Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

Adaptation to statins restricts human tumour growth in Nude mice

Authors: Julie Follet, Lionel Rémy, Vincent Hesry, Brigitte Simon, Danièle Gillet, Pierrick Auvray, Laurent Corcos, Catherine Le Jossic-Corcos

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

Statins have long been used as anti-hypercholesterolemia drugs, but numerous lines of evidence suggest that they may also bear anti-tumour potential. We have recently demonstrated that it was possible to isolate cancer cells adapted to growth in the continuous presence of lovastatin. These cells grew more slowly than the statin-sensitive cells of origin. In the present study, we compared the ability of both statin-sensitive and statin-resistant cells to give rise to tumours in Nude mice.

Methods

HGT-1 human gastric cancer cells and L50 statin-resistant derivatives were injected subcutaneously into Nude mice and tumour growth was recorded. At the end of the experiment, tumours were recovered and marker proteins were analyzed by western blotting, RT-PCR and immunohistochemistry.

Results

L50 tumours grew more slowly, showed a strong decrease in cyclin B1, over-expressed collagen IV, and had reduced laminin 332, VEGF and CD34 levels, which, collectively, may have restricted cell division, cell adhesion and neoangiogenesis.

Conclusions

Taken together, these results showed that statin-resistant cells developed into smaller tumours than statin-sensitive cells. This may be reflective of the cancer restricting activity of statins in humans, as suggested from several retrospective studies with subjects undergoing statin therapy for several years.
Appendix
Available only for authorised users
Literature
1.
go back to reference Istvan ES, Deisenhofer J: Structural mechanism for statin inhibition of HMG-CoA reductase. Science. 2001, 292: 1160-1164. 10.1126/science.1059344.CrossRefPubMed Istvan ES, Deisenhofer J: Structural mechanism for statin inhibition of HMG-CoA reductase. Science. 2001, 292: 1160-1164. 10.1126/science.1059344.CrossRefPubMed
2.
go back to reference Endo A: The discovery and development of HMG-CoA reductase inhibitors. J Lipid Res. 1992, 33: 1569-1582.PubMed Endo A: The discovery and development of HMG-CoA reductase inhibitors. J Lipid Res. 1992, 33: 1569-1582.PubMed
3.
go back to reference Demierre MF, Higgins PD, Gruber SB, Hawk E, Lippman SM: Statins and cancer prevention. Nat Rev Cancer. 2005, 5: 930-942. 10.1038/nrc1751.CrossRefPubMed Demierre MF, Higgins PD, Gruber SB, Hawk E, Lippman SM: Statins and cancer prevention. Nat Rev Cancer. 2005, 5: 930-942. 10.1038/nrc1751.CrossRefPubMed
4.
go back to reference Katz MS: Therapy insight: Potential of statins for cancer chemoprevention and therapy. Nat Clin Pract Oncol. 2005, 2: 82-89.CrossRefPubMed Katz MS: Therapy insight: Potential of statins for cancer chemoprevention and therapy. Nat Clin Pract Oncol. 2005, 2: 82-89.CrossRefPubMed
5.
go back to reference Bjerre LM, LeLorier J: Do statins cause cancer? A meta-analysis of large randomized clinical trials. Am J Med. 2001, 110: 716-723. 10.1016/S0002-9343(01)00705-7.CrossRefPubMed Bjerre LM, LeLorier J: Do statins cause cancer? A meta-analysis of large randomized clinical trials. Am J Med. 2001, 110: 716-723. 10.1016/S0002-9343(01)00705-7.CrossRefPubMed
6.
go back to reference Burkhardt R, Kenny EE, Lowe JK, Birkeland A, Josowitz R, Noel M, Salit J, Maller JB, Pe'er I, Daly MJ, et al: Common SNPs in HMGCR in micronesians and whites associated with LDL-cholesterol levels affect alternative splicing of exon13. Arterioscler Thromb Vasc Biol. 2008, 28: 2078-2084. 10.1161/ATVBAHA.108.172288.CrossRefPubMedPubMedCentral Burkhardt R, Kenny EE, Lowe JK, Birkeland A, Josowitz R, Noel M, Salit J, Maller JB, Pe'er I, Daly MJ, et al: Common SNPs in HMGCR in micronesians and whites associated with LDL-cholesterol levels affect alternative splicing of exon13. Arterioscler Thromb Vasc Biol. 2008, 28: 2078-2084. 10.1161/ATVBAHA.108.172288.CrossRefPubMedPubMedCentral
7.
go back to reference Hindler K, Cleeland CS, Rivera E, Collard CD: The role of statins in cancer therapy. Oncologist. 2006, 11: 306-315. 10.1634/theoncologist.11-3-306.CrossRefPubMed Hindler K, Cleeland CS, Rivera E, Collard CD: The role of statins in cancer therapy. Oncologist. 2006, 11: 306-315. 10.1634/theoncologist.11-3-306.CrossRefPubMed
8.
go back to reference Jakobisiak M, Golab J: Potential antitumor effects of statins (Review). Int J Oncol. 2003, 23: 1055-1069.PubMed Jakobisiak M, Golab J: Potential antitumor effects of statins (Review). Int J Oncol. 2003, 23: 1055-1069.PubMed
9.
go back to reference Fritz G, Kaina B: Rho GTPases: promising cellular targets for novel anticancer drugs. Curr Cancer Drug Targets. 2006, 6: 1-14.PubMed Fritz G, Kaina B: Rho GTPases: promising cellular targets for novel anticancer drugs. Curr Cancer Drug Targets. 2006, 6: 1-14.PubMed
10.
go back to reference Satoh K, Nakai T, Ichihara K: Influence of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on mitochondrial respiration in rat liver during ischemia. Eur J Pharmacol. 1994, 270: 365-369.PubMed Satoh K, Nakai T, Ichihara K: Influence of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on mitochondrial respiration in rat liver during ischemia. Eur J Pharmacol. 1994, 270: 365-369.PubMed
11.
go back to reference Gibot L, Follet J, Metges JP, Auvray P, Simon B, Corcos L, Le Jossic-Corcos C: Human caspase 7 is positively controlled by SREBP-1 and SREBP-2. Biochem J. 2009, 420: 473-483. 10.1042/BJ20082057.CrossRefPubMed Gibot L, Follet J, Metges JP, Auvray P, Simon B, Corcos L, Le Jossic-Corcos C: Human caspase 7 is positively controlled by SREBP-1 and SREBP-2. Biochem J. 2009, 420: 473-483. 10.1042/BJ20082057.CrossRefPubMed
12.
go back to reference Logette E, Le Jossic-Corcos C, Masson D, Solier S, Sequeira-Legrand A, Dugail I, Lemaire-Ewing S, Desoche L, Solary E, Corcos L: Caspase-2, a novel lipid sensor under the control of sterol regulatory element binding protein 2. Mol Cell Biol. 2005, 25: 9621-9631. 10.1128/MCB.25.21.9621-9631.2005.CrossRefPubMedPubMedCentral Logette E, Le Jossic-Corcos C, Masson D, Solier S, Sequeira-Legrand A, Dugail I, Lemaire-Ewing S, Desoche L, Solary E, Corcos L: Caspase-2, a novel lipid sensor under the control of sterol regulatory element binding protein 2. Mol Cell Biol. 2005, 25: 9621-9631. 10.1128/MCB.25.21.9621-9631.2005.CrossRefPubMedPubMedCentral
13.
go back to reference Laboisse CL, Augeron C, Couturier-Turpin MH, Gespach C, Cheret AM, Potet F: Characterization of a newly established human gastric cancer cell line HGT-1 bearing histamine H2-receptors. Cancer Res. 1982, 42: 1541-1548.PubMed Laboisse CL, Augeron C, Couturier-Turpin MH, Gespach C, Cheret AM, Potet F: Characterization of a newly established human gastric cancer cell line HGT-1 bearing histamine H2-receptors. Cancer Res. 1982, 42: 1541-1548.PubMed
14.
go back to reference Bissery MC, Chabot GG: History and new development of screening and evaluation methods of anticancer drugs used in vivo and in vitro. Bull Cancer. 1991, 78: 587-602.PubMed Bissery MC, Chabot GG: History and new development of screening and evaluation methods of anticancer drugs used in vivo and in vitro. Bull Cancer. 1991, 78: 587-602.PubMed
15.
go back to reference Nejjari M, Anderson W, Pourreyron C, Jacquier MF, Scoazec JY, Remy L: The role of fibroblasts in the modulation of integrin-dependent interactions between the gastric cell line HGT-1 and fibronectin. Int J Cancer. 2004, 112: 560-569. 10.1002/ijc.20444.CrossRefPubMed Nejjari M, Anderson W, Pourreyron C, Jacquier MF, Scoazec JY, Remy L: The role of fibroblasts in the modulation of integrin-dependent interactions between the gastric cell line HGT-1 and fibronectin. Int J Cancer. 2004, 112: 560-569. 10.1002/ijc.20444.CrossRefPubMed
16.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.CrossRefPubMed Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.CrossRefPubMed
17.
go back to reference Hotz MA, Bosq J, Zbaeren P, Reed J, Schwab G, Krajewski S, Brousset P, Borner MM: Spontaneous apoptosis and the expression of p53 and Bcl-2 family proteins in locally advanced head and neck cancer. Arch Otolaryngol Head Neck Surg. 1999, 125: 417-422.CrossRefPubMed Hotz MA, Bosq J, Zbaeren P, Reed J, Schwab G, Krajewski S, Brousset P, Borner MM: Spontaneous apoptosis and the expression of p53 and Bcl-2 family proteins in locally advanced head and neck cancer. Arch Otolaryngol Head Neck Surg. 1999, 125: 417-422.CrossRefPubMed
18.
go back to reference Tsamandas AC, Kardamakis D, Tsiamalos P, Liava A, Tzelepi V, Vassiliou V, Petsas T, Vagenas K, Zolota V, Scopa CD: The potential role of Bcl-2 expression, apoptosis and cell proliferation (Ki-67 expression) in cases of gastric carcinoma and correlation with classic prognostic factors and patient outcome. Anticancer Res. 2009, 29: 703-709.PubMed Tsamandas AC, Kardamakis D, Tsiamalos P, Liava A, Tzelepi V, Vassiliou V, Petsas T, Vagenas K, Zolota V, Scopa CD: The potential role of Bcl-2 expression, apoptosis and cell proliferation (Ki-67 expression) in cases of gastric carcinoma and correlation with classic prognostic factors and patient outcome. Anticancer Res. 2009, 29: 703-709.PubMed
19.
go back to reference Warr MR, Shore GC: Unique biology of Mcl-1: therapeutic opportunities in cancer. Curr Mol Med. 2008, 8: 138-147. 10.2174/156652408783769580.CrossRefPubMed Warr MR, Shore GC: Unique biology of Mcl-1: therapeutic opportunities in cancer. Curr Mol Med. 2008, 8: 138-147. 10.2174/156652408783769580.CrossRefPubMed
20.
go back to reference Megha T, Lazzi S, Ferrari F, Vatti R, Howard CM, Cevenini G, Leoncini L, Luzi P, Giordano A, Tosi P: Expression of the G2-M checkpoint regulators cyclin B1 and P34CDC2 in breast cancer: a correlation with cellular kinetics. Anticancer Res. 1999, 19: 163-169.PubMed Megha T, Lazzi S, Ferrari F, Vatti R, Howard CM, Cevenini G, Leoncini L, Luzi P, Giordano A, Tosi P: Expression of the G2-M checkpoint regulators cyclin B1 and P34CDC2 in breast cancer: a correlation with cellular kinetics. Anticancer Res. 1999, 19: 163-169.PubMed
21.
go back to reference Kawamoto H, Koizumi H, Uchikoshi T: Expression of the G2-M checkpoint regulators cyclin B1 and cdc2 in nonmalignant and malignant human breast lesions: immunocytochemical and quantitative image analyses. Am J Pathol. 1997, 150: 15-23.PubMedPubMedCentral Kawamoto H, Koizumi H, Uchikoshi T: Expression of the G2-M checkpoint regulators cyclin B1 and cdc2 in nonmalignant and malignant human breast lesions: immunocytochemical and quantitative image analyses. Am J Pathol. 1997, 150: 15-23.PubMedPubMedCentral
22.
go back to reference Kebebew E, Peng M, Reiff E, Duh QY, Clark OH, McMillan A: Diagnostic and prognostic value of cell-cycle regulatory genes in malignant thyroid neoplasms. World J Surg. 2006, 30: 767-774. 10.1007/s00268-005-0308-2.CrossRefPubMed Kebebew E, Peng M, Reiff E, Duh QY, Clark OH, McMillan A: Diagnostic and prognostic value of cell-cycle regulatory genes in malignant thyroid neoplasms. World J Surg. 2006, 30: 767-774. 10.1007/s00268-005-0308-2.CrossRefPubMed
23.
go back to reference Fukudome Y, Yanagihara K, Takeichi M, Ito F, Shibamoto S: Characterization of a mutant E-cadherin protein encoded by a mutant gene frequently seen in diffuse-type human gastric carcinoma. Int J Cancer. 2000, 88: 579-583. 10.1002/1097-0215(20001115)88:4<579::AID-IJC10>3.0.CO;2-U.CrossRefPubMed Fukudome Y, Yanagihara K, Takeichi M, Ito F, Shibamoto S: Characterization of a mutant E-cadherin protein encoded by a mutant gene frequently seen in diffuse-type human gastric carcinoma. Int J Cancer. 2000, 88: 579-583. 10.1002/1097-0215(20001115)88:4<579::AID-IJC10>3.0.CO;2-U.CrossRefPubMed
24.
go back to reference Shah MA, Kelsen DP: Gastric cancer: a primer on the epidemiology and biology of the disease and an overview of the medical management of advanced disease. J Natl Compr Canc Netw. 2010, 8: 437-447.PubMed Shah MA, Kelsen DP: Gastric cancer: a primer on the epidemiology and biology of the disease and an overview of the medical management of advanced disease. J Natl Compr Canc Netw. 2010, 8: 437-447.PubMed
25.
go back to reference Klawitter J, Shokati T, Moll V, Christians U: Effects of lovastatin on breast cancer cells: a proteo-metabonomic study. Breast Cancer Res. 2010, 12: R16-10.1186/bcr2485.CrossRefPubMedPubMedCentral Klawitter J, Shokati T, Moll V, Christians U: Effects of lovastatin on breast cancer cells: a proteo-metabonomic study. Breast Cancer Res. 2010, 12: R16-10.1186/bcr2485.CrossRefPubMedPubMedCentral
Metadata
Title
Adaptation to statins restricts human tumour growth in Nude mice
Authors
Julie Follet
Lionel Rémy
Vincent Hesry
Brigitte Simon
Danièle Gillet
Pierrick Auvray
Laurent Corcos
Catherine Le Jossic-Corcos
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-491

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine