Skip to main content
Top
Published in: BMC Cancer 1/2012

Open Access 01-12-2012 | Research article

Molecular pathways undergoing dramatic transcriptomic changes during tumor development in the human colon

Authors: Rosalia Maglietta, Vania Cosma Liuzzi, Elisa Cattaneo, Endre Laczko, Ada Piepoli, Anna Panza, Massimo Carella, Orazio Palumbo, Teresa Staiano, Federico Buffoli, Angelo Andriulli, Giancarlo Marra, Nicola Ancona

Published in: BMC Cancer | Issue 1/2012

Login to get access

Abstract

Background

The malignant transformation of precancerous colorectal lesions involves progressive alterations at both the molecular and morphologic levels, the latter consisting of increases in size and in the degree of cellular atypia. Analyzing preinvasive tumors of different sizes can therefore shed light on the sequence of these alterations.

Methods

We used a molecular pathway-based approach to analyze transcriptomic profiles of 59 colorectal tumors representing early and late preinvasive stages and the invasive stage of tumorigenesis. Random set analysis was used to identify biological pathways enriched for genes differentially regulated in tumors (compared with 59 samples of normal mucosa).

Results

Of the 880 canonical pathways we investigated, 112 displayed significant tumor-related upregulation or downregulation at one or more stages of tumorigenesis. This allowed us to distinguish between pathways whose dysregulation is probably necessary throughout tumorigenesis and those whose involvement specifically drives progression from one stage to the next. We were also able to pinpoint specific changes within each gene set that seem to play key roles at each transition. The early preinvasive stage was characterized by cell-cycle checkpoint activation triggered by DNA replication stress and dramatic downregulation of basic transmembrane signaling processes that maintain epithelial/stromal homeostasis in the normal mucosa. In late preinvasive lesions, there was also downregulation of signal transduction pathways (e.g., those mediated by G proteins and nuclear hormone receptors) involved in cell differentiation and upregulation of pathways governing nuclear envelope dynamics and the G2>M transition in the cell cycle. The main features of the invasive stage were activation of the G1>S transition in the cell cycle, upregulated expression of tumor-promoting microenvironmental factors, and profound dysregulation of metabolic pathways (e.g., increased aerobic glycolysis, downregulation of pathways that metabolize drugs and xenobiotics).

Conclusions

Our analysis revealed specific pathways whose dysregulation might play a role in each transition of the transformation process. This is the first study in which such an approach has been used to gain further insights into colorectal tumorigenesis. Therefore, these data provide a launchpad for further exploration of the molecular characterization of colorectal tumorigenesis using systems biology approaches.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cattaneo E, Baudis M, Buffoli F, Bianco MA, Zorzi F, Marra G: Pathways and crossroads to colorectal cancer. 2011, Pre-Invasive Disease: Pathogenesis and Clinical Management. Springer: In: R.C. Fitzgerald, editors , 369-394. Cattaneo E, Baudis M, Buffoli F, Bianco MA, Zorzi F, Marra G: Pathways and crossroads to colorectal cancer. 2011, Pre-Invasive Disease: Pathogenesis and Clinical Management. Springer: In: R.C. Fitzgerald, editors , 369-394.
2.
go back to reference Peipens LA, Sandler RS: Epidemiology of colorectal adenomas. Epidemiol Rev. 1994, 16: 273-297. Peipens LA, Sandler RS: Epidemiology of colorectal adenomas. Epidemiol Rev. 1994, 16: 273-297.
3.
go back to reference Noshirwani KC, Van Stolk RU, Rybicki LA, Beck GJ: Adenoma size and number are predictive of adenoma recurrence: implications for surveillance colonoscopy. Gastrointest Endosc. 2000, 51: 433-437. 10.1016/S0016-5107(00)70444-5.CrossRefPubMed Noshirwani KC, Van Stolk RU, Rybicki LA, Beck GJ: Adenoma size and number are predictive of adenoma recurrence: implications for surveillance colonoscopy. Gastrointest Endosc. 2000, 51: 433-437. 10.1016/S0016-5107(00)70444-5.CrossRefPubMed
4.
go back to reference Powell SM, Zilz N, Beazer-Barclay Y, et al: APC mutations occur early during colorectal tumorigenesis. Nature. 1992, 359: 235-237. 10.1038/359235a0.CrossRefPubMed Powell SM, Zilz N, Beazer-Barclay Y, et al: APC mutations occur early during colorectal tumorigenesis. Nature. 1992, 359: 235-237. 10.1038/359235a0.CrossRefPubMed
5.
go back to reference Morin PJ, Sparks AB, Korinek V, et al: Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997, 275: 1787-1790. 10.1126/science.275.5307.1787.CrossRefPubMed Morin PJ, Sparks AB, Korinek V, et al: Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997, 275: 1787-1790. 10.1126/science.275.5307.1787.CrossRefPubMed
6.
go back to reference Rosenberg DW, Yang S, Pleau DC, et al: Mutations in BRAF and KRAS differentially distinguish serrated versus non-serrated hyperplastic aberrant crypt foci in humans. Cancer Res. 2007, 67: 3551-3554. 10.1158/0008-5472.CAN-07-0343.CrossRefPubMed Rosenberg DW, Yang S, Pleau DC, et al: Mutations in BRAF and KRAS differentially distinguish serrated versus non-serrated hyperplastic aberrant crypt foci in humans. Cancer Res. 2007, 67: 3551-3554. 10.1158/0008-5472.CAN-07-0343.CrossRefPubMed
7.
go back to reference Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, et al: The consensus coding sequences of human breast and colorectal cancers. Science. 2006, 314: 268-274. 10.1126/science.1133427.CrossRefPubMed Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, et al: The consensus coding sequences of human breast and colorectal cancers. Science. 2006, 314: 268-274. 10.1126/science.1133427.CrossRefPubMed
8.
go back to reference Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP: Genome-wide methylation analysis of human colon cancer reveals similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009, 41 (2): 178-186. 10.1038/ng.298.CrossRefPubMedPubMedCentral Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP: Genome-wide methylation analysis of human colon cancer reveals similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009, 41 (2): 178-186. 10.1038/ng.298.CrossRefPubMedPubMedCentral
9.
go back to reference Gaiser T, Camps J, Meinhardt S, Wangsa D, Nguyen QT, Varma S, Dittfeld C, Kunz-Schughart LA, Kemmerling R, Becker MR, Heselmeyer-Haddad K, Ried T: Genome and transcriptome profiles of CD133-positive colorectal cancer cells. Am J Pathol. 2011, 178 (4): 1478-1488. 10.1016/j.ajpath.2010.12.036.CrossRefPubMedPubMedCentral Gaiser T, Camps J, Meinhardt S, Wangsa D, Nguyen QT, Varma S, Dittfeld C, Kunz-Schughart LA, Kemmerling R, Becker MR, Heselmeyer-Haddad K, Ried T: Genome and transcriptome profiles of CD133-positive colorectal cancer cells. Am J Pathol. 2011, 178 (4): 1478-1488. 10.1016/j.ajpath.2010.12.036.CrossRefPubMedPubMedCentral
10.
go back to reference Habermann JK, Paulsen U, Roblick UJ, Upender MB, McShane LM, Korn EL, Wangsa D, Krüger S, Duchrow M, Bruch HP, Auer G, Ried T: Stage-specific alterations of the genome, transcriptome, and proteome during colorectal carcinogenesis. Genes Chromosomes Cancer. 2007, 46 (1): 10-26. 10.1002/gcc.20382.CrossRefPubMed Habermann JK, Paulsen U, Roblick UJ, Upender MB, McShane LM, Korn EL, Wangsa D, Krüger S, Duchrow M, Bruch HP, Auer G, Ried T: Stage-specific alterations of the genome, transcriptome, and proteome during colorectal carcinogenesis. Genes Chromosomes Cancer. 2007, 46 (1): 10-26. 10.1002/gcc.20382.CrossRefPubMed
11.
go back to reference Kleivi K, Lind GE, Diep CB, Meling GI, Brandal LT, Nesland JM, Myklebost O, Rognum TO, Giercksky KE, Skotheim RI, Lothe RA: Gene expression profiles of primary colorectal carcinomas, liver metastases, and carcinomatoses. Mol Cancer. 2007, 6: 2-10.1186/1476-4598-6-2.CrossRefPubMedPubMedCentral Kleivi K, Lind GE, Diep CB, Meling GI, Brandal LT, Nesland JM, Myklebost O, Rognum TO, Giercksky KE, Skotheim RI, Lothe RA: Gene expression profiles of primary colorectal carcinomas, liver metastases, and carcinomatoses. Mol Cancer. 2007, 6: 2-10.1186/1476-4598-6-2.CrossRefPubMedPubMedCentral
12.
go back to reference Sabates-Bellver J, Van der Flier L, De Palo M, Cattaneo E, Maake C, Rehraue Laczko E, Kurowski MA, Bujnicki JM, Menigatti M, Luz J, Ranalli TV, Gomes V, Pastorelli A, Faggiani R, Anti M, Jiricny J, Clevers H, Marra G: Transcriptome profile of human colorectal cancer. Mol Cancer Res. 2007, 5 (12): 1263-1275. 10.1158/1541-7786.MCR-07-0267.CrossRefPubMed Sabates-Bellver J, Van der Flier L, De Palo M, Cattaneo E, Maake C, Rehraue Laczko E, Kurowski MA, Bujnicki JM, Menigatti M, Luz J, Ranalli TV, Gomes V, Pastorelli A, Faggiani R, Anti M, Jiricny J, Clevers H, Marra G: Transcriptome profile of human colorectal cancer. Mol Cancer Res. 2007, 5 (12): 1263-1275. 10.1158/1541-7786.MCR-07-0267.CrossRefPubMed
13.
go back to reference Maglietta R, Distaso A, Piepoli A, Palumbo O, Carella M, D’Addabbo A, Mukherjee S, Ancona N: On the reproducibility of results of pathway analysis in genome-wide expression studies of colorectal cancer. J Biomed Inform. 2010, 43: 397-406. 10.1016/j.jbi.2009.09.005.CrossRefPubMed Maglietta R, Distaso A, Piepoli A, Palumbo O, Carella M, D’Addabbo A, Mukherjee S, Ancona N: On the reproducibility of results of pathway analysis in genome-wide expression studies of colorectal cancer. J Biomed Inform. 2010, 43: 397-406. 10.1016/j.jbi.2009.09.005.CrossRefPubMed
14.
go back to reference Abatangelo L, Maglietta R, Distaso A, D’Addabbo A, Creanza TM, Mukherjee S, Ancona N: Comparative study of gene set enrichment methods. BMC Bioinforma. 2009, 10: 275-10.1186/1471-2105-10-275.CrossRef Abatangelo L, Maglietta R, Distaso A, D’Addabbo A, Creanza TM, Mukherjee S, Ancona N: Comparative study of gene set enrichment methods. BMC Bioinforma. 2009, 10: 275-10.1186/1471-2105-10-275.CrossRef
15.
go back to reference Maglietta R, Piepoli A, Catalano D, Liciulli F, Carella M, Liuni S, Pesole G, Perri F, Ancona N: Statistical assessment of functional categories of genes deregulated in pathological conditions by using microarray data. Bioinformatics. 2007, 23: 2063-2072. 10.1093/bioinformatics/btm289.CrossRefPubMed Maglietta R, Piepoli A, Catalano D, Liciulli F, Carella M, Liuni S, Pesole G, Perri F, Ancona N: Statistical assessment of functional categories of genes deregulated in pathological conditions by using microarray data. Bioinformatics. 2007, 23: 2063-2072. 10.1093/bioinformatics/btm289.CrossRefPubMed
16.
go back to reference Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, et al: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005, 102: 15545-15550. 10.1073/pnas.0506580102.CrossRefPubMedPubMedCentral Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, et al: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005, 102: 15545-15550. 10.1073/pnas.0506580102.CrossRefPubMedPubMedCentral
17.
go back to reference Newton MA, Quintana FA, Den Boon JA, Sengupta S, Ahlquist P: Random-Set methods identify distinct aspect of the enrichment signal in gene-set analysis. The Annals of Applied Statistics. 2007, 1 (1): 85-106. 10.1214/07-AOAS104.CrossRef Newton MA, Quintana FA, Den Boon JA, Sengupta S, Ahlquist P: Random-Set methods identify distinct aspect of the enrichment signal in gene-set analysis. The Annals of Applied Statistics. 2007, 1 (1): 85-106. 10.1214/07-AOAS104.CrossRef
18.
go back to reference Cattaneo E, Laczko E, Buffoli F, Zorzi F, Bianco MA, Menigatti M, Bartosova Z, Haider R, Helmchen B, Sabates-Bellver J, Tiwari A, Jiricny J, Marra G: Preinvasive colorectal lesion transcriptomes correlate with endoscopic morphology (polypoid vs. non polypoid). EMBO Mol Med. 2011, 3: 334-347. 10.1002/emmm.201100141.CrossRefPubMedPubMedCentral Cattaneo E, Laczko E, Buffoli F, Zorzi F, Bianco MA, Menigatti M, Bartosova Z, Haider R, Helmchen B, Sabates-Bellver J, Tiwari A, Jiricny J, Marra G: Preinvasive colorectal lesion transcriptomes correlate with endoscopic morphology (polypoid vs. non polypoid). EMBO Mol Med. 2011, 3: 334-347. 10.1002/emmm.201100141.CrossRefPubMedPubMedCentral
19.
go back to reference Good P: Permutation tests: a practical guide to resampling methods for testing hypothesis. 1994, New York: SpringerCrossRef Good P: Permutation tests: a practical guide to resampling methods for testing hypothesis. 1994, New York: SpringerCrossRef
20.
go back to reference Schwartz GK, Shah MA: Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol. 2005, 23: 9408-9421. 10.1200/JCO.2005.01.5594.CrossRefPubMed Schwartz GK, Shah MA: Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol. 2005, 23: 9408-9421. 10.1200/JCO.2005.01.5594.CrossRefPubMed
21.
go back to reference Müller H, Moroni MC, Vigo E, Petersen BO, Bartek J, Helin K: Induction of S-phase entry by E2F transcription factors depends on their nuclear localization. Mol Cell Biol. 1997, 17: 5508-5520.CrossRefPubMedPubMedCentral Müller H, Moroni MC, Vigo E, Petersen BO, Bartek J, Helin K: Induction of S-phase entry by E2F transcription factors depends on their nuclear localization. Mol Cell Biol. 1997, 17: 5508-5520.CrossRefPubMedPubMedCentral
22.
go back to reference Suzuki T, Yasui W, Yokozaki H, Naka K, Ishikawa T, Tahara E: Expression of the E2F family in human gastrointestinal carcinomas. Int J Cancer. 1999, 81: 535-538. 10.1002/(SICI)1097-0215(19990517)81:4<535::AID-IJC5>3.0.CO;2-4.CrossRefPubMed Suzuki T, Yasui W, Yokozaki H, Naka K, Ishikawa T, Tahara E: Expression of the E2F family in human gastrointestinal carcinomas. Int J Cancer. 1999, 81: 535-538. 10.1002/(SICI)1097-0215(19990517)81:4<535::AID-IJC5>3.0.CO;2-4.CrossRefPubMed
23.
go back to reference Banerjee D, Gorlick R, Liefshitz A, et al: Levels of E2F-1 expression are higher in lung metastasis of colon cancer as compared with hepatic metastasis and correlate with levels of thymidylate synthase. Cancer Res. 2000, 60: 2365-2367.PubMed Banerjee D, Gorlick R, Liefshitz A, et al: Levels of E2F-1 expression are higher in lung metastasis of colon cancer as compared with hepatic metastasis and correlate with levels of thymidylate synthase. Cancer Res. 2000, 60: 2365-2367.PubMed
24.
go back to reference Kaur M, Singh RP, Gu M, Agarwal R, Agarwal C: Grape seed extract inhibits in vitro and in vivo growth of human colorectal carcinoma cells. Clin Cancer Res. 2006, 12: 6194-6202. 10.1158/1078-0432.CCR-06-1465.CrossRefPubMed Kaur M, Singh RP, Gu M, Agarwal R, Agarwal C: Grape seed extract inhibits in vitro and in vivo growth of human colorectal carcinoma cells. Clin Cancer Res. 2006, 12: 6194-6202. 10.1158/1078-0432.CCR-06-1465.CrossRefPubMed
25.
go back to reference Ciaparrone M, Yamamoto H, Sgambato A, Cattoretti G, Tomita N, Monden T, Rotterdam H, Weinstein B: Localization and Expression of p27KIP1 in Multistage Colorectal Carcinogenesis. Cancer Res. 1998, 58: 114-122.PubMed Ciaparrone M, Yamamoto H, Sgambato A, Cattoretti G, Tomita N, Monden T, Rotterdam H, Weinstein B: Localization and Expression of p27KIP1 in Multistage Colorectal Carcinogenesis. Cancer Res. 1998, 58: 114-122.PubMed
26.
go back to reference Gope R, Christensen MA, Thorson A, Lynch HT, Smyrk T, Hodgson C, Wildrick DM, Gope ML, Boman BM: Increased expression of the retinoblastoma gene in human colorectal carcinomas relative to normal colonic mucosa. J Natl Cancer Inst. 1990, 82: 310-314. 10.1093/jnci/82.4.310.CrossRefPubMed Gope R, Christensen MA, Thorson A, Lynch HT, Smyrk T, Hodgson C, Wildrick DM, Gope ML, Boman BM: Increased expression of the retinoblastoma gene in human colorectal carcinomas relative to normal colonic mucosa. J Natl Cancer Inst. 1990, 82: 310-314. 10.1093/jnci/82.4.310.CrossRefPubMed
27.
go back to reference Gope R, Gope ML: Abundance and state of phosphorylation of the retinoblastoma susceptibility gene product in human colon cancer. Mol Cell Biochem. 1992, 110: 123-133. 10.1007/BF02454189.CrossRefPubMed Gope R, Gope ML: Abundance and state of phosphorylation of the retinoblastoma susceptibility gene product in human colon cancer. Mol Cell Biochem. 1992, 110: 123-133. 10.1007/BF02454189.CrossRefPubMed
28.
go back to reference Yamamoto H, Soh JW, Monden T, Klein MG, Zhang LM, Shirin H, Arber N, Tomita N, Schieren I, Stein CA, Weinstein IB: Paradoxical increase in retinoblastoma protein in colorectal carcinomas may protect cells from apoptosis. Clin Cancer Res. 1999, 5 (7): 1805-1815.PubMed Yamamoto H, Soh JW, Monden T, Klein MG, Zhang LM, Shirin H, Arber N, Tomita N, Schieren I, Stein CA, Weinstein IB: Paradoxical increase in retinoblastoma protein in colorectal carcinomas may protect cells from apoptosis. Clin Cancer Res. 1999, 5 (7): 1805-1815.PubMed
29.
go back to reference Yasui W, Fujimoto J, Suzuki T, Ono S, Naka K, Yokozaki H, Tahara E: Expression of cell-cycle-regulating transcription factor E2F-1 in colorectal carcinomas. Pathobiology. 1999, 67: 174-179. 10.1159/000028069.CrossRefPubMed Yasui W, Fujimoto J, Suzuki T, Ono S, Naka K, Yokozaki H, Tahara E: Expression of cell-cycle-regulating transcription factor E2F-1 in colorectal carcinomas. Pathobiology. 1999, 67: 174-179. 10.1159/000028069.CrossRefPubMed
30.
go back to reference Enders GH: Colon cancer metastasis: is E2F-1 a driving force?. Cancer Biol Ther. 2004, 3 (4): 400-401. 10.4161/cbt.3.4.735.CrossRefPubMed Enders GH: Colon cancer metastasis: is E2F-1 a driving force?. Cancer Biol Ther. 2004, 3 (4): 400-401. 10.4161/cbt.3.4.735.CrossRefPubMed
31.
go back to reference Tian Y, Ge B, Zhang B: The expression and clinical significance of pRB and E2F1 in human neuroendocrine lung tumor. Zhonghua Yi Xue Za Zhi. 2001, 81 (4): 219-221.PubMed Tian Y, Ge B, Zhang B: The expression and clinical significance of pRB and E2F1 in human neuroendocrine lung tumor. Zhonghua Yi Xue Za Zhi. 2001, 81 (4): 219-221.PubMed
32.
go back to reference Ebihara Y, Miyamoto M, Shichinohe T, Kawarada Y, Cho Y, Fukunaga A, Murakami S, Uehara H, Kaneko H, Hashimoto H, Murakami Y, Itoh T, Okushiba S, Kondo S, Katoh H: Over-expression of E2F-1 in esophageal squamous cell carcinoma correlates with tumor progression. Dis Esophagus. 2004, 17 (2): 150-154. 10.1111/j.1442-2050.2004.00393.x.CrossRefPubMed Ebihara Y, Miyamoto M, Shichinohe T, Kawarada Y, Cho Y, Fukunaga A, Murakami S, Uehara H, Kaneko H, Hashimoto H, Murakami Y, Itoh T, Okushiba S, Kondo S, Katoh H: Over-expression of E2F-1 in esophageal squamous cell carcinoma correlates with tumor progression. Dis Esophagus. 2004, 17 (2): 150-154. 10.1111/j.1442-2050.2004.00393.x.CrossRefPubMed
33.
go back to reference Suh DS, Yoon MS, Choi KU, Kim JY: Significance of E2F-1 overexpression in epithelial ovarian cancer. Int J Gynecol Cancer. 2008, 18 (3): 492-498. 10.1111/j.1525-1438.2007.01044.x.CrossRefPubMed Suh DS, Yoon MS, Choi KU, Kim JY: Significance of E2F-1 overexpression in epithelial ovarian cancer. Int J Gynecol Cancer. 2008, 18 (3): 492-498. 10.1111/j.1525-1438.2007.01044.x.CrossRefPubMed
34.
go back to reference Toyota M, Ahuja N, Ohe-Toyota M, et al: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999, 96: 8681-8686. 10.1073/pnas.96.15.8681.CrossRefPubMedPubMedCentral Toyota M, Ahuja N, Ohe-Toyota M, et al: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999, 96: 8681-8686. 10.1073/pnas.96.15.8681.CrossRefPubMedPubMedCentral
35.
go back to reference Marra G, Jiricny J: DNA mismatch repair and colon cancer. Genome instability in cancer development (advances in experimental medicine and biology). Edited by: Nigg E. 2005, New York: Springer, 85-123.CrossRef Marra G, Jiricny J: DNA mismatch repair and colon cancer. Genome instability in cancer development (advances in experimental medicine and biology). Edited by: Nigg E. 2005, New York: Springer, 85-123.CrossRef
36.
go back to reference Nosho K, Irahara N, Shima K, et al: Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One. 2008, 3: e3698-10.1371/journal.pone.0003698.CrossRefPubMedPubMedCentral Nosho K, Irahara N, Shima K, et al: Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One. 2008, 3: e3698-10.1371/journal.pone.0003698.CrossRefPubMedPubMedCentral
37.
go back to reference Lukas J, Petersen BO, Holm K, Bartek J, Helin K: Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4A-mediated growth suppression. Mol Cell Biol. 1996, 16 (3): 1047-1057.CrossRefPubMedPubMedCentral Lukas J, Petersen BO, Holm K, Bartek J, Helin K: Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4A-mediated growth suppression. Mol Cell Biol. 1996, 16 (3): 1047-1057.CrossRefPubMedPubMedCentral
38.
go back to reference Gardina PJ, Clark TA, Shimada B, Staples MK, Yang Q, Veitch J, et al: Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics. 2006, 7: 325-10.1186/1471-2164-7-325.CrossRefPubMedPubMedCentral Gardina PJ, Clark TA, Shimada B, Staples MK, Yang Q, Veitch J, et al: Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics. 2006, 7: 325-10.1186/1471-2164-7-325.CrossRefPubMedPubMedCentral
39.
go back to reference Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, et al: Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006, 444: 633-637. 10.1038/nature05268.CrossRefPubMed Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, et al: Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006, 444: 633-637. 10.1038/nature05268.CrossRefPubMed
40.
go back to reference Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, et al: Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005, 434: 907-913. 10.1038/nature03485.CrossRefPubMed Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, et al: Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005, 434: 907-913. 10.1038/nature03485.CrossRefPubMed
41.
go back to reference Freeman A, Morris LS, Mills AD, Stoeber K, Laskey RA, et al: Minichromosome maintenance proteins as biological markers of dysplasia and malignancy. Clin Cancer Res. 1999, 5: 2121-2132.PubMed Freeman A, Morris LS, Mills AD, Stoeber K, Laskey RA, et al: Minichromosome maintenance proteins as biological markers of dysplasia and malignancy. Clin Cancer Res. 1999, 5: 2121-2132.PubMed
42.
go back to reference Klapacz J, Lingaraju GM, Guo HH, Shah D, Moar-Shoshani A, et al: Frameshift mutagenesis and microsatellite instability induced by human alkyladenine DNA glycosylase. Mol Cell. 2010, 37: 843-853. 10.1016/j.molcel.2010.01.038.CrossRefPubMedPubMedCentral Klapacz J, Lingaraju GM, Guo HH, Shah D, Moar-Shoshani A, et al: Frameshift mutagenesis and microsatellite instability induced by human alkyladenine DNA glycosylase. Mol Cell. 2010, 37: 843-853. 10.1016/j.molcel.2010.01.038.CrossRefPubMedPubMedCentral
43.
go back to reference Saporita AJ, Maggi LB, Apicelli AJ, Weber JD: Therapeutic targets in the ARF tumor suppressor pathway. Curr Med Chem. 2007, 14: 1815-1827. 10.2174/092986707781058869.CrossRefPubMedPubMedCentral Saporita AJ, Maggi LB, Apicelli AJ, Weber JD: Therapeutic targets in the ARF tumor suppressor pathway. Curr Med Chem. 2007, 14: 1815-1827. 10.2174/092986707781058869.CrossRefPubMedPubMedCentral
44.
go back to reference Van Steeg H, Mullenders LH, Vijg J: Mutagenesis and carcinogenesis in nucleotide excision repair-deficient XPA knock out mice. Mutat Res. 2000, 450: 167-180. 10.1016/S0027-5107(00)00023-3.CrossRefPubMed Van Steeg H, Mullenders LH, Vijg J: Mutagenesis and carcinogenesis in nucleotide excision repair-deficient XPA knock out mice. Mutat Res. 2000, 450: 167-180. 10.1016/S0027-5107(00)00023-3.CrossRefPubMed
45.
go back to reference Beerenwinkel N, Antal T, Dingli D, Traulsen A, Kinzler KW, et al: Genetic progression and the waiting time to cancer. PLoS Comput Biol. 2007, 3: e225-10.1371/journal.pcbi.0030225.CrossRefPubMedPubMedCentral Beerenwinkel N, Antal T, Dingli D, Traulsen A, Kinzler KW, et al: Genetic progression and the waiting time to cancer. PLoS Comput Biol. 2007, 3: e225-10.1371/journal.pcbi.0030225.CrossRefPubMedPubMedCentral
46.
go back to reference Clarke PR, Zhang C: Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol. 2008, 9: 464-477. 10.1038/nrm2410.CrossRefPubMed Clarke PR, Zhang C: Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol. 2008, 9: 464-477. 10.1038/nrm2410.CrossRefPubMed
47.
go back to reference Yam AY, Xia Y, Lin HT, Burlingame A, Gerstein M, et al: Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat Struct Mol Biol. 2008, 15: 1255-1262. 10.1038/nsmb.1515.CrossRefPubMedPubMedCentral Yam AY, Xia Y, Lin HT, Burlingame A, Gerstein M, et al: Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat Struct Mol Biol. 2008, 15: 1255-1262. 10.1038/nsmb.1515.CrossRefPubMedPubMedCentral
48.
go back to reference Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144: 646-674. 10.1016/j.cell.2011.02.013.CrossRefPubMed Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell. 2011, 144: 646-674. 10.1016/j.cell.2011.02.013.CrossRefPubMed
49.
go back to reference Qian BZ, Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 2010, 141: 39-51. 10.1016/j.cell.2010.03.014.CrossRefPubMed Qian BZ, Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 2010, 141: 39-51. 10.1016/j.cell.2010.03.014.CrossRefPubMed
50.
go back to reference Cullen SP, Brunet M, Martin SJ: Granzymes in cancer and immunity. Cell Death Differ. 2010, 17: 616-623. 10.1038/cdd.2009.206.CrossRefPubMed Cullen SP, Brunet M, Martin SJ: Granzymes in cancer and immunity. Cell Death Differ. 2010, 17: 616-623. 10.1038/cdd.2009.206.CrossRefPubMed
51.
go back to reference Chakravarti D, Hong R: SET-ting the stage for life and death. Cell. 2003, 112: 589-591. 10.1016/S0092-8674(03)00151-X.CrossRefPubMed Chakravarti D, Hong R: SET-ting the stage for life and death. Cell. 2003, 112: 589-591. 10.1016/S0092-8674(03)00151-X.CrossRefPubMed
52.
go back to reference Muto S, Senda M, Akai Y, Sato L, Suzuki T, et al: Relationship between the structure of SET/TAF-Ibeta/INHAT and its histone chaperone activity. Proc Natl Acad Sci U S A. 2007, 104: 4285-4290. 10.1073/pnas.0603762104.CrossRefPubMedPubMedCentral Muto S, Senda M, Akai Y, Sato L, Suzuki T, et al: Relationship between the structure of SET/TAF-Ibeta/INHAT and its histone chaperone activity. Proc Natl Acad Sci U S A. 2007, 104: 4285-4290. 10.1073/pnas.0603762104.CrossRefPubMedPubMedCentral
53.
go back to reference Warburg O: On the origin of cancer cells. Science. 1956, 123: 309-314. 10.1126/science.123.3191.309.CrossRefPubMed Warburg O: On the origin of cancer cells. Science. 1956, 123: 309-314. 10.1126/science.123.3191.309.CrossRefPubMed
54.
go back to reference Vander Heiden MG, Cantley LC, Thompson CB: Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009, 324: 1029-1033. 10.1126/science.1160809.CrossRefPubMedPubMedCentral Vander Heiden MG, Cantley LC, Thompson CB: Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009, 324: 1029-1033. 10.1126/science.1160809.CrossRefPubMedPubMedCentral
Metadata
Title
Molecular pathways undergoing dramatic transcriptomic changes during tumor development in the human colon
Authors
Rosalia Maglietta
Vania Cosma Liuzzi
Elisa Cattaneo
Endre Laczko
Ada Piepoli
Anna Panza
Massimo Carella
Orazio Palumbo
Teresa Staiano
Federico Buffoli
Angelo Andriulli
Giancarlo Marra
Nicola Ancona
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2012
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-12-608

Other articles of this Issue 1/2012

BMC Cancer 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine