Skip to main content
Top
Published in: BMC Cancer 1/2012

Open Access 01-12-2012 | Research article

Blood vessel hyperpermeability and pathophysiology in human tumour xenograft models of breast cancer: a comparison of ectopic and orthotopic tumours

Authors: Karyn S Ho, Peter C Poon, Shawn C Owen, Molly S Shoichet

Published in: BMC Cancer | Issue 1/2012

Login to get access

Abstract

Background

Human tumour xenografts in immune compromised mice are widely used as cancer models because they are easy to reproduce and simple to use in a variety of pre-clinical assessments. Developments in nanomedicine have led to the use of tumour xenografts in testing nanoscale delivery devices, such as nanoparticles and polymer-drug conjugates, for targeting and efficacy via the enhanced permeability and retention (EPR) effect. For these results to be meaningful, the hyperpermeable vasculature and reduced lymphatic drainage associated with tumour pathophysiology must be replicated in the model. In pre-clinical breast cancer xenograft models, cells are commonly introduced via injection either orthotopically (mammary fat pad, MFP) or ectopically (subcutaneous, SC), and the organ environment experienced by the tumour cells has been shown to influence their behaviour.

Methods

To evaluate xenograft models of breast cancer in the context of EPR, both orthotopic MFP and ectopic SC injections of MDA-MB-231-H2N cells were given to NOD scid gamma (NSG) mice. Animals with matched tumours in two size categories were tested by injection of a high molecular weight dextran as a model nanocarrier. Tumours were collected and sectioned to assess dextran accumulation compared to liver tissue as a positive control. To understand the cellular basis of these observations, tumour sections were also immunostained for endothelial cells, basement membranes, pericytes, and lymphatic vessels.

Results

SC tumours required longer development times to become size matched to MFP tumours, and also presented wide size variability and ulcerated skin lesions 6 weeks after cell injection. The 3 week MFP tumour model demonstrated greater dextran accumulation than the size matched 5 week SC tumour model (for P < 0.10). Immunostaining revealed greater vascular density and thinner basement membranes in the MFP tumour model 3 weeks after cell injection. Both the MFP and SC tumours showed evidence of insufficient lymphatic drainage, as many fluid-filled and collagen IV-lined spaces were observed, which likely contain excess interstitial fluid.

Conclusions

Dextran accumulation and immunostaining results suggest that small MFP tumours best replicate the vascular permeability required to observe the EPR effect in vivo. A more predictable growth profile and the absence of ulcerated skin lesions further point to the MFP model as a strong choice for long term treatment studies that initiate after a target tumour size has been reached.
Appendix
Available only for authorised users
Literature
1.
go back to reference Teicher BA: Human tumor xenografts and mouse models of human tumors: re-discovering the models. Expert Opin Drug Dis. 2009, 4 (12): 1295-1305. 10.1517/17460440903380430.CrossRef Teicher BA: Human tumor xenografts and mouse models of human tumors: re-discovering the models. Expert Opin Drug Dis. 2009, 4 (12): 1295-1305. 10.1517/17460440903380430.CrossRef
2.
go back to reference Torchilin V: Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliver Rev. 2011, 63 (3): 131-135. 10.1016/j.addr.2010.03.011.CrossRef Torchilin V: Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliver Rev. 2011, 63 (3): 131-135. 10.1016/j.addr.2010.03.011.CrossRef
3.
go back to reference Fang J, Nakamura H, Maeda H: The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliver Rev. 2011, 63 (3): 136-151. 10.1016/j.addr.2010.04.009.CrossRef Fang J, Nakamura H, Maeda H: The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliver Rev. 2011, 63 (3): 136-151. 10.1016/j.addr.2010.04.009.CrossRef
4.
go back to reference Carmeliet P, Jain RK: Angiogenesis in cancer and other diseases. Nature. 2000, 407 (6801): 249-257. 10.1038/35025220.CrossRefPubMed Carmeliet P, Jain RK: Angiogenesis in cancer and other diseases. Nature. 2000, 407 (6801): 249-257. 10.1038/35025220.CrossRefPubMed
5.
go back to reference Kerbel RS: Tumor angiogenesis: past, present and the near future. Carcinogenesis. 2000, 21 (3): 505-515. 10.1093/carcin/21.3.505.CrossRefPubMed Kerbel RS: Tumor angiogenesis: past, present and the near future. Carcinogenesis. 2000, 21 (3): 505-515. 10.1093/carcin/21.3.505.CrossRefPubMed
6.
go back to reference Matsumura Y, Maeda H: A new concept for macromolecular therapeutics in cancer-chemotherapy - mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46 (12): 6387-6392.PubMed Matsumura Y, Maeda H: A new concept for macromolecular therapeutics in cancer-chemotherapy - mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46 (12): 6387-6392.PubMed
7.
go back to reference Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM: Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2002, 160 (3): 985-1000. 10.1016/S0002-9440(10)64920-6.CrossRefPubMedPubMedCentral Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM: Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2002, 160 (3): 985-1000. 10.1016/S0002-9440(10)64920-6.CrossRefPubMedPubMedCentral
8.
go back to reference Dreher MR, Liu WG, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A: Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer I. 2006, 98 (5): 335-344. 10.1093/jnci/djj070.CrossRef Dreher MR, Liu WG, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A: Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer I. 2006, 98 (5): 335-344. 10.1093/jnci/djj070.CrossRef
9.
go back to reference Jain RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005, 307 (5706): 58-62. 10.1126/science.1104819.CrossRefPubMed Jain RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005, 307 (5706): 58-62. 10.1126/science.1104819.CrossRefPubMed
10.
go back to reference Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM: Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol. 2000, 156 (4): 1363-1380. 10.1016/S0002-9440(10)65006-7.CrossRefPubMedPubMedCentral Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM: Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol. 2000, 156 (4): 1363-1380. 10.1016/S0002-9440(10)65006-7.CrossRefPubMedPubMedCentral
11.
go back to reference Sorensen AG, Batchelor TT, Zhang WT, Chen PJ, Yeo P, Wang MY, Jennings D, Wen PY, Lahdenranta J, Ancukiewicz M, et al: A "Vascular Normalization Index" as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res. 2009, 69 (13): 5296-5300. 10.1158/0008-5472.CAN-09-0814.CrossRefPubMedPubMedCentral Sorensen AG, Batchelor TT, Zhang WT, Chen PJ, Yeo P, Wang MY, Jennings D, Wen PY, Lahdenranta J, Ancukiewicz M, et al: A "Vascular Normalization Index" as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res. 2009, 69 (13): 5296-5300. 10.1158/0008-5472.CAN-09-0814.CrossRefPubMedPubMedCentral
12.
go back to reference Hida K, Hida Y, Shindoh M: Understanding tumor endothelial cell abnormalities to develop ideal anti-angiogenic therapies. Cancer Sci. 2008, 99 (3): 459-466. 10.1111/j.1349-7006.2007.00704.x.CrossRefPubMed Hida K, Hida Y, Shindoh M: Understanding tumor endothelial cell abnormalities to develop ideal anti-angiogenic therapies. Cancer Sci. 2008, 99 (3): 459-466. 10.1111/j.1349-7006.2007.00704.x.CrossRefPubMed
13.
go back to reference McDonald DM, Baluk P: Significance of blood vessel leakiness in cancer. Cancer Res. 2002, 62 (18): 5381-5385.PubMed McDonald DM, Baluk P: Significance of blood vessel leakiness in cancer. Cancer Res. 2002, 62 (18): 5381-5385.PubMed
14.
go back to reference Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM: Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2003, 163 (5): 1801-1815. 10.1016/S0002-9440(10)63540-7.CrossRefPubMedPubMedCentral Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM: Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2003, 163 (5): 1801-1815. 10.1016/S0002-9440(10)63540-7.CrossRefPubMedPubMedCentral
15.
16.
go back to reference Wu J, Akaike T, Maeda H: Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger. Cancer Res. 1998, 58 (1): 159-165.PubMed Wu J, Akaike T, Maeda H: Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger. Cancer Res. 1998, 58 (1): 159-165.PubMed
17.
go back to reference Kerbel RS, Cornil I, Theodorescu D: Importance of orthotopic transplantation procedures in assessing the effects of transfected genes on human tumor-growth and metastasis. Cancer Metast Rev. 1991, 10 (3): 201-215. 10.1007/BF00050792.CrossRef Kerbel RS, Cornil I, Theodorescu D: Importance of orthotopic transplantation procedures in assessing the effects of transfected genes on human tumor-growth and metastasis. Cancer Metast Rev. 1991, 10 (3): 201-215. 10.1007/BF00050792.CrossRef
18.
go back to reference Killion JJ, Radinsky R, Fidler IJ: Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metast Rev. 1998, 17 (3): 279-284. 10.1023/A:1006140513233.CrossRef Killion JJ, Radinsky R, Fidler IJ: Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metast Rev. 1998, 17 (3): 279-284. 10.1023/A:1006140513233.CrossRef
19.
go back to reference Lunt SJ, Kalliomaki TMK, Brown A, Yang VX, Milosevic M, Hill RP: Interstitial fluid pressure, vascularity and metastasis in ectopic, orthotopic and spontaneous tumours. BMC Cancer. 2008, 8: 2-10.1186/1471-2407-8-2.CrossRefPubMedPubMedCentral Lunt SJ, Kalliomaki TMK, Brown A, Yang VX, Milosevic M, Hill RP: Interstitial fluid pressure, vascularity and metastasis in ectopic, orthotopic and spontaneous tumours. BMC Cancer. 2008, 8: 2-10.1186/1471-2407-8-2.CrossRefPubMedPubMedCentral
20.
go back to reference Wilmanns C, Fan D, Obrian CA, Bucana CD, Fidler IJ: Orthotopic and ectopic organ environments differentially influence the sensitivity of murine colon-carcinoma cells to doxorubicin and 5-fluorouracil. Int J Cancer. 1992, 52 (1): 98-104. 10.1002/ijc.2910520118.CrossRefPubMed Wilmanns C, Fan D, Obrian CA, Bucana CD, Fidler IJ: Orthotopic and ectopic organ environments differentially influence the sensitivity of murine colon-carcinoma cells to doxorubicin and 5-fluorouracil. Int J Cancer. 1992, 52 (1): 98-104. 10.1002/ijc.2910520118.CrossRefPubMed
21.
go back to reference Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS: Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer. 2011, 11 (2): 135-141. 10.1038/nrc3001.CrossRefPubMedPubMedCentral Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS: Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer. 2011, 11 (2): 135-141. 10.1038/nrc3001.CrossRefPubMedPubMedCentral
23.
go back to reference Edge SB, Compton CC: The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010, 17 (6): 1471-1474. 10.1245/s10434-010-0985-4.CrossRefPubMed Edge SB, Compton CC: The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010, 17 (6): 1471-1474. 10.1245/s10434-010-0985-4.CrossRefPubMed
24.
go back to reference Tomayko MM, Reynolds CP: Determination of subcutaneous tumor size in athymic (Nude) mice. Cancer Chemoth Pharm. 1989, 24 (3): 148-154. 10.1007/BF00300234.CrossRef Tomayko MM, Reynolds CP: Determination of subcutaneous tumor size in athymic (Nude) mice. Cancer Chemoth Pharm. 1989, 24 (3): 148-154. 10.1007/BF00300234.CrossRef
25.
go back to reference Schiffelers RM, Metselaar JM, Fens MHAM, Janssen APCA, Molema G, Storm G: Liposome-encapsulated prednisolone phosphate inhibits growth of established tumors in mice. Neoplasia. 2005, 7 (2): 118-127. 10.1593/neo.04340.CrossRefPubMedPubMedCentral Schiffelers RM, Metselaar JM, Fens MHAM, Janssen APCA, Molema G, Storm G: Liposome-encapsulated prednisolone phosphate inhibits growth of established tumors in mice. Neoplasia. 2005, 7 (2): 118-127. 10.1593/neo.04340.CrossRefPubMedPubMedCentral
26.
go back to reference Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, et al: NOD/SCID/gamma(null)(c) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002, 100 (9): 3175-3182. 10.1182/blood-2001-12-0207.CrossRefPubMed Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, et al: NOD/SCID/gamma(null)(c) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002, 100 (9): 3175-3182. 10.1182/blood-2001-12-0207.CrossRefPubMed
27.
go back to reference Cogger VC, McNerney GP, Nyunt T, DeLeve LD, McCourt P, Smedsrod B, Le Couteur DG, Huser TR: Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations. J Struct Biol. 2010, 171 (3): 382-388. 10.1016/j.jsb.2010.06.001.CrossRefPubMedPubMedCentral Cogger VC, McNerney GP, Nyunt T, DeLeve LD, McCourt P, Smedsrod B, Le Couteur DG, Huser TR: Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations. J Struct Biol. 2010, 171 (3): 382-388. 10.1016/j.jsb.2010.06.001.CrossRefPubMedPubMedCentral
28.
go back to reference Davies B, Morris T: Physiological parameters in laboratory-animals and humans. Pharmaceut Res. 1993, 10 (7): 1093-1095. 10.1023/A:1018943613122.CrossRef Davies B, Morris T: Physiological parameters in laboratory-animals and humans. Pharmaceut Res. 1993, 10 (7): 1093-1095. 10.1023/A:1018943613122.CrossRef
29.
go back to reference Hori K, Saito S, Takahashi H, Sato H, Maeda H, Sato Y: Tumor-selective blood flow decrease induced by an angiotensin converting enzyme inhibitor, temocapril hydrochloride. Jpn J Cancer Res. 2000, 91 (2): 261-269. 10.1111/j.1349-7006.2000.tb00940.x.CrossRefPubMed Hori K, Saito S, Takahashi H, Sato H, Maeda H, Sato Y: Tumor-selective blood flow decrease induced by an angiotensin converting enzyme inhibitor, temocapril hydrochloride. Jpn J Cancer Res. 2000, 91 (2): 261-269. 10.1111/j.1349-7006.2000.tb00940.x.CrossRefPubMed
30.
go back to reference Chen B, Pogue BW, Zhou XD, O'Hara JA, Solban N, Demidenko E, Hoopes PJ, Hasan T: Effect of tumor host microenvironment on photodynamic therapy in a rat prostate tumor model. Clin Cancer Res. 2005, 11 (2): 720-727.PubMed Chen B, Pogue BW, Zhou XD, O'Hara JA, Solban N, Demidenko E, Hoopes PJ, Hasan T: Effect of tumor host microenvironment on photodynamic therapy in a rat prostate tumor model. Clin Cancer Res. 2005, 11 (2): 720-727.PubMed
31.
go back to reference Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK: Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004, 64 (11): 3731-3736. 10.1158/0008-5472.CAN-04-0074.CrossRefPubMed Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK: Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004, 64 (11): 3731-3736. 10.1158/0008-5472.CAN-04-0074.CrossRefPubMed
32.
go back to reference Kong G, Braun RD, Dewhirst MW: Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res. 2000, 60 (16): 4440-4445.PubMed Kong G, Braun RD, Dewhirst MW: Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res. 2000, 60 (16): 4440-4445.PubMed
33.
go back to reference Abdelkarim M, Vintonenko N, Starzec A, Robles A, Aubert J, Martin M-L, Mourah S, Podgorniak M-P, Rodrigues-Ferreira S, Nahmias C, et al: Invading basement membrane matrix is sufficient for MDA-MB-231 breast cancer cells to develop a stable in vivo metastatic phenotype. PLoS One. 2011, 6 (8): e23334-10.1371/journal.pone.0023334.CrossRefPubMedPubMedCentral Abdelkarim M, Vintonenko N, Starzec A, Robles A, Aubert J, Martin M-L, Mourah S, Podgorniak M-P, Rodrigues-Ferreira S, Nahmias C, et al: Invading basement membrane matrix is sufficient for MDA-MB-231 breast cancer cells to develop a stable in vivo metastatic phenotype. PLoS One. 2011, 6 (8): e23334-10.1371/journal.pone.0023334.CrossRefPubMedPubMedCentral
34.
go back to reference Perles-Barbacaru AT, van der Sanden BPJ, Farion R, Lahrech H: How stereological analysis of vascular morphology can quantify the blood volume fraction as a marker for tumor vasculature: comparison with magnetic resonance imaging. J Cerebr Blood F Met. 2012, 32 (3): 489-501. 10.1038/jcbfm.2011.151.CrossRef Perles-Barbacaru AT, van der Sanden BPJ, Farion R, Lahrech H: How stereological analysis of vascular morphology can quantify the blood volume fraction as a marker for tumor vasculature: comparison with magnetic resonance imaging. J Cerebr Blood F Met. 2012, 32 (3): 489-501. 10.1038/jcbfm.2011.151.CrossRef
35.
go back to reference Rockson SG: Diagnosis and management of lymphatic vascular disease. J Am Coll Cardiol. 2008, 52 (10): 799-806. 10.1016/j.jacc.2008.06.005.CrossRefPubMed Rockson SG: Diagnosis and management of lymphatic vascular disease. J Am Coll Cardiol. 2008, 52 (10): 799-806. 10.1016/j.jacc.2008.06.005.CrossRefPubMed
36.
go back to reference Schneider M, Ny A, Ruiz De Almodovar C, Carmeliet P: A new mouse model to study acquired lymphedema. PLoS Med. 2006, 3 (7): e264-10.1371/journal.pmed.0030264.CrossRefPubMedPubMedCentral Schneider M, Ny A, Ruiz De Almodovar C, Carmeliet P: A new mouse model to study acquired lymphedema. PLoS Med. 2006, 3 (7): e264-10.1371/journal.pmed.0030264.CrossRefPubMedPubMedCentral
37.
go back to reference Szuba A, Rockson SG: Lymphedema: anatomy, physiology and pathogenesis. Vasc Med. 1997, 2 (4): 321-326.CrossRefPubMed Szuba A, Rockson SG: Lymphedema: anatomy, physiology and pathogenesis. Vasc Med. 1997, 2 (4): 321-326.CrossRefPubMed
Metadata
Title
Blood vessel hyperpermeability and pathophysiology in human tumour xenograft models of breast cancer: a comparison of ectopic and orthotopic tumours
Authors
Karyn S Ho
Peter C Poon
Shawn C Owen
Molly S Shoichet
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2012
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-12-579

Other articles of this Issue 1/2012

BMC Cancer 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine