Liang Y, Xu Z, Wang L, Zhou F, Li Z, Jin J, Yang Y, Fang Z, Hu Y, Zhang L, Su J, Zha X: N-glycosylation affects the adhesive function of E-cadherin through modifying the composition of adherens junctions (AJs) in human breast carcinoma cell line MDA-MB-435. J Cell Biochem. 2008, 104: 162-175. 10.1002/jcb.21608.CrossRefPubMed
20.
go back to reference Horst AK, Bickert T, Brewig N, van Rooijen N, Schumacher U, Beauchemin N, Ito WD, Fleischer B, Wagner C, Ritter U: CEACAM1+ myeloid cells control angiogenesis in inflammation. Blood. 2009, 113 (26): 6726-6736. 10.1182/blood-2008-10-184556.CrossRefPubMed Horst AK, Bickert T, Brewig N, van Rooijen N, Schumacher U, Beauchemin N, Ito WD, Fleischer B, Wagner C, Ritter U: CEACAM1+ myeloid cells control angiogenesis in inflammation. Blood. 2009, 113 (26): 6726-6736. 10.1182/blood-2008-10-184556.CrossRefPubMed
21.
go back to reference Guo H-B, Lee I, Kamar M, Akiyama SK, Pierce M: Aberrant N-glycosylation of b1 integrin causes reduced a5b1 integrin clustering and stimulate cell migration. Cancer Res. 2002, 62: 6837-6845.PubMed Guo H-B, Lee I, Kamar M, Akiyama SK, Pierce M: Aberrant N-glycosylation of b1 integrin causes reduced a5b1 integrin clustering and stimulate cell migration. Cancer Res. 2002, 62: 6837-6845.PubMed
22.
go back to reference Nita-Lazar M, Noonan V, Rebustini I, Walker J, Menko AS, Kukuruzinska MA: Overexpression of DPAGT1 leads to aberrant N-glycosylation of E-cadherin and cellular discohesion in oral cancer. Cancer Res. 2009, 69 (14): 5673-5680. 10.1158/0008-5472.CAN-08-4512.CrossRefPubMedPubMedCentral Nita-Lazar M, Noonan V, Rebustini I, Walker J, Menko AS, Kukuruzinska MA: Overexpression of DPAGT1 leads to aberrant N-glycosylation of E-cadherin and cellular discohesion in oral cancer. Cancer Res. 2009, 69 (14): 5673-5680. 10.1158/0008-5472.CAN-08-4512.CrossRefPubMedPubMedCentral
23.
go back to reference Rood PM, Calafat J, von dem Borne AE, Gerritsen WR, van der Schoot CE: Immortalisation of human bone marrow endothelial cells: characterization of new cell lines. Eur J Clin Invest. 2000, 30: 618-629. 10.1046/j.1365-2362.2000.00672.x.CrossRefPubMed Rood PM, Calafat J, von dem Borne AE, Gerritsen WR, van der Schoot CE: Immortalisation of human bone marrow endothelial cells: characterization of new cell lines. Eur J Clin Invest. 2000, 30: 618-629. 10.1046/j.1365-2362.2000.00672.x.CrossRefPubMed
24.
go back to reference Polanska UM, Duchesne L, Harries JC, Fernig DG, Kinnunen TK: N-glycosylation regulates fibroblast growth factor receptor/EGL-15 activity in Caenorhabditis elegans in vivo. J Biol Chem. 2009, 284 (48): 33030-33039. 10.1074/jbc.M109.058925.CrossRefPubMedPubMedCentral Polanska UM, Duchesne L, Harries JC, Fernig DG, Kinnunen TK: N-glycosylation regulates fibroblast growth factor receptor/EGL-15 activity in Caenorhabditis elegans in vivo. J Biol Chem. 2009, 284 (48): 33030-33039. 10.1074/jbc.M109.058925.CrossRefPubMedPubMedCentral
25.
go back to reference Skropeta D, Settasatian C, McMahon MR, Shearston K, Caiazza D, McGrath KC, Jin W, Rader DJ, Barter PJ, Rye KA: N-glycosylation regulates endothelial lipase-mediated phospholipid hydrolysis in apoE- and apoA-I-containing high density pipoproteins. J Lipid Res. 2007, 48: 2047-2057. 10.1194/jlr.M700248-JLR200.CrossRefPubMed Skropeta D, Settasatian C, McMahon MR, Shearston K, Caiazza D, McGrath KC, Jin W, Rader DJ, Barter PJ, Rye KA: N-glycosylation regulates endothelial lipase-mediated phospholipid hydrolysis in apoE- and apoA-I-containing high density pipoproteins. J Lipid Res. 2007, 48: 2047-2057. 10.1194/jlr.M700248-JLR200.CrossRefPubMed
26.
go back to reference Morrison KL, Weiss GA: Combinational alanine-scanning. Curr Opin Chem Biol. 2001, 5: 302-307. 10.1016/S1367-5931(00)00206-4.CrossRefPubMed Morrison KL, Weiss GA: Combinational alanine-scanning. Curr Opin Chem Biol. 2001, 5: 302-307. 10.1016/S1367-5931(00)00206-4.CrossRefPubMed
27.
go back to reference Mohamet L, Lea ML, Ward CM: Abrogation of E-cadherin-mediated cellular aggregation allows proliferation of pluripotent mouse embryonic stem cells in shake flask bioreactors. PLoS One. 2010, 5 (9): e12921-10.1371/journal.pone.0012921.CrossRefPubMedPubMedCentral Mohamet L, Lea ML, Ward CM: Abrogation of E-cadherin-mediated cellular aggregation allows proliferation of pluripotent mouse embryonic stem cells in shake flask bioreactors. PLoS One. 2010, 5 (9): e12921-10.1371/journal.pone.0012921.CrossRefPubMedPubMedCentral
28.
go back to reference Hong X, Jiang F, Kalkanis SN, Zhang ZG, Zhang X, Zheng X, Jiang H, Mikkelsen T, Chopp M: Increased chemotactic migration and growth in heparanase-overexpressing human U251n glioma cells. J Exp Clin Cancer Res. 2008, 27 (1): 23-10.1186/1756-9966-27-23.CrossRefPubMedPubMedCentral Hong X, Jiang F, Kalkanis SN, Zhang ZG, Zhang X, Zheng X, Jiang H, Mikkelsen T, Chopp M: Increased chemotactic migration and growth in heparanase-overexpressing human U251n glioma cells. J Exp Clin Cancer Res. 2008, 27 (1): 23-10.1186/1756-9966-27-23.CrossRefPubMedPubMedCentral
29.
go back to reference Liang CC, Park AY, Guan JL: In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007, 2 (2): 329-333. 10.1038/nprot.2007.30.CrossRefPubMed Liang CC, Park AY, Guan JL: In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007, 2 (2): 329-333. 10.1038/nprot.2007.30.CrossRefPubMed
30.
go back to reference Moralli D, Monaco ZL: Simultaneous detection of FISH signals and bromo-depxyuridine incorporation in fixed tissue cultured cells. PLoS One. 2009, 4 (2): e4483-10.1371/journal.pone.0004483.CrossRefPubMedPubMedCentral Moralli D, Monaco ZL: Simultaneous detection of FISH signals and bromo-depxyuridine incorporation in fixed tissue cultured cells. PLoS One. 2009, 4 (2): e4483-10.1371/journal.pone.0004483.CrossRefPubMedPubMedCentral
31.
go back to reference Heineke J, Auger-Messier M, Correll RN, Xu J, Benard MJ, Yuan W, Drexler H, Parise LV, Molkentin JD: CIB1 is a regulator of pathological cardiac hypertrophy. Nat Med. 2010, 16 (8): 872-879. 10.1038/nm.2181.CrossRefPubMedPubMedCentral Heineke J, Auger-Messier M, Correll RN, Xu J, Benard MJ, Yuan W, Drexler H, Parise LV, Molkentin JD: CIB1 is a regulator of pathological cardiac hypertrophy. Nat Med. 2010, 16 (8): 872-879. 10.1038/nm.2181.CrossRefPubMedPubMedCentral
32.
go back to reference Morton CL, Lacono L, Hyatt JL, Taylor KR, Cheshire PJ, Houghton PJ, Danks MK, Stewart CF, Potter PM: Activation and antitumor activity of CPT-11 in plasma esterase-deficient mice. Cancer Chemother Pharmacol. 2005, 56: 629-636. 10.1007/s00280-005-1027-y.CrossRefPubMed Morton CL, Lacono L, Hyatt JL, Taylor KR, Cheshire PJ, Houghton PJ, Danks MK, Stewart CF, Potter PM: Activation and antitumor activity of CPT-11 in plasma esterase-deficient mice. Cancer Chemother Pharmacol. 2005, 56: 629-636. 10.1007/s00280-005-1027-y.CrossRefPubMed
33.
go back to reference Wagner LM, Guichard SM, Burger RA, Morton CL, Straign CM, Ashmun RA, Harris LC, Houghton PJ, Potter PJ, Danks MK: Efficacy and toxicity of a virus-directed enzyme prodrug therapy purging method: preclinical assessment and application to bone marrow samples from neuroblastoma patients. Cancer Res. 2002, 62: 5001-5007.PubMed Wagner LM, Guichard SM, Burger RA, Morton CL, Straign CM, Ashmun RA, Harris LC, Houghton PJ, Potter PJ, Danks MK: Efficacy and toxicity of a virus-directed enzyme prodrug therapy purging method: preclinical assessment and application to bone marrow samples from neuroblastoma patients. Cancer Res. 2002, 62: 5001-5007.PubMed
34.
go back to reference Dickson PV, Hammer JB, Burger RA, Garcia E, Ouma AA, Kim SU, Ng CYC, Gray JT, Aboody KS, Danks MK, Davidoff AM: Intravascular administration of tumor tropic neural progenitor cells permits targeted delivery of interferon-β and restricts tumor growth in a murine model of disseminated neuroblastoma. J Ped Surgery. 2007, 42: 48-53. 10.1016/j.jpedsurg.2006.09.050.CrossRef Dickson PV, Hammer JB, Burger RA, Garcia E, Ouma AA, Kim SU, Ng CYC, Gray JT, Aboody KS, Danks MK, Davidoff AM: Intravascular administration of tumor tropic neural progenitor cells permits targeted delivery of interferon-β and restricts tumor growth in a murine model of disseminated neuroblastoma. J Ped Surgery. 2007, 42: 48-53. 10.1016/j.jpedsurg.2006.09.050.CrossRef
35.
go back to reference Li R, Nortamo P, Valmu L, Tolvanen M, Huuskonen J, Kantor C, Gahmberg CG: A peptide from ICAM-2 binds to the leukocyte integrin CD11a/CD18 and inhibits endothelial cell adhesion. J Biol Chem. 1993, 268: 17513-17518.PubMed Li R, Nortamo P, Valmu L, Tolvanen M, Huuskonen J, Kantor C, Gahmberg CG: A peptide from ICAM-2 binds to the leukocyte integrin CD11a/CD18 and inhibits endothelial cell adhesion. J Biol Chem. 1993, 268: 17513-17518.PubMed
36.
go back to reference Diacovo AG, de Fougerlles AR, Bainton DF, Springer TA: A functional integrin ligand on the surface of platelets: Intercellular adhesion molecule-2. J Clin Invest. 1994, 94: 1243-1251. 10.1172/JCI117442.CrossRefPubMedPubMedCentral Diacovo AG, de Fougerlles AR, Bainton DF, Springer TA: A functional integrin ligand on the surface of platelets: Intercellular adhesion molecule-2. J Clin Invest. 1994, 94: 1243-1251. 10.1172/JCI117442.CrossRefPubMedPubMedCentral
37.
go back to reference Casasnovas JM, Piersono C, Springer TA: Lymphatic function-associated antigen-1 binding residues in intercellular adhesion molecule-2 (ICAM-2) and the integrin binding surface in the ICAM family. Proc Natl Acad Sci USA. 1999, 96: 3017-3022. 10.1073/pnas.96.6.3017.CrossRefPubMedPubMedCentral Casasnovas JM, Piersono C, Springer TA: Lymphatic function-associated antigen-1 binding residues in intercellular adhesion molecule-2 (ICAM-2) and the integrin binding surface in the ICAM family. Proc Natl Acad Sci USA. 1999, 96: 3017-3022. 10.1073/pnas.96.6.3017.CrossRefPubMedPubMedCentral
38.
go back to reference Bocci G, Nicolaou KC, Kerbel RS: Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res. 2002, 62 (23): 6938-6943.PubMed Bocci G, Nicolaou KC, Kerbel RS: Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res. 2002, 62 (23): 6938-6943.PubMed
39.
go back to reference Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR: Cell migration: Integrating signals from front to back. Science. 2003, 302: 1704-1709. 10.1126/science.1092053.CrossRefPubMed Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR: Cell migration: Integrating signals from front to back. Science. 2003, 302: 1704-1709. 10.1126/science.1092053.CrossRefPubMed
40.
go back to reference Friedl P, Wolf K: Plasticity of cell migration: a multiscale tuning model. J Cell Biol. 2009, 188 (1): 11-19.CrossRefPubMed Friedl P, Wolf K: Plasticity of cell migration: a multiscale tuning model. J Cell Biol. 2009, 188 (1): 11-19.CrossRefPubMed
41.
go back to reference Stevenson RP, Veltman D, Machesky LM: Actin-bundling proteins in cancer progression at a glance. J Cell Sci. 2012, 125 (5): 1073-1079. 10.1242/jcs.093799.CrossRefPubMed Stevenson RP, Veltman D, Machesky LM: Actin-bundling proteins in cancer progression at a glance. J Cell Sci. 2012, 125 (5): 1073-1079. 10.1242/jcs.093799.CrossRefPubMed
42.
go back to reference Mori S, Chang JT, Andrechek ER, Matsumura N, Baba T, Yao G, Kim JW, Gatza M, Murphy S, Nevin JR: Anchorage-independent cell growth identifies tumors with metastatic potential. Oncogene. 2009, 28 (31): 2796-2805. 10.1038/onc.2009.139.CrossRefPubMedPubMedCentral Mori S, Chang JT, Andrechek ER, Matsumura N, Baba T, Yao G, Kim JW, Gatza M, Murphy S, Nevin JR: Anchorage-independent cell growth identifies tumors with metastatic potential. Oncogene. 2009, 28 (31): 2796-2805. 10.1038/onc.2009.139.CrossRefPubMedPubMedCentral
43.
go back to reference Takahashi M, Furihata M, Akimitsu N, Watanabe M, Kaul S, Yumoto N, Okada T: A highly bone marrow metastatic murine breast cancer model established through in vivo selection exhibits enhanced anchorage-independent growth and cell migration mediated by ICAM-1. Clin Exp Metastasis. 2008, 25 (5): 517-529. 10.1007/s10585-008-9163-5.CrossRefPubMed Takahashi M, Furihata M, Akimitsu N, Watanabe M, Kaul S, Yumoto N, Okada T: A highly bone marrow metastatic murine breast cancer model established through in vivo selection exhibits enhanced anchorage-independent growth and cell migration mediated by ICAM-1. Clin Exp Metastasis. 2008, 25 (5): 517-529. 10.1007/s10585-008-9163-5.CrossRefPubMed
44.
go back to reference Cifone MA, Fidler IJ: Correlation patterns of anchorage-independent growth with in vivo behavior of cells from a murine fibrosarcoma. Proc Natl Acad Sci U S A. 1980, 77 (2): 1039-1043. 10.1073/pnas.77.2.1039.CrossRefPubMedPubMedCentral Cifone MA, Fidler IJ: Correlation patterns of anchorage-independent growth with in vivo behavior of cells from a murine fibrosarcoma. Proc Natl Acad Sci U S A. 1980, 77 (2): 1039-1043. 10.1073/pnas.77.2.1039.CrossRefPubMedPubMedCentral
45.
go back to reference Kuhlman PA, Ellis J, Critchley DR, Bagshaw CR: The kinetics of the interaction between the actin-binding domain of alpha-actinin and F-actin. FEBS Lett. 1994, 339: 297-301. 10.1016/0014-5793(94)80434-6.CrossRefPubMed Kuhlman PA, Ellis J, Critchley DR, Bagshaw CR: The kinetics of the interaction between the actin-binding domain of alpha-actinin and F-actin. FEBS Lett. 1994, 339: 297-301. 10.1016/0014-5793(94)80434-6.CrossRefPubMed
Metadata
Title
N-glycosylation of ICAM-2 is required for ICAM-2-mediated complete suppression of metastatic potential of SK-N-AS neuroblastoma cells
Authors
Joseph M Feduska
Patrick L Garcia
Stephanie B Brennan
Su Bu
Leona N Council
Karina J Yoon
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2013
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-261

Other articles of this Issue 1/2013

BMC Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine