Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

A phase I trial of PR-104, a pre-prodrug of the bioreductive prodrug PR-104A, given weekly to solid tumour patients

Authors: Mark J McKeage, Yongchuan Gu, William R Wilson, Andrew Hill, Karen Amies, Teresa J Melink, Michael B Jameson

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

The phosphate ester PR-104 is rapidly converted in vivo to the alcohol PR-104A, a nitrogen mustard prodrug that is metabolised to hydroxylamine (PR-104H) and amine (PR-104M) DNA crosslinking agents by one-electron reductases in hypoxic cells and by aldo-keto reductase 1C3 independently of oxygen. In a previous phase I study using a q 3 week schedule of PR-104, the maximum tolerated dose (MTD) was 1100 mg/m2 and fatigue, neutropenic fever and infection were dose-limiting. The primary objective of the current study was to determine the dose-limiting toxicity (DLT) and MTD of weekly PR-104.

Methods

Patients with advanced solid tumours received PR-104 as a 1-hour intravenous infusion on days 1, 8 and 15 every 28 days with assessment of pharmacokinetics on cycle 1 day 1. Twenty-six patients (pts) were enrolled (16 male/10 female; median age 58 yrs, range 30 to 70 yrs) who had received a median of two prior chemotherapy regimens (range, 0 to 3) for melanoma (8 pts), colorectal or anal cancer (3 pts), NSCLC (3 pts), sarcoma (3 pts), glioblastoma (2 pts), salivary gland tumours (2 pts) or other solid tumours (5 pts). PR-104 was administered at 135 mg/m2 (3 pts), 270 mg/m2 (6 pts), 540 mg/m2 (6 pts), 675 mg/m2 (7 pts) and 900 mg/m2 (4 pts) for a median of two treatment cycles (range, 1 to 7 cycles) and five infusions (range, 1 to 18) per patient.

Results

Dose-limiting toxicities (DLTs) during cycle one included grade four thrombocytopenia at 540 mg/m2 (1 of 6 pts) and grade four thrombocytopenia and neutropenia at 900 mg/m2 (2 of 4 pts). At an intermediate dose of 675 mg/m2, there were no DLTs among a total of seven patients given 12 treatment cycles but all experienced moderate to severe (grade 2 to 4) haematological toxicity. Thrombocytopenia was delayed in its onset and nadir, and its recovery was protracted and incomplete in many patients. There were no complete or partial tumour responses. PR-104-induced thrombocytopenia and neutropenia correlated with plasma AUC of PR-104, PR-104A and an oxidative semi-mustard metabolite (PR-104S1), but no more strongly than with PR-104 dose-level. There was no significant correlation between plasma AUC for the reduced metabolites and myelotoxicity.

Conclusions

Thrombocytopenia, and to a lesser extent neutropenia, was the DLT of weekly PR-104. The MTD was 675 mg/m2/week. PR-104 given weekly may be a suitable protocol for further clinical evaluation as a short course of treatment with fractionated radiotherapy or haematopoietic stem cell support, as its duration of dosing is restricted by delayed-onset and protracted thrombocytopenia.
Appendix
Available only for authorised users
Literature
1.
go back to reference Patterson AV, Ferry DM, Edmunds SJ, Gu Y, Singleton RS, Patel K, Pullen SM, Hicks KO, Syddall SP, Atwell GJ, et al: Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. Clin Cancer Res. 2007, 13 (13): 3922-3932. 10.1158/1078-0432.CCR-07-0478.CrossRefPubMed Patterson AV, Ferry DM, Edmunds SJ, Gu Y, Singleton RS, Patel K, Pullen SM, Hicks KO, Syddall SP, Atwell GJ, et al: Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. Clin Cancer Res. 2007, 13 (13): 3922-3932. 10.1158/1078-0432.CCR-07-0478.CrossRefPubMed
2.
go back to reference Singleton RS, Guise CP, Ferry DM, Pullen SM, Dorie MJ, Brown JM, Patterson AV, Wilson WR: DNA Cross-Links in Human Tumor Cells Exposed to the Prodrug PR-104A: Relationships to Hypoxia, Bioreductive Metabolism, and Cytotoxicity. Cancer Res. 2009, 69 (9): 3884-3891. 10.1158/0008-5472.CAN-08-4023.CrossRefPubMed Singleton RS, Guise CP, Ferry DM, Pullen SM, Dorie MJ, Brown JM, Patterson AV, Wilson WR: DNA Cross-Links in Human Tumor Cells Exposed to the Prodrug PR-104A: Relationships to Hypoxia, Bioreductive Metabolism, and Cytotoxicity. Cancer Res. 2009, 69 (9): 3884-3891. 10.1158/0008-5472.CAN-08-4023.CrossRefPubMed
3.
go back to reference Guise CP, Abbattista MR, Singleton RS, Holford SD, Connolly J, Dachs GU, Fox SB, Pollock R, Harvey J, Guilford P, et al: The Bioreductive Prodrug PR-104A is Activated under Aerobic Conditions by Human Aldo-Keto Reductase 1C3. Cancer Res. 2010, 70 (4): 1573-1584. 10.1158/0008-5472.CAN-09-3237.CrossRefPubMed Guise CP, Abbattista MR, Singleton RS, Holford SD, Connolly J, Dachs GU, Fox SB, Pollock R, Harvey J, Guilford P, et al: The Bioreductive Prodrug PR-104A is Activated under Aerobic Conditions by Human Aldo-Keto Reductase 1C3. Cancer Res. 2010, 70 (4): 1573-1584. 10.1158/0008-5472.CAN-09-3237.CrossRefPubMed
4.
go back to reference Guise CP, Wang AT, Theil A, Bridewell DJ, Wilson WR, Patterson AV: Identification of human reductases that activate the dinitrobenzamide mustard prodrug PR-104A: A role for NADPH: cytochrome P450 oxidoreductase under hypoxia. Biochem Pharmacol. 2007, 74 (6): 810-820. 10.1016/j.bcp.2007.06.014.CrossRefPubMed Guise CP, Wang AT, Theil A, Bridewell DJ, Wilson WR, Patterson AV: Identification of human reductases that activate the dinitrobenzamide mustard prodrug PR-104A: A role for NADPH: cytochrome P450 oxidoreductase under hypoxia. Biochem Pharmacol. 2007, 74 (6): 810-820. 10.1016/j.bcp.2007.06.014.CrossRefPubMed
5.
go back to reference Gu Y, Patterson AV, Atwell GJ, Chernikova SB, Brown JM, Thompson LH, Wilson WR: Roles of DNA repair and reductase activity in the cytotoxicity of the hypoxia-activated dinitrobenzamide mustard PR-104A. Mol Cancer Ther. 2009, 8 (6): 1714-1723. 10.1158/1535-7163.MCT-08-1209.CrossRefPubMed Gu Y, Patterson AV, Atwell GJ, Chernikova SB, Brown JM, Thompson LH, Wilson WR: Roles of DNA repair and reductase activity in the cytotoxicity of the hypoxia-activated dinitrobenzamide mustard PR-104A. Mol Cancer Ther. 2009, 8 (6): 1714-1723. 10.1158/1535-7163.MCT-08-1209.CrossRefPubMed
6.
go back to reference Brown JM, Giaccia AJ: The unique physiology of solid tumors: Opportunities (and problems) for cancer therapy. Cancer Res. 1998, 58 (7): 1408-1416.PubMed Brown JM, Giaccia AJ: The unique physiology of solid tumors: Opportunities (and problems) for cancer therapy. Cancer Res. 1998, 58 (7): 1408-1416.PubMed
7.
go back to reference Wouters BG, Weppler SA, Koritzinsky M, Landuyt W, Nuyts S, Theys J, Chiu RK, Lambin P: Hypoxia as a target for combined modality treatments. Eur J Cancer. 2002, 38 (2): 240-257. 10.1016/S0959-8049(01)00361-6.CrossRefPubMed Wouters BG, Weppler SA, Koritzinsky M, Landuyt W, Nuyts S, Theys J, Chiu RK, Lambin P: Hypoxia as a target for combined modality treatments. Eur J Cancer. 2002, 38 (2): 240-257. 10.1016/S0959-8049(01)00361-6.CrossRefPubMed
8.
go back to reference Brown JM, Wilson WR: Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004, 4 (6): 437-447. 10.1038/nrc1367.CrossRefPubMed Brown JM, Wilson WR: Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004, 4 (6): 437-447. 10.1038/nrc1367.CrossRefPubMed
9.
go back to reference Ito K, Utsunomiya H, Suzuki T, Saitou S, Akahira JI, Okamura K, Yaegashi N, Sasano H: 17 beta-hydroxy steroid dehydrogenases in human endometrium and its disorders. Mol Cell Endocrinol. 2006, 248 (1-2): 136-140. 10.1016/j.mce.2005.11.038.CrossRefPubMed Ito K, Utsunomiya H, Suzuki T, Saitou S, Akahira JI, Okamura K, Yaegashi N, Sasano H: 17 beta-hydroxy steroid dehydrogenases in human endometrium and its disorders. Mol Cell Endocrinol. 2006, 248 (1-2): 136-140. 10.1016/j.mce.2005.11.038.CrossRefPubMed
10.
go back to reference Wako K, Kawasaki T, Yamana K, Suzuki K, Jiang S, Umezu H, Nishiyama T, Takahashi K, Hamakubo T, Kodama T, et al: Expression of androgen receptor through androgen-converting enzymes is associated with biological aggressiveness in prostate cancer. J Clin Pathol. 2008, 61 (4): 448-454. 10.1136/jcp.2007.050906.CrossRefPubMed Wako K, Kawasaki T, Yamana K, Suzuki K, Jiang S, Umezu H, Nishiyama T, Takahashi K, Hamakubo T, Kodama T, et al: Expression of androgen receptor through androgen-converting enzymes is associated with biological aggressiveness in prostate cancer. J Clin Pathol. 2008, 61 (4): 448-454. 10.1136/jcp.2007.050906.CrossRefPubMed
11.
go back to reference Sakurai M, Oishi K, Watanabe K: Localization of cyclooxygenases-1 and-2, and prostaglandin F synthase in human kidney and renal cell carcinoma. Biochem Biophys Res Commun. 2005, 338 (1): 82-86. 10.1016/j.bbrc.2005.08.194.CrossRefPubMed Sakurai M, Oishi K, Watanabe K: Localization of cyclooxygenases-1 and-2, and prostaglandin F synthase in human kidney and renal cell carcinoma. Biochem Biophys Res Commun. 2005, 338 (1): 82-86. 10.1016/j.bbrc.2005.08.194.CrossRefPubMed
12.
go back to reference Hicks KO, Myint H, Patterson AV, Pruijn FB, Siim BG, Patel K, Wilson WR: Oxygen dependence and extravascular transport of hypoxia-activated prodrugs: Comparison of the dinitrobenzamide mustard PR-104A and tirapazamine. Int J Radiat Oncol Biol Phys. 2007, 69 (2): 560-571. 10.1016/j.ijrobp.2007.05.049.CrossRefPubMed Hicks KO, Myint H, Patterson AV, Pruijn FB, Siim BG, Patel K, Wilson WR: Oxygen dependence and extravascular transport of hypoxia-activated prodrugs: Comparison of the dinitrobenzamide mustard PR-104A and tirapazamine. Int J Radiat Oncol Biol Phys. 2007, 69 (2): 560-571. 10.1016/j.ijrobp.2007.05.049.CrossRefPubMed
13.
go back to reference Patel K, Choy SSF, Hicks KO, Melink TJ, Holford NH, Wilson WR: A combined pharmacokinetic model for the hypoxia-targeted prodrug PR-104A in humans, dogs, rats and mice predicts species differences in clearance and toxicity. Cancer Chemother Pharmacol. 2011, 67 (5): 1145-1155. 10.1007/s00280-010-1412-z.CrossRefPubMed Patel K, Choy SSF, Hicks KO, Melink TJ, Holford NH, Wilson WR: A combined pharmacokinetic model for the hypoxia-targeted prodrug PR-104A in humans, dogs, rats and mice predicts species differences in clearance and toxicity. Cancer Chemother Pharmacol. 2011, 67 (5): 1145-1155. 10.1007/s00280-010-1412-z.CrossRefPubMed
14.
go back to reference Jameson MB, Rischin D, Pegram M, Gutheil J, Patterson AV, Denny WA, Wilson WR: A phase I trial of PR-104, a nitrogen mustard prodrug activated by both hypoxia and aldo-keto reductase 1C3, in patients with solid tumors. Cancer Chemother Pharmacol. 2010, 65 (4): 791-801. 10.1007/s00280-009-1188-1.CrossRefPubMed Jameson MB, Rischin D, Pegram M, Gutheil J, Patterson AV, Denny WA, Wilson WR: A phase I trial of PR-104, a nitrogen mustard prodrug activated by both hypoxia and aldo-keto reductase 1C3, in patients with solid tumors. Cancer Chemother Pharmacol. 2010, 65 (4): 791-801. 10.1007/s00280-009-1188-1.CrossRefPubMed
15.
go back to reference Gu Y, Atwell GJ, Wilson WR: Metabolism and excretion of the novel bioreductive prodrug PR-104 in mice, rats, dogs, and humans. Drug Metab Dispos. 2010, 38 (3): 498-508. 10.1124/dmd.109.030973.CrossRefPubMed Gu Y, Atwell GJ, Wilson WR: Metabolism and excretion of the novel bioreductive prodrug PR-104 in mice, rats, dogs, and humans. Drug Metab Dispos. 2010, 38 (3): 498-508. 10.1124/dmd.109.030973.CrossRefPubMed
16.
go back to reference Gu Y, Tingle MD, Wilson WR: Glucuronidation of Anticancer Prodrug PR-104A: Species Differences, Identification of Human UDP-Glucuronosyltransferases, and Implications for Therapy. J Pharmacol Exp Ther. 2011, 337 (3): 692-702. 10.1124/jpet.111.180703.CrossRefPubMed Gu Y, Tingle MD, Wilson WR: Glucuronidation of Anticancer Prodrug PR-104A: Species Differences, Identification of Human UDP-Glucuronosyltransferases, and Implications for Therapy. J Pharmacol Exp Ther. 2011, 337 (3): 692-702. 10.1124/jpet.111.180703.CrossRefPubMed
17.
go back to reference Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, et al: New guidelines to evaluate the response to treatment in solid Tumors. J Natl Cancer Inst. 2000, 92 (3): 205-216. 10.1093/jnci/92.3.205.CrossRefPubMed Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, et al: New guidelines to evaluate the response to treatment in solid Tumors. J Natl Cancer Inst. 2000, 92 (3): 205-216. 10.1093/jnci/92.3.205.CrossRefPubMed
18.
go back to reference Gu Y, Wilson WR: Rapid and sensitive ultra-high-pressure liquid chromatography-tandem mass spectrometry analysis of the novel anticancer agent PR-104 and its major metabolites in human plasma: Application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2009, 877 (27): 3181-3186. 10.1016/j.jchromb.2009.08.009.CrossRefPubMed Gu Y, Wilson WR: Rapid and sensitive ultra-high-pressure liquid chromatography-tandem mass spectrometry analysis of the novel anticancer agent PR-104 and its major metabolites in human plasma: Application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2009, 877 (27): 3181-3186. 10.1016/j.jchromb.2009.08.009.CrossRefPubMed
19.
go back to reference Atwell GJ, Denny WA: Synthesis of H-3- and H-2(4)-labelled versions of the hypoxia-activated pre-prodrug 2-((2-bromoethyl)-2,4-dinitro-6-(((2-(phosphonooxy)ethyl)amino)carbonyl) anilino)ethyl methanesulfonate (PR-104). J Label Compd Radiopharm. 2007, 50 (1-2): 7-12.CrossRef Atwell GJ, Denny WA: Synthesis of H-3- and H-2(4)-labelled versions of the hypoxia-activated pre-prodrug 2-((2-bromoethyl)-2,4-dinitro-6-(((2-(phosphonooxy)ethyl)amino)carbonyl) anilino)ethyl methanesulfonate (PR-104). J Label Compd Radiopharm. 2007, 50 (1-2): 7-12.CrossRef
20.
go back to reference Gu Y, Guise CP, Patel K, Abbattista MR, Lie J, Sun X, Atwell GJ, Boyd M, Patterson AV, Wilson WR: Reductive metabolism of the dinitrobenzamide mustard anticancer prodrug PR-104 in mice. Cancer Chemother Pharmacol. 2011, 67 (3): 543-555. 10.1007/s00280-010-1354-5.CrossRefPubMed Gu Y, Guise CP, Patel K, Abbattista MR, Lie J, Sun X, Atwell GJ, Boyd M, Patterson AV, Wilson WR: Reductive metabolism of the dinitrobenzamide mustard anticancer prodrug PR-104 in mice. Cancer Chemother Pharmacol. 2011, 67 (3): 543-555. 10.1007/s00280-010-1354-5.CrossRefPubMed
21.
go back to reference Bowalgaha K, Elliot DJ, Mackenzie PI, Knights KM, Swedmark S, Miners JO: S-Naproxen and desmethylnaproxen glucuronidation by human liver microsomes and recombinant human UDP-glucuronosyltransferases (UGT): role of UGT2B7 in the elimination of naproxen. Br J Clin Pharmacol. 2005, 60 (4): 423-433. 10.1111/j.1365-2125.2005.02446.x.CrossRefPubMedPubMedCentral Bowalgaha K, Elliot DJ, Mackenzie PI, Knights KM, Swedmark S, Miners JO: S-Naproxen and desmethylnaproxen glucuronidation by human liver microsomes and recombinant human UDP-glucuronosyltransferases (UGT): role of UGT2B7 in the elimination of naproxen. Br J Clin Pharmacol. 2005, 60 (4): 423-433. 10.1111/j.1365-2125.2005.02446.x.CrossRefPubMedPubMedCentral
22.
go back to reference Birtwistle J, Hayden RE, Khanim FL, Green RM, Pearce C, Davies NJ, Wake N, Schrewe H, Ride JP, Chipman JK, et al: The aldo-keto reductase AKR1C3 contributes to 7,12-dimethylbenz(a)anthracene-3,4-dihydrodiol mediated oxidative DNA damage in myeloid cells: implications for leukemogenesis. Mutat Res. 2009, 662 (1-2): 67-74.CrossRefPubMed Birtwistle J, Hayden RE, Khanim FL, Green RM, Pearce C, Davies NJ, Wake N, Schrewe H, Ride JP, Chipman JK, et al: The aldo-keto reductase AKR1C3 contributes to 7,12-dimethylbenz(a)anthracene-3,4-dihydrodiol mediated oxidative DNA damage in myeloid cells: implications for leukemogenesis. Mutat Res. 2009, 662 (1-2): 67-74.CrossRefPubMed
23.
go back to reference Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD: Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA. 2007, 104 (13): 5431-5436. 10.1073/pnas.0701152104.CrossRefPubMedPubMedCentral Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD: Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA. 2007, 104 (13): 5431-5436. 10.1073/pnas.0701152104.CrossRefPubMedPubMedCentral
24.
go back to reference Benito J, Shi Y, Szymanska B, Carol H, Boehm I, Lu H, Konoplev S, Fang W, Zweidler-McKay PA, Campana D, et al: Pronounced Hypoxia in Models of Murine and Human Leukemia: High Efficacy of Hypoxia-Activated Prodrug PR-104. PLoS One. 2011, 6 (8): e23108-10.1371/journal.pone.0023108.CrossRefPubMedPubMedCentral Benito J, Shi Y, Szymanska B, Carol H, Boehm I, Lu H, Konoplev S, Fang W, Zweidler-McKay PA, Campana D, et al: Pronounced Hypoxia in Models of Murine and Human Leukemia: High Efficacy of Hypoxia-Activated Prodrug PR-104. PLoS One. 2011, 6 (8): e23108-10.1371/journal.pone.0023108.CrossRefPubMedPubMedCentral
Metadata
Title
A phase I trial of PR-104, a pre-prodrug of the bioreductive prodrug PR-104A, given weekly to solid tumour patients
Authors
Mark J McKeage
Yongchuan Gu
William R Wilson
Andrew Hill
Karen Amies
Teresa J Melink
Michael B Jameson
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-432

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine