Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

Identification of epigenetically regulated genes that predict patient outcome in neuroblastoma

Authors: Helena Carén, Anna Djos, Maria Nethander, Rose-Marie Sjöberg, Per Kogner, Camilla Enström, Staffan Nilsson, Tommy Martinsson

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

Epigenetic mechanisms such as DNA methylation and histone modifications are important regulators of gene expression and are frequently involved in silencing tumor suppressor genes.

Methods

In order to identify genes that are epigenetically regulated in neuroblastoma tumors, we treated four neuroblastoma cell lines with the demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-dC) either separately or in conjunction with the histone deacetylase inhibitor trichostatin A (TSA). Expression was analyzed using whole-genome expression arrays to identify genes activated by the treatment. These data were then combined with data from genome-wide DNA methylation arrays to identify candidate genes silenced in neuroblastoma due to DNA methylation.

Results

We present eight genes (KRT19, PRKCDBP, SCNN1A, POU2F2, TGFBI, COL1A2, DHRS3 and DUSP23) that are methylated in neuroblastoma, most of them not previously reported as such, some of which also distinguish between biological subsets of neuroblastoma tumors. Differential methylation was observed for the genes SCNN1A (p < 0.001), PRKCDBP (p < 0.001) and KRT19 (p < 0.01). Among these, the mRNA expression of KRT19 and PRKCDBP was significantly lower in patients that have died from the disease compared with patients with no evidence of disease (fold change -8.3, p = 0.01 for KRT19 and fold change -2.4, p = 0.04 for PRKCDBP).

Conclusions

In our study, a low methylation frequency of SCNN1A, PRKCDBP and KRT19 is significantly associated with favorable outcome in neuroblastoma. It is likely that analysis of specific DNA methylation will be one of several methods in future patient therapy stratification protocols for treatment of childhood neuroblastomas.
Appendix
Available only for authorised users
Literature
1.
go back to reference Maris JM, Matthay KK: Molecular biology of neuroblastoma. J Clin Oncol. 1999, 17: 2264-2279.PubMed Maris JM, Matthay KK: Molecular biology of neuroblastoma. J Clin Oncol. 1999, 17: 2264-2279.PubMed
2.
go back to reference Carén H, Erichsen J, Olsson L, Enerbäck C, Sjöberg RM, Abrahamsson J, Kogner P, Martinsson T: High-resolution array copy number analyses for detection of deletion, gain, amplification and copy-neutral LOH in primary neuroblastoma tumors: Four cases of homozygous deletions of the CDKN2A gene. BMC Genomics. 2008, 9: 353-CrossRefPubMedPubMedCentral Carén H, Erichsen J, Olsson L, Enerbäck C, Sjöberg RM, Abrahamsson J, Kogner P, Martinsson T: High-resolution array copy number analyses for detection of deletion, gain, amplification and copy-neutral LOH in primary neuroblastoma tumors: Four cases of homozygous deletions of the CDKN2A gene. BMC Genomics. 2008, 9: 353-CrossRefPubMedPubMedCentral
3.
go back to reference Martinsson T, Sjöberg RM, Hedborg F, Kogner P: Homozygous deletion of the neurofibromatosis-1 gene in the tumor of a patient with neuroblastoma. Cancer Genet Cytogenet. 1997, 95: 183-189. 10.1016/S0165-4608(96)00259-2.CrossRefPubMed Martinsson T, Sjöberg RM, Hedborg F, Kogner P: Homozygous deletion of the neurofibromatosis-1 gene in the tumor of a patient with neuroblastoma. Cancer Genet Cytogenet. 1997, 95: 183-189. 10.1016/S0165-4608(96)00259-2.CrossRefPubMed
4.
go back to reference Munoz J, Lazcoz P, Inda MM, Nistal M, Pestana A, Encio IJ, Castresana JS: Homozygous deletion and expression of PTEN and DMBT1 in human primary neuroblastoma and cell lines. Int J Cancer. 2004, 109: 673-679. 10.1002/ijc.20055.CrossRefPubMed Munoz J, Lazcoz P, Inda MM, Nistal M, Pestana A, Encio IJ, Castresana JS: Homozygous deletion and expression of PTEN and DMBT1 in human primary neuroblastoma and cell lines. Int J Cancer. 2004, 109: 673-679. 10.1002/ijc.20055.CrossRefPubMed
5.
go back to reference Origone P, Defferrari R, Mazzocco K, Lo Cunsolo C, De Bernardi B, Tonini GP: Homozygous inactivation of NF1 gene in a patient with familial NF1 and disseminated neuroblastoma. Am J Med Genet A. 2003, 118: 309-313. 10.1002/ajmg.a.10167.CrossRef Origone P, Defferrari R, Mazzocco K, Lo Cunsolo C, De Bernardi B, Tonini GP: Homozygous inactivation of NF1 gene in a patient with familial NF1 and disseminated neuroblastoma. Am J Med Genet A. 2003, 118: 309-313. 10.1002/ajmg.a.10167.CrossRef
6.
go back to reference Thompson PM, Maris JM, Hogarty MD, Seeger RC, Reynolds CP, Brodeur GM, White PS: Homozygous deletion of CDKN2A (p16INK4a/p14ARF) but not within 1p36 or at other tumor suppressor loci in neuroblastoma. Cancer Res. 2001, 61: 679-686.PubMed Thompson PM, Maris JM, Hogarty MD, Seeger RC, Reynolds CP, Brodeur GM, White PS: Homozygous deletion of CDKN2A (p16INK4a/p14ARF) but not within 1p36 or at other tumor suppressor loci in neuroblastoma. Cancer Res. 2001, 61: 679-686.PubMed
7.
go back to reference Astuti D, Agathanggelou A, Honorio S, Dallol A, Martinsson T, Kogner P, Cummins C, Neumann HP, Voutilainen R, Dahia P, et al: RASSF1A promoter region CpG island hypermethylation in phaeochromocytomas and neuroblastoma tumours. Oncogene. 2001, 20: 7573-7577. 10.1038/sj.onc.1204968.CrossRefPubMed Astuti D, Agathanggelou A, Honorio S, Dallol A, Martinsson T, Kogner P, Cummins C, Neumann HP, Voutilainen R, Dahia P, et al: RASSF1A promoter region CpG island hypermethylation in phaeochromocytomas and neuroblastoma tumours. Oncogene. 2001, 20: 7573-7577. 10.1038/sj.onc.1204968.CrossRefPubMed
8.
go back to reference Carén H, Ejeskär K, Fransson S, Hesson L, Latif F, Sjöberg RM, Krona C, Martinsson T: A cluster of genes located in 1p36 are down-regulated in neuroblastomas with poor prognosis, but not due to CpG island methylation. Mol Cancer. 2005, 4: 10-CrossRefPubMedPubMedCentral Carén H, Ejeskär K, Fransson S, Hesson L, Latif F, Sjöberg RM, Krona C, Martinsson T: A cluster of genes located in 1p36 are down-regulated in neuroblastomas with poor prognosis, but not due to CpG island methylation. Mol Cancer. 2005, 4: 10-CrossRefPubMedPubMedCentral
9.
go back to reference Carén H, Fransson S, Ejeskär K, Kogner P, Martinsson T: Genetic and epigenetic changes in the common 1p36 deletion in neuroblastoma tumours. Br J Cancer. 2007, 97: 1416-1424.CrossRefPubMedPubMedCentral Carén H, Fransson S, Ejeskär K, Kogner P, Martinsson T: Genetic and epigenetic changes in the common 1p36 deletion in neuroblastoma tumours. Br J Cancer. 2007, 97: 1416-1424.CrossRefPubMedPubMedCentral
10.
go back to reference Agathanggelou A, Dallol A, Zochbauer-Muller S, Morrissey C, Honorio S, Hesson L, Martinsson T, Fong KM, Kuo MJ, Yuen PW, et al: Epigenetic inactivation of the candidate 3p21.3 suppressor gene BLU in human cancers. Oncogene. 2003, 22: 1580-1588. 10.1038/sj.onc.1206243.CrossRefPubMed Agathanggelou A, Dallol A, Zochbauer-Muller S, Morrissey C, Honorio S, Hesson L, Martinsson T, Fong KM, Kuo MJ, Yuen PW, et al: Epigenetic inactivation of the candidate 3p21.3 suppressor gene BLU in human cancers. Oncogene. 2003, 22: 1580-1588. 10.1038/sj.onc.1206243.CrossRefPubMed
11.
go back to reference Banelli B, Gelvi I, Di Vinci A, Scaruffi P, Casciano I, Allemanni G, Bonassi S, Tonini GP, Romani M: Distinct CpG methylation profiles characterize different clinical groups of neuroblastic tumors. Oncogene. 2005, 24: 5619-5628. 10.1038/sj.onc.1208722.CrossRefPubMed Banelli B, Gelvi I, Di Vinci A, Scaruffi P, Casciano I, Allemanni G, Bonassi S, Tonini GP, Romani M: Distinct CpG methylation profiles characterize different clinical groups of neuroblastic tumors. Oncogene. 2005, 24: 5619-5628. 10.1038/sj.onc.1208722.CrossRefPubMed
12.
go back to reference Gonzalez-Gomez P, Bello MJ, Lomas J, Arjona D, Alonso ME, Aminoso C, Lopez-Marin I, Anselmo NP, Sarasa JL, Gutierrez M, et al: Aberrant methylation of multiple genes in neuroblastic tumours. relationship with MYCN amplification and allelic status at 1p. Eur J Cancer. 2003, 39: 1478-1485. 10.1016/S0959-8049(03)00312-5.CrossRefPubMed Gonzalez-Gomez P, Bello MJ, Lomas J, Arjona D, Alonso ME, Aminoso C, Lopez-Marin I, Anselmo NP, Sarasa JL, Gutierrez M, et al: Aberrant methylation of multiple genes in neuroblastic tumours. relationship with MYCN amplification and allelic status at 1p. Eur J Cancer. 2003, 39: 1478-1485. 10.1016/S0959-8049(03)00312-5.CrossRefPubMed
13.
go back to reference Anderton JA, Lindsey JC, Lusher ME, Gilbertson RJ, Bailey S, Ellison DW, Clifford SC: Global analysis of the medulloblastoma epigenome identifies disease-subgroup-specific inactivation of COL1A2. Neuro Oncol. 2008, 10: 981-994. 10.1215/15228517-2008-048.CrossRefPubMedPubMedCentral Anderton JA, Lindsey JC, Lusher ME, Gilbertson RJ, Bailey S, Ellison DW, Clifford SC: Global analysis of the medulloblastoma epigenome identifies disease-subgroup-specific inactivation of COL1A2. Neuro Oncol. 2008, 10: 981-994. 10.1215/15228517-2008-048.CrossRefPubMedPubMedCentral
14.
go back to reference Becker J, Erdlenbruch B, Noskova I, Schramm A, Aumailley M, Schorderet DF, Schweigerer L: Keratoepithelin suppresses the progression of experimental human neuroblastomas. Cancer Res. 2006, 66: 5314-5321. 10.1158/0008-5472.CAN-05-3049.CrossRefPubMed Becker J, Erdlenbruch B, Noskova I, Schramm A, Aumailley M, Schorderet DF, Schweigerer L: Keratoepithelin suppresses the progression of experimental human neuroblastomas. Cancer Res. 2006, 66: 5314-5321. 10.1158/0008-5472.CAN-05-3049.CrossRefPubMed
15.
go back to reference Becker J, Volland S, Noskova I, Schramm A, Schweigerer LL, Wilting J: Keratoepithelin reverts the suppression of tissue factor pathway inhibitor 2 by MYCN in human neuroblastoma: a mechanism to inhibit invasion. Int J Oncol. 2008, 32: 235-240.PubMed Becker J, Volland S, Noskova I, Schramm A, Schweigerer LL, Wilting J: Keratoepithelin reverts the suppression of tissue factor pathway inhibitor 2 by MYCN in human neuroblastoma: a mechanism to inhibit invasion. Int J Oncol. 2008, 32: 235-240.PubMed
16.
go back to reference Cerignoli F, Guo X, Cardinali B, Rinaldi C, Casaletto J, Frati L, Screpanti I, Gudas LJ, Gulino A, Thiele CJ, Giannini G: retSDR1, a short-chain retinol dehydrogenase/reductase, is retinoic acid-inducible and frequently deleted in human neuroblastoma cell lines. Cancer Res. 2002, 62: 1196-1204.PubMed Cerignoli F, Guo X, Cardinali B, Rinaldi C, Casaletto J, Frati L, Screpanti I, Gudas LJ, Gulino A, Thiele CJ, Giannini G: retSDR1, a short-chain retinol dehydrogenase/reductase, is retinoic acid-inducible and frequently deleted in human neuroblastoma cell lines. Cancer Res. 2002, 62: 1196-1204.PubMed
17.
go back to reference Furuta J, Nobeyama Y, Umebayashi Y, Otsuka F, Kikuchi K, Ushijima T: Silencing of Peroxiredoxin 2 and aberrant methylation of 33 CpG islands in putative promoter regions in human malignant melanomas. Cancer Res. 2006, 66: 6080-6086. 10.1158/0008-5472.CAN-06-0157.CrossRefPubMed Furuta J, Nobeyama Y, Umebayashi Y, Otsuka F, Kikuchi K, Ushijima T: Silencing of Peroxiredoxin 2 and aberrant methylation of 33 CpG islands in putative promoter regions in human malignant melanomas. Cancer Res. 2006, 66: 6080-6086. 10.1158/0008-5472.CAN-06-0157.CrossRefPubMed
18.
go back to reference Haeseleer F, Huang J, Lebioda L, Saari JC, Palczewski K: Molecular characterization of a novel short-chain dehydrogenase/reductase that reduces all-trans-retinal. J Biol Chem. 1998, 273: 21790-21799. 10.1074/jbc.273.34.21790.CrossRefPubMed Haeseleer F, Huang J, Lebioda L, Saari JC, Palczewski K: Molecular characterization of a novel short-chain dehydrogenase/reductase that reduces all-trans-retinal. J Biol Chem. 1998, 273: 21790-21799. 10.1074/jbc.273.34.21790.CrossRefPubMed
19.
go back to reference Kamei N, Hiyama K, Yamaoka H, Kamimatsuse A, Onitake Y, Sueda T, Hiyama E: Evaluation of genes identified by microarray analysis in favorable neuroblastoma. Pediatr Surg Int. 2009, 25: 931-937. 10.1007/s00383-009-2448-1.CrossRefPubMed Kamei N, Hiyama K, Yamaoka H, Kamimatsuse A, Onitake Y, Sueda T, Hiyama E: Evaluation of genes identified by microarray analysis in favorable neuroblastoma. Pediatr Surg Int. 2009, 25: 931-937. 10.1007/s00383-009-2448-1.CrossRefPubMed
20.
go back to reference Lee JH, Byun DS, Lee MG, Ryu BK, Kang MJ, Chae KS, Lee KY, Kim HJ, Park H, Chi SG: Frequent epigenetic inactivation of hSRBC in gastric cancer and its implication in attenuated p53 response to stresses. Int J Cancer. 2008, 122: 1573-1584. 10.1002/ijc.23166.CrossRefPubMed Lee JH, Byun DS, Lee MG, Ryu BK, Kang MJ, Chae KS, Lee KY, Kim HJ, Park H, Chi SG: Frequent epigenetic inactivation of hSRBC in gastric cancer and its implication in attenuated p53 response to stresses. Int J Cancer. 2008, 122: 1573-1584. 10.1002/ijc.23166.CrossRefPubMed
21.
go back to reference Mori K, Enokida H, Kagara I, Kawakami K, Chiyomaru T, Tatarano S, Kawahara K, Nishiyama K, Seki N, Nakagawa M: CpG hypermethylation of collagen type I alpha 2 contributes to proliferation and migration activity of human bladder cancer. Int J Oncol. 2009, 34: 1593-1602. 10.3892/ijo_00000233.CrossRefPubMed Mori K, Enokida H, Kagara I, Kawakami K, Chiyomaru T, Tatarano S, Kawahara K, Nishiyama K, Seki N, Nakagawa M: CpG hypermethylation of collagen type I alpha 2 contributes to proliferation and migration activity of human bladder cancer. Int J Oncol. 2009, 34: 1593-1602. 10.3892/ijo_00000233.CrossRefPubMed
22.
go back to reference Roll JD, Rivenbark AG, Jones WD, Coleman WB: DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines. Mol Cancer. 2008, 7: 15-10.1186/1476-4598-7-15.CrossRefPubMedPubMedCentral Roll JD, Rivenbark AG, Jones WD, Coleman WB: DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines. Mol Cancer. 2008, 7: 15-10.1186/1476-4598-7-15.CrossRefPubMedPubMedCentral
23.
go back to reference Sengupta PK, Smith EM, Kim K, Murnane MJ, Smith BD: DNA hypermethylation near the transcription start site of collagen alpha2(I) gene occurs in both cancer cell lines and primary colorectal cancers. Cancer Res. 2003, 63: 1789-1797.PubMed Sengupta PK, Smith EM, Kim K, Murnane MJ, Smith BD: DNA hypermethylation near the transcription start site of collagen alpha2(I) gene occurs in both cancer cell lines and primary colorectal cancers. Cancer Res. 2003, 63: 1789-1797.PubMed
24.
go back to reference Shao G, Berenguer J, Borczuk AC, Powell CA, Hei TK, Zhao Y: Epigenetic inactivation of Betaig-h3 gene in human cancer cells. Cancer Res. 2006, 66: 4566-4573. 10.1158/0008-5472.CAN-05-2130.CrossRefPubMed Shao G, Berenguer J, Borczuk AC, Powell CA, Hei TK, Zhao Y: Epigenetic inactivation of Betaig-h3 gene in human cancer cells. Cancer Res. 2006, 66: 4566-4573. 10.1158/0008-5472.CAN-05-2130.CrossRefPubMed
25.
go back to reference Tonks NK, Neel BG: Combinatorial control of the specificity of protein tyrosine phosphatases. Curr Opin Cell Biol. 2001, 13: 182-195. 10.1016/S0955-0674(00)00196-4.CrossRefPubMed Tonks NK, Neel BG: Combinatorial control of the specificity of protein tyrosine phosphatases. Curr Opin Cell Biol. 2001, 13: 182-195. 10.1016/S0955-0674(00)00196-4.CrossRefPubMed
26.
go back to reference Wu Q, Li Y, Gu S, Li N, Zheng D, Li D, Zheng Z, Ji C, Xie Y, Mao Y: Molecular cloning and characterization of a novel dual-specificity phosphatase 23 gene from human fetal brain. Int J Biochem Cell Biol. 2004, 36: 1542-1553. 10.1016/j.biocel.2003.12.014.CrossRefPubMed Wu Q, Li Y, Gu S, Li N, Zheng D, Li D, Zheng Z, Ji C, Xie Y, Mao Y: Molecular cloning and characterization of a novel dual-specificity phosphatase 23 gene from human fetal brain. Int J Biochem Cell Biol. 2004, 36: 1542-1553. 10.1016/j.biocel.2003.12.014.CrossRefPubMed
27.
go back to reference Dahlman T, Lammerts E, Bergstrom D, Franzen A, Westermark K, Heldin NE, Rubin K: Collagen type I expression in experimental anaplastic thyroid carcinoma: regulation and relevance for tumorigenicity. Int J Cancer. 2002, 98: 186-192. 10.1002/ijc.10181.CrossRefPubMed Dahlman T, Lammerts E, Bergstrom D, Franzen A, Westermark K, Heldin NE, Rubin K: Collagen type I expression in experimental anaplastic thyroid carcinoma: regulation and relevance for tumorigenicity. Int J Cancer. 2002, 98: 186-192. 10.1002/ijc.10181.CrossRefPubMed
28.
go back to reference Hendrix MJ, Seftor EA, Chu YW, Trevor KT, Seftor RE: Role of intermediate filaments in migration, invasion and metastasis. Cancer Metastasis Rev. 1996, 15: 507-525. 10.1007/BF00054016.CrossRefPubMed Hendrix MJ, Seftor EA, Chu YW, Trevor KT, Seftor RE: Role of intermediate filaments in migration, invasion and metastasis. Cancer Metastasis Rev. 1996, 15: 507-525. 10.1007/BF00054016.CrossRefPubMed
29.
go back to reference Koga Y, Pelizzola M, Cheng E, Krauthammer M, Sznol M, Ariyan S, Narayan D, Molinaro AM, Halaban R, Weissman SM: Genome-wide screen of promoter methylation identifies novel markers in melanoma. Genome Res. 2009, 19: 1462-1470. 10.1101/gr.091447.109.CrossRefPubMedPubMedCentral Koga Y, Pelizzola M, Cheng E, Krauthammer M, Sznol M, Ariyan S, Narayan D, Molinaro AM, Halaban R, Weissman SM: Genome-wide screen of promoter methylation identifies novel markers in melanoma. Genome Res. 2009, 19: 1462-1470. 10.1101/gr.091447.109.CrossRefPubMedPubMedCentral
30.
go back to reference Margetts CD, Morris M, Astuti D, Gentle DC, Cascon A, McRonald FE, Catchpoole D, Robledo M, Neumann HP, Latif F, Maher ER: Evaluation of a functional epigenetic approach to identify promoter region methylation in phaeochromocytoma and neuroblastoma. Endocr Relat Cancer. 2008, 15: 777-786. 10.1677/ERC-08-0072.CrossRefPubMedPubMedCentral Margetts CD, Morris M, Astuti D, Gentle DC, Cascon A, McRonald FE, Catchpoole D, Robledo M, Neumann HP, Latif F, Maher ER: Evaluation of a functional epigenetic approach to identify promoter region methylation in phaeochromocytoma and neuroblastoma. Endocr Relat Cancer. 2008, 15: 777-786. 10.1677/ERC-08-0072.CrossRefPubMedPubMedCentral
31.
go back to reference Martinez R, Martin-Subero JI, Rohde V, Kirsch M, Alaminos M, Fernandez AF, Ropero S, Schackert G, Esteller M: A microarray-based DNA methylation study of glioblastoma multiforme. Epigenetics. 2009, 4: 255-264.CrossRefPubMed Martinez R, Martin-Subero JI, Rohde V, Kirsch M, Alaminos M, Fernandez AF, Ropero S, Schackert G, Esteller M: A microarray-based DNA methylation study of glioblastoma multiforme. Epigenetics. 2009, 4: 255-264.CrossRefPubMed
32.
go back to reference Schramm A, Schulte JH, Klein-Hitpass L, Havers W, Sieverts H, Berwanger B, Christiansen H, Warnat P, Brors B, Eils J, et al: Prediction of clinical outcome and biological characterization of neuroblastoma by expression profiling. Oncogene. 2005, 24: 7902-7912. 10.1038/sj.onc.1208936.CrossRefPubMed Schramm A, Schulte JH, Klein-Hitpass L, Havers W, Sieverts H, Berwanger B, Christiansen H, Warnat P, Brors B, Eils J, et al: Prediction of clinical outcome and biological characterization of neuroblastoma by expression profiling. Oncogene. 2005, 24: 7902-7912. 10.1038/sj.onc.1208936.CrossRefPubMed
33.
go back to reference Stathopoulos EN, Sanidas E, Kafousi M, Mavroudis D, Askoxylakis J, Bozionelou V, Perraki M, Tsiftsis D, Georgoulias V: Detection of CK-19 mRNA-positive cells in the peripheral blood of breast cancer patients with histologically and immunohistochemically negative axillary lymph nodes. Ann Oncol. 2005, 16: 240-246. 10.1093/annonc/mdi043.CrossRefPubMed Stathopoulos EN, Sanidas E, Kafousi M, Mavroudis D, Askoxylakis J, Bozionelou V, Perraki M, Tsiftsis D, Georgoulias V: Detection of CK-19 mRNA-positive cells in the peripheral blood of breast cancer patients with histologically and immunohistochemically negative axillary lymph nodes. Ann Oncol. 2005, 16: 240-246. 10.1093/annonc/mdi043.CrossRefPubMed
34.
go back to reference Theodorou E, Dalembert G, Heffelfinger C, White E, Weissman S, Corcoran L, Snyder M: A high throughput embryonic stem cell screen identifies Oct-2 as a bifunctional regulator of neuronal differentiation. Genes Dev. 2009, 23: 575-588. 10.1101/gad.1772509.CrossRefPubMedPubMedCentral Theodorou E, Dalembert G, Heffelfinger C, White E, Weissman S, Corcoran L, Snyder M: A high throughput embryonic stem cell screen identifies Oct-2 as a bifunctional regulator of neuronal differentiation. Genes Dev. 2009, 23: 575-588. 10.1101/gad.1772509.CrossRefPubMedPubMedCentral
35.
go back to reference Tong SY, Ki KD, Lee JM, Kang MJ, Ha TK, Chung SI, Chi SG, Lee SK: Frequent inactivation of hSRBC in ovarian cancers by promoter CpG island hypermethylation. Acta Obstet Gynecol Scand. 2010, 89: 629-635. 10.3109/00016341003678443.CrossRefPubMed Tong SY, Ki KD, Lee JM, Kang MJ, Ha TK, Chung SI, Chi SG, Lee SK: Frequent inactivation of hSRBC in ovarian cancers by promoter CpG island hypermethylation. Acta Obstet Gynecol Scand. 2010, 89: 629-635. 10.3109/00016341003678443.CrossRefPubMed
36.
go back to reference Xu XL, Wu LC, Du F, Davis A, Peyton M, Tomizawa Y, Maitra A, Tomlinson G, Gazdar AF, Weissman BE, et al: Inactivation of human SRBC, located within the 11p15.5-p15.4 tumor suppressor region, in breast and lung cancers. Cancer Res. 2001, 61: 7943-7949.PubMed Xu XL, Wu LC, Du F, Davis A, Peyton M, Tomizawa Y, Maitra A, Tomlinson G, Gazdar AF, Weissman BE, et al: Inactivation of human SRBC, located within the 11p15.5-p15.4 tumor suppressor region, in breast and lung cancers. Cancer Res. 2001, 61: 7943-7949.PubMed
37.
go back to reference Zochbauer-Muller S, Fong KM, Geradts J, Xu X, Seidl S, End-Pfutzenreuter A, Lang G, Heller G, Zielinski CC, Gazdar AF, Minna JD: Expression of the candidate tumor suppressor gene hSRBC is frequently lost in primary lung cancers with and without DNA methylation. Oncogene. 2005, 24: 6249-6255. 10.1038/sj.onc.1208775.CrossRefPubMed Zochbauer-Muller S, Fong KM, Geradts J, Xu X, Seidl S, End-Pfutzenreuter A, Lang G, Heller G, Zielinski CC, Gazdar AF, Minna JD: Expression of the candidate tumor suppressor gene hSRBC is frequently lost in primary lung cancers with and without DNA methylation. Oncogene. 2005, 24: 6249-6255. 10.1038/sj.onc.1208775.CrossRefPubMed
38.
go back to reference Morris MR, Gentle D, Abdulrahman M, Clarke N, Brown M, Kishida T, Yao M, Teh BT, Latif F, Maher ER: Functional epigenomics approach to identify methylated candidate tumour suppressor genes in renal cell carcinoma. Br J Cancer. 2008, 98: 496-501. 10.1038/sj.bjc.6604180.CrossRefPubMedPubMedCentral Morris MR, Gentle D, Abdulrahman M, Clarke N, Brown M, Kishida T, Yao M, Teh BT, Latif F, Maher ER: Functional epigenomics approach to identify methylated candidate tumour suppressor genes in renal cell carcinoma. Br J Cancer. 2008, 98: 496-501. 10.1038/sj.bjc.6604180.CrossRefPubMedPubMedCentral
39.
go back to reference Crowe DL, Milo GE, Shuler CF: Keratin 19 downregulation by oral squamous cell carcinoma lines increases invasive potential. J Dent Res. 1999, 78: 1256-1263. 10.1177/00220345990780061001.CrossRefPubMed Crowe DL, Milo GE, Shuler CF: Keratin 19 downregulation by oral squamous cell carcinoma lines increases invasive potential. J Dent Res. 1999, 78: 1256-1263. 10.1177/00220345990780061001.CrossRefPubMed
40.
go back to reference Schultze JL, Eggle D: IlluminaGUI: graphical user interface for analyzing gene expression data generated on the Illumina platform. Bioinformatics. 2007, 23: 1431-1433. 10.1093/bioinformatics/btm101.CrossRefPubMed Schultze JL, Eggle D: IlluminaGUI: graphical user interface for analyzing gene expression data generated on the Illumina platform. Bioinformatics. 2007, 23: 1431-1433. 10.1093/bioinformatics/btm101.CrossRefPubMed
41.
go back to reference Bibikova M, Lin Z, Zhou L, Chudin E, Garcia EW, Wu B, Doucet D, Thomas NJ, Wang Y, Vollmer E, et al: High-throughput DNA methylation profiling using universal bead arrays. Genome Res. 2006, 16: 383-393. 10.1101/gr.4410706.CrossRefPubMedPubMedCentral Bibikova M, Lin Z, Zhou L, Chudin E, Garcia EW, Wu B, Doucet D, Thomas NJ, Wang Y, Vollmer E, et al: High-throughput DNA methylation profiling using universal bead arrays. Genome Res. 2006, 16: 383-393. 10.1101/gr.4410706.CrossRefPubMedPubMedCentral
42.
go back to reference Takai D, Jones PA: Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA. 2002, 99: 3740-3745. 10.1073/pnas.052410099.CrossRefPubMedPubMedCentral Takai D, Jones PA: Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA. 2002, 99: 3740-3745. 10.1073/pnas.052410099.CrossRefPubMedPubMedCentral
43.
go back to reference Tusnady GE, Simon I, Varadi A, Aranyi T: BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes. Nucleic Acids Res. 2005, 33: e9-10.1093/nar/gni012.CrossRefPubMedPubMedCentral Tusnady GE, Simon I, Varadi A, Aranyi T: BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes. Nucleic Acids Res. 2005, 33: e9-10.1093/nar/gni012.CrossRefPubMedPubMedCentral
44.
go back to reference Han W, Cauchi S, Herman JG, Spivack SD: DNA methylation mapping by tag-modified bisulfite genomic sequencing. Anal Biochem. 2006, 355: 50-61. 10.1016/j.ab.2006.05.010.CrossRefPubMed Han W, Cauchi S, Herman JG, Spivack SD: DNA methylation mapping by tag-modified bisulfite genomic sequencing. Anal Biochem. 2006, 355: 50-61. 10.1016/j.ab.2006.05.010.CrossRefPubMed
45.
go back to reference Bock C, Reither S, Mikeska T, Paulsen M, Walter J, Lengauer T: BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics. 2005, 21: 4067-4068. 10.1093/bioinformatics/bti652.CrossRefPubMed Bock C, Reither S, Mikeska T, Paulsen M, Walter J, Lengauer T: BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics. 2005, 21: 4067-4068. 10.1093/bioinformatics/bti652.CrossRefPubMed
Metadata
Title
Identification of epigenetically regulated genes that predict patient outcome in neuroblastoma
Authors
Helena Carén
Anna Djos
Maria Nethander
Rose-Marie Sjöberg
Per Kogner
Camilla Enström
Staffan Nilsson
Tommy Martinsson
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-66

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine