Skip to main content
Top
Published in: BMC Cancer 1/2012

Open Access 01-12-2012 | Research article

Inhibitory effect of Bifidobacterium infantis-mediated sKDR prokaryotic expression system on angiogenesis and growth of Lewis lung cancer in mice

Authors: Zhao-Jun Li, Hong Zhu, Bu-Yun Ma, Fen Zhao, Shu-Hua Mao, Tai-Guo Liu, Jian-Ping He, Li-Cong Deng, Cheng Yi, Ying Huang

Published in: BMC Cancer | Issue 1/2012

Login to get access

Abstract

Background

To construct the Bifidobacterium infantis-mediated soluble kinase insert domain receptor (sKDR) prokaryotic expression system and to observe its inhibitory effect on growth of human umbilicus vessel endothelial cells (HUVECs) in vitro and Lewis lung cancer (LLC) on mice in vivo.

Methods

The Bifidobacterium infantis-mediated sKDR prokaryotic expression system was constructed through electroporation and subsequently identified through PCR and Western blot analysis. HUVECs were added to the products of this system to evaluate the anti-angiogenesis effect through MTT assay in vitro. The LLC mice models were divided into three groups: one group treated with saline (group a); one group treated with recombinant Bifidobacterium infantis containing pTRKH2-PsT plasmid group (group b); and one group treated with recombinant Bifidobacterium infantis containing pTRKH2-PsT/sKDR plasmid group (group c). The quality of life and survival of mice were recorded. Tumor volume, tumor weight, inhibitive rate, and necrosis rate of tumor were also evaluated. Necrosis of tumor and signals of blood flow in tumors were detected through color Doppler ultrasound. In addition, microvessel density (MVD) of the tumor tissues was assessed through CD31 immunohistochemical analysis.

Results

The positively transformed Bifidobacterium infantis with recombinant pTRKH2-PsT/sKDR plasmid was established, and was able to express sKDR at gene and protein levels. The proliferation of HUVECs cultivated with the extract of positively transformed bacteria was inhibited significantly compared with other groups (P < 0. 05). The quality of life of mice in group c was better than in group a and b. The recombinant Bifidobacterium infantis containing pTRKH2-PsT/sKDR plasmid enhanced the efficacy of tumor growth suppression and prolongation of survival, increased the necrosis rate of tumor significantly, and could obviously decrease MVD and the signals of blood flow in tumors.

Conclusion

The Bifidobacterium infantis-mediated sKDR prokaryotic expression system was constructed successfully. This system could express sKDR at gene and protein levels and significantly inhibit the growth of HUVECs induced by VEGF in vitro. Moreover, it could inhibit tumor growth and safely prolong the survival time of LLC C57BL/6 mice.
Appendix
Available only for authorised users
Literature
1.
go back to reference Auerbach W, Auerbach R: Angiogenesis inhibition: a review. [Review] [436 refs]. Pharmacol Ther. 1994, 63: 265-311. 10.1016/0163-7258(94)90027-2.CrossRefPubMed Auerbach W, Auerbach R: Angiogenesis inhibition: a review. [Review] [436 refs]. Pharmacol Ther. 1994, 63: 265-311. 10.1016/0163-7258(94)90027-2.CrossRefPubMed
2.
go back to reference Bisacchi D, Benelli R, Vanzetto C, Ferrari N, Tosetti F, Albini A: Anti-angiogenesis and angioprevention: mechanisms, problems and perspectives. [Review] [122 refs]. Cancer Detection & Prevention. 2003, 27: 229-238. 10.1016/S0361-090X(03)00030-8.CrossRef Bisacchi D, Benelli R, Vanzetto C, Ferrari N, Tosetti F, Albini A: Anti-angiogenesis and angioprevention: mechanisms, problems and perspectives. [Review] [122 refs]. Cancer Detection & Prevention. 2003, 27: 229-238. 10.1016/S0361-090X(03)00030-8.CrossRef
3.
go back to reference Camp-Sorrell D: Antiangiogenesis: the fifth cancer treatment modality?. [Review] [61 refs]. Oncology Nursing Forum. 2003, 30: 934-944. 10.1188/03.ONF.934-944.CrossRefPubMed Camp-Sorrell D: Antiangiogenesis: the fifth cancer treatment modality?. [Review] [61 refs]. Oncology Nursing Forum. 2003, 30: 934-944. 10.1188/03.ONF.934-944.CrossRefPubMed
4.
go back to reference Ciardella AP, Donsoff IM, Guyer DR, Adamis A, Yannuzzi LA: Antiangiogenesis agents. [Review] [69 refs]. Ophthalmology Clinics of North America. 2002, 15: 453-458. 10.1016/S0896-1549(02)00042-1.CrossRefPubMed Ciardella AP, Donsoff IM, Guyer DR, Adamis A, Yannuzzi LA: Antiangiogenesis agents. [Review] [69 refs]. Ophthalmology Clinics of North America. 2002, 15: 453-458. 10.1016/S0896-1549(02)00042-1.CrossRefPubMed
5.
go back to reference Longoria RL, Cox MC, Figg WD: Antiangiogenesis: a possible treatment option for prostate cancer?. [Review] [86 refs]. Clinical Genitourinary Cancer. 2005, 4: 197-202. 10.3816/CGC.2005.n.033.CrossRefPubMed Longoria RL, Cox MC, Figg WD: Antiangiogenesis: a possible treatment option for prostate cancer?. [Review] [86 refs]. Clinical Genitourinary Cancer. 2005, 4: 197-202. 10.3816/CGC.2005.n.033.CrossRefPubMed
6.
go back to reference Harris AL: Anti-angiogenesis therapy and strategies for integrating it with adjuvant therapy. [Review] [81 refs]. Recent Results in Cancer Research. 1998, 152: 341-352. 10.1007/978-3-642-45769-2_33.CrossRefPubMed Harris AL: Anti-angiogenesis therapy and strategies for integrating it with adjuvant therapy. [Review] [81 refs]. Recent Results in Cancer Research. 1998, 152: 341-352. 10.1007/978-3-642-45769-2_33.CrossRefPubMed
7.
go back to reference Hu M, Yang JL, Teng H, Jia YQ, Wang R, Zhang XW, Wu Y, Luo Y, Chen XC, Zhang R, Tian L, Zhao X, Wei YQ: Anti-angiogenesis therapy based on the bone marrow-derived stromal cells genetically engineered to express sFlt-1 in mouse tumor model. Bmc Cancer. 2008, 8: Hu M, Yang JL, Teng H, Jia YQ, Wang R, Zhang XW, Wu Y, Luo Y, Chen XC, Zhang R, Tian L, Zhao X, Wei YQ: Anti-angiogenesis therapy based on the bone marrow-derived stromal cells genetically engineered to express sFlt-1 in mouse tumor model. Bmc Cancer. 2008, 8:
8.
go back to reference Ma J, Chen CS, Blute T, Waxman DJ: Antiangiogenesis enhances intratumoral drug retention. Cancer Res. , 71: 2675-2685. Ma J, Chen CS, Blute T, Waxman DJ: Antiangiogenesis enhances intratumoral drug retention. Cancer Res. , 71: 2675-2685.
9.
go back to reference Ebos JM, Lee CR, Bogdanovic E, Alami J, Van Slyke P, Francia G, Xu P, Mutsaers AJ, Dumont DJ, Kerbel RS: Vascular endothelial growth factor-mediated decrease in plasma soluble vascular endothelial growth factor receptor-2 levels as a surrogate biomarker for tumor growth. Cancer Res. 2008, 68: 521-529. 10.1158/0008-5472.CAN-07-3217.CrossRefPubMed Ebos JM, Lee CR, Bogdanovic E, Alami J, Van Slyke P, Francia G, Xu P, Mutsaers AJ, Dumont DJ, Kerbel RS: Vascular endothelial growth factor-mediated decrease in plasma soluble vascular endothelial growth factor receptor-2 levels as a surrogate biomarker for tumor growth. Cancer Res. 2008, 68: 521-529. 10.1158/0008-5472.CAN-07-3217.CrossRefPubMed
10.
go back to reference Conti CJ: Vascular endothelial growth factor: regulation in the mouse skin carcinogenesis model and use in antiangiogenesis cancer therapy. [Review] [97 refs]. Oncologist. 2002, 3: 4-11.CrossRef Conti CJ: Vascular endothelial growth factor: regulation in the mouse skin carcinogenesis model and use in antiangiogenesis cancer therapy. [Review] [97 refs]. Oncologist. 2002, 3: 4-11.CrossRef
11.
go back to reference Schenone S, Bondavalli F, Botta M: Antiangiogenic agents: an update on small molecule VEGFR inhibitors. [Review] [194 refs]. Curr Med Chem. 14: 2495-2516. 2495 Schenone S, Bondavalli F, Botta M: Antiangiogenic agents: an update on small molecule VEGFR inhibitors. [Review] [194 refs]. Curr Med Chem. 14: 2495-2516. 2495
13.
go back to reference Petersen I: Antiangiogenesis, anti-VEGF(R) and outlook. [Review] [38 refs]. Recent Results in Cancer Research. 2007, 176: 189-199. 10.1007/978-3-540-46091-6_16.CrossRefPubMed Petersen I: Antiangiogenesis, anti-VEGF(R) and outlook. [Review] [38 refs]. Recent Results in Cancer Research. 2007, 176: 189-199. 10.1007/978-3-540-46091-6_16.CrossRefPubMed
14.
go back to reference Holmes K, Roberts OL, Thomas AM, Cross MJ: Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. [Review] [112 refs]. Cell Signal. 2003, 19: 2003-2012.CrossRef Holmes K, Roberts OL, Thomas AM, Cross MJ: Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. [Review] [112 refs]. Cell Signal. 2003, 19: 2003-2012.CrossRef
15.
go back to reference Wang R, Zhang XW, Wang GQ, Chen XC, Tian L, Yang HS, Hu M, Peng F, Yang JL, He QM, Zhang W, Jiang Y, Deng HX, Wen YJ, Li J, Zhao X, Wei YQ: Systemic inhibition of tumor growth by soluble Flk-1 gene therapy combined with cisplatin. Cancer Gene Therapy. 2006, 13: 940-947. 10.1038/sj.cgt.7700958.CrossRefPubMed Wang R, Zhang XW, Wang GQ, Chen XC, Tian L, Yang HS, Hu M, Peng F, Yang JL, He QM, Zhang W, Jiang Y, Deng HX, Wen YJ, Li J, Zhao X, Wei YQ: Systemic inhibition of tumor growth by soluble Flk-1 gene therapy combined with cisplatin. Cancer Gene Therapy. 2006, 13: 940-947. 10.1038/sj.cgt.7700958.CrossRefPubMed
16.
go back to reference Millauer B, Longhi MP, Plate KH, Shawver LK, Risau W, Ullrich A, Strawn LM: Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo. Cancer Res. 56: 1615-1620. 1615 Millauer B, Longhi MP, Plate KH, Shawver LK, Risau W, Ullrich A, Strawn LM: Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo. Cancer Res. 56: 1615-1620. 1615
17.
go back to reference Jia LJ, Hua ZC: Development of bacterial vectors for tumor-targeted gene therapy. [Review] [108 refs]. Methods in Molecular Biology. 2009, 542: 131-154. 10.1007/978-1-59745-561-9_7.CrossRefPubMed Jia LJ, Hua ZC: Development of bacterial vectors for tumor-targeted gene therapy. [Review] [108 refs]. Methods in Molecular Biology. 2009, 542: 131-154. 10.1007/978-1-59745-561-9_7.CrossRefPubMed
18.
go back to reference Fujimori M, Amano J, Taniguchi S: The genus Bifidobacterium for cancer gene therapy. [Review] [25 refs]. Current Opinion in Drug Discovery & Development. 2002, 5: 200-203. Fujimori M, Amano J, Taniguchi S: The genus Bifidobacterium for cancer gene therapy. [Review] [25 refs]. Current Opinion in Drug Discovery & Development. 2002, 5: 200-203.
19.
go back to reference Chinnasamy D, Yu Z, Theoret MR, Zhao Y, Shrimali RK, Morgan RA, Feldman SA, Restifo NP, Rosenberg SA: Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J Clin Invest. 120: 3953-3968. 3953 Chinnasamy D, Yu Z, Theoret MR, Zhao Y, Shrimali RK, Morgan RA, Feldman SA, Restifo NP, Rosenberg SA: Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J Clin Invest. 120: 3953-3968. 3953
20.
go back to reference Fujimori M: Genetically engineered bifidobacterium as a drug delivery system for systemic therapy of metastatic breast cancer patients. [Review] [23 refs]. Breast Cancer. 2006, 13: 27-31. 10.2325/jbcs.13.27.CrossRefPubMed Fujimori M: Genetically engineered bifidobacterium as a drug delivery system for systemic therapy of metastatic breast cancer patients. [Review] [23 refs]. Breast Cancer. 2006, 13: 27-31. 10.2325/jbcs.13.27.CrossRefPubMed
21.
go back to reference Noma H, Funatsu H, Mimura T, Eguchi S, Shimada K: Role of soluble vascular endothelial growth factor receptor-2 in macular oedema with central retinal vein occlusion. Br J Ophthalmol. 2011, 95: 788-792. 10.1136/bjo.2010.192468.CrossRefPubMed Noma H, Funatsu H, Mimura T, Eguchi S, Shimada K: Role of soluble vascular endothelial growth factor receptor-2 in macular oedema with central retinal vein occlusion. Br J Ophthalmol. 2011, 95: 788-792. 10.1136/bjo.2010.192468.CrossRefPubMed
22.
go back to reference Yi C, Huang Y, Guo ZY, Wang SR: Antitumor effect of cytosine deaminase/5-fluorocytosine suicide gene therapy system mediated by Bifidobacterium infantis on melanoma. Acta Pharmacol Sin. 2005, 26: 629-634. 10.1111/j.1745-7254.2005.00094.x.CrossRefPubMed Yi C, Huang Y, Guo ZY, Wang SR: Antitumor effect of cytosine deaminase/5-fluorocytosine suicide gene therapy system mediated by Bifidobacterium infantis on melanoma. Acta Pharmacol Sin. 2005, 26: 629-634. 10.1111/j.1745-7254.2005.00094.x.CrossRefPubMed
23.
go back to reference Mao SH, Ji LL, Liu H, Xu YZ, Huang H, Huang Y, Yi C: [Cloning and prokaryotic expression of Bifidobacterium infantis-mediated sKDR and its effect on proliferation of vascular endothelial cells]. [Chinese]. Sichuan da Xue Xue Bao. Yi Xue Ban/Journal of Sichuan University. Medical Science Edition. 2009, 40: 784-786.PubMed Mao SH, Ji LL, Liu H, Xu YZ, Huang H, Huang Y, Yi C: [Cloning and prokaryotic expression of Bifidobacterium infantis-mediated sKDR and its effect on proliferation of vascular endothelial cells]. [Chinese]. Sichuan da Xue Xue Bao. Yi Xue Ban/Journal of Sichuan University. Medical Science Edition. 2009, 40: 784-786.PubMed
24.
go back to reference Bo Liua, Xiao-Chun Peng, Zheng X-L: MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer. November 2009, 66 (2): 169-175.CrossRef Bo Liua, Xiao-Chun Peng, Zheng X-L: MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer. November 2009, 66 (2): 169-175.CrossRef
25.
go back to reference Cruz-Orive LM: Precision of the fractionator from Cavalieri designs. J Microsc. 2004, 213: 205-211. 10.1111/j.1365-2818.2004.01291.x.CrossRefPubMed Cruz-Orive LM: Precision of the fractionator from Cavalieri designs. J Microsc. 2004, 213: 205-211. 10.1111/j.1365-2818.2004.01291.x.CrossRefPubMed
26.
go back to reference Adler DD, Carson PL, Rubin JM, Q-R D: Doppler ultrasound color flow imaging in the study of breast cancer; Preliminary findings. Ultrasound Med Biol. 1990, 16: 553-559. 10.1016/0301-5629(90)90020-D.CrossRefPubMed Adler DD, Carson PL, Rubin JM, Q-R D: Doppler ultrasound color flow imaging in the study of breast cancer; Preliminary findings. Ultrasound Med Biol. 1990, 16: 553-559. 10.1016/0301-5629(90)90020-D.CrossRefPubMed
27.
go back to reference Liu TG, Huang Y, Cui DD, Huang XB, Mao SH, Ji LL, Song HB, Yi C: Inhibitory effect of ginsenoside Rg3 combined with gemcitabine on angiogenesis and growth of lung cancer in mice. Bmc Cancer. 2009, 9: Liu TG, Huang Y, Cui DD, Huang XB, Mao SH, Ji LL, Song HB, Yi C: Inhibitory effect of ginsenoside Rg3 combined with gemcitabine on angiogenesis and growth of lung cancer in mice. Bmc Cancer. 2009, 9:
28.
go back to reference Wang M, Tang J, Liu S, Yoshida D, Teramoto A: Expression of cathepsin B and microvascular density increases with higher grade of astrocytomas. J Neurooncol. 2005, 71: 3-7. 10.1007/s11060-004-9163-5.CrossRefPubMed Wang M, Tang J, Liu S, Yoshida D, Teramoto A: Expression of cathepsin B and microvascular density increases with higher grade of astrocytomas. J Neurooncol. 2005, 71: 3-7. 10.1007/s11060-004-9163-5.CrossRefPubMed
29.
go back to reference Kong HL, Crystal RG: Gene therapy strategies for tumor antiangiogenesis. [Review] [224 refs]. Journal of the National Cancer Institute. 1998, 90: 273-286. 10.1093/jnci/90.4.273.CrossRefPubMed Kong HL, Crystal RG: Gene therapy strategies for tumor antiangiogenesis. [Review] [224 refs]. Journal of the National Cancer Institute. 1998, 90: 273-286. 10.1093/jnci/90.4.273.CrossRefPubMed
30.
go back to reference Hu B, Kou L, Li C, Zhu LP, Fan YR, Wu ZW, Wang JJ, Xu GX: Bifidobacterium longum as a delivery system of TRAIL and endostatin cooperates with chemotherapeutic drugs to inhibit hypoxic tumor growth. Cancer Gene Therapy. 2009, 16: 655-663. 10.1038/cgt.2009.7.CrossRefPubMed Hu B, Kou L, Li C, Zhu LP, Fan YR, Wu ZW, Wang JJ, Xu GX: Bifidobacterium longum as a delivery system of TRAIL and endostatin cooperates with chemotherapeutic drugs to inhibit hypoxic tumor growth. Cancer Gene Therapy. 2009, 16: 655-663. 10.1038/cgt.2009.7.CrossRefPubMed
31.
go back to reference Kaliberov SA, Kaliberova LN, Buchsbaum DJ: Combined ionizing radiation and sKDR gene delivery for treatment of prostate carcinomas. Gene Therapy. 2005, 12: 407-417. 10.1038/sj.gt.3302432.CrossRefPubMed Kaliberov SA, Kaliberova LN, Buchsbaum DJ: Combined ionizing radiation and sKDR gene delivery for treatment of prostate carcinomas. Gene Therapy. 2005, 12: 407-417. 10.1038/sj.gt.3302432.CrossRefPubMed
32.
go back to reference Yazawa K, Fujimori M, Nakamura T, Sasaki T, Amano J, Kano Y, Taniguchi S: Bifidobacterium longum as a delivery system for gene therapy of chemically induced rat mammary tumors. Breast Cancer Research & Treatment. 2001, 66: 165-170. 10.1023/A:1010644217648.CrossRef Yazawa K, Fujimori M, Nakamura T, Sasaki T, Amano J, Kano Y, Taniguchi S: Bifidobacterium longum as a delivery system for gene therapy of chemically induced rat mammary tumors. Breast Cancer Research & Treatment. 2001, 66: 165-170. 10.1023/A:1010644217648.CrossRef
33.
go back to reference Kimura NT, Taniguchi S, Aoki K, Baba T: Selective localization and growth of Bifidobacterium bifidum in mouse tumors following intravenous administration. Cancer Res. 2061, 40: 2061-2068. Kimura NT, Taniguchi S, Aoki K, Baba T: Selective localization and growth of Bifidobacterium bifidum in mouse tumors following intravenous administration. Cancer Res. 2061, 40: 2061-2068.
34.
go back to reference Yazawa K, Fujimori M, Amano J, Kano Y, Taniguchi S: Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors. Cancer Gene Therapy. 2000, 7: 269-274. 10.1038/sj.cgt.7700122.CrossRefPubMed Yazawa K, Fujimori M, Amano J, Kano Y, Taniguchi S: Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors. Cancer Gene Therapy. 2000, 7: 269-274. 10.1038/sj.cgt.7700122.CrossRefPubMed
35.
go back to reference Yasui H, MO: Enhancement of immune response in Peyer’s patch cells cultured with Bifidobacterium breve. J Dairy Sci. 1991, 74: 1187-1195. 10.3168/jds.S0022-0302(91)78272-6.CrossRefPubMed Yasui H, MO: Enhancement of immune response in Peyer’s patch cells cultured with Bifidobacterium breve. J Dairy Sci. 1991, 74: 1187-1195. 10.3168/jds.S0022-0302(91)78272-6.CrossRefPubMed
36.
go back to reference Yazawa K, Fujimori M, Amano J, Kano Y, Taniguchi S: Bifidobacterium longum as a delivery system for cancer gene therapy: Selective localization and growth in hypoxic tumors. Cancer Gene Ther. 2000, 7: 269-274. 10.1038/sj.cgt.7700122.CrossRefPubMed Yazawa K, Fujimori M, Amano J, Kano Y, Taniguchi S: Bifidobacterium longum as a delivery system for cancer gene therapy: Selective localization and growth in hypoxic tumors. Cancer Gene Ther. 2000, 7: 269-274. 10.1038/sj.cgt.7700122.CrossRefPubMed
37.
go back to reference Xi Li, Geng-Feng Fu, Yan-Rong Fan: Bifidobacterium adolescentis as a delivery system of endostatin for cancer gene therapy: Selective inhibitor of angiogenesis and hypoxic tumor growth. Cancer Gene Ther. 2003, 10: 105-111. 10.1038/sj.cgt.7700530.CrossRef Xi Li, Geng-Feng Fu, Yan-Rong Fan: Bifidobacterium adolescentis as a delivery system of endostatin for cancer gene therapy: Selective inhibitor of angiogenesis and hypoxic tumor growth. Cancer Gene Ther. 2003, 10: 105-111. 10.1038/sj.cgt.7700530.CrossRef
38.
go back to reference Roeckl W, Hecht D, Sztajer H, Waltenberger J, Yayon A, Weich HA: Differential binding characteristics and cellular inhibition by soluble VEGF receptors 1 and 2. Exp Cell Res. 1998, 241: 161-170. 10.1006/excr.1998.4039.CrossRefPubMed Roeckl W, Hecht D, Sztajer H, Waltenberger J, Yayon A, Weich HA: Differential binding characteristics and cellular inhibition by soluble VEGF receptors 1 and 2. Exp Cell Res. 1998, 241: 161-170. 10.1006/excr.1998.4039.CrossRefPubMed
Metadata
Title
Inhibitory effect of Bifidobacterium infantis-mediated sKDR prokaryotic expression system on angiogenesis and growth of Lewis lung cancer in mice
Authors
Zhao-Jun Li
Hong Zhu
Bu-Yun Ma
Fen Zhao
Shu-Hua Mao
Tai-Guo Liu
Jian-Ping He
Li-Cong Deng
Cheng Yi
Ying Huang
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2012
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-12-155

Other articles of this Issue 1/2012

BMC Cancer 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine