Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors

Authors: Sudhakar Chintharlapalli, Sabitha Papineni, Ping Lei, Satya Pathi, Stephen Safe

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

Betulinic acid (BA) inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells.

Methods

The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth in vivo were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a) and ZBTB10 mRNA expression.

Results

BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS), ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10.

Conclusions

These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Siegel R, Xu J, Ward E: Cancer Statistics, 2010. CA Cancer J Clin. 2010, 60: 277-300. 10.3322/caac.20073.CrossRefPubMed Jemal A, Siegel R, Xu J, Ward E: Cancer Statistics, 2010. CA Cancer J Clin. 2010, 60: 277-300. 10.3322/caac.20073.CrossRefPubMed
2.
go back to reference Fearnhead NS, Wilding JL, Bodmer WF: Genetics of colorectal cancer: hereditary aspects and overview of colorectal tumorigenesis. Br Med Bull. 2002, 64: 27-43. 10.1093/bmb/64.1.27.CrossRefPubMed Fearnhead NS, Wilding JL, Bodmer WF: Genetics of colorectal cancer: hereditary aspects and overview of colorectal tumorigenesis. Br Med Bull. 2002, 64: 27-43. 10.1093/bmb/64.1.27.CrossRefPubMed
3.
go back to reference Debinski HS, Love S, Spigelman AD, Phillips RK: Colorectal polyp counts and cancer risk in familial adenomatous polyposis. Gastroenterology. 1996, 110: 1028-1030. 10.1053/gast.1996.v110.pm8612989.CrossRefPubMed Debinski HS, Love S, Spigelman AD, Phillips RK: Colorectal polyp counts and cancer risk in familial adenomatous polyposis. Gastroenterology. 1996, 110: 1028-1030. 10.1053/gast.1996.v110.pm8612989.CrossRefPubMed
4.
go back to reference Spirio L, Olschwang S, Groden J, Robertson M, Samowitz W, Joslyn G, Gelbert L, Thliveris A, Carlson M, Otterud B: Alleles of the APC gene: an attenuated form of familial polyposis. Cell. 1993, 75: 951-957. 10.1016/0092-8674(93)90538-2.CrossRefPubMed Spirio L, Olschwang S, Groden J, Robertson M, Samowitz W, Joslyn G, Gelbert L, Thliveris A, Carlson M, Otterud B: Alleles of the APC gene: an attenuated form of familial polyposis. Cell. 1993, 75: 951-957. 10.1016/0092-8674(93)90538-2.CrossRefPubMed
5.
go back to reference Tomlinson IP, Hampson R, Karran P, Bodmer WF: DNA mismatch repair in lymphoblastoid cells from hereditary non-polyposis colorectal cancer (HNPCC) patients is normal under conditions of rapid cell division and increased mutational load. Mutat Res. 1997, 383: 177-182.CrossRefPubMed Tomlinson IP, Hampson R, Karran P, Bodmer WF: DNA mismatch repair in lymphoblastoid cells from hereditary non-polyposis colorectal cancer (HNPCC) patients is normal under conditions of rapid cell division and increased mutational load. Mutat Res. 1997, 383: 177-182.CrossRefPubMed
6.
go back to reference Borresen AL, Lothe RA, Meling GI, Lystad S, Morrison P, Lipford J, Kane MF, Rognum TO, Kolodner RD: Somatic mutations in the hMSH2 gene in microsatellite unstable colorectal carcinomas. Human Mol Genet. 1995, 4: 2065-2072. 10.1093/hmg/4.11.2065.CrossRef Borresen AL, Lothe RA, Meling GI, Lystad S, Morrison P, Lipford J, Kane MF, Rognum TO, Kolodner RD: Somatic mutations in the hMSH2 gene in microsatellite unstable colorectal carcinomas. Human Mol Genet. 1995, 4: 2065-2072. 10.1093/hmg/4.11.2065.CrossRef
7.
go back to reference Liu B, Nicolaides NC, Markowitz S, Willson JK, Parsons RE, Jen J, Papadopolous N, Peltomaki P, de la Chapelle A, Hamilton SR: Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nat Genet. 1995, 9: 48-55. 10.1038/ng0195-48.CrossRefPubMed Liu B, Nicolaides NC, Markowitz S, Willson JK, Parsons RE, Jen J, Papadopolous N, Peltomaki P, de la Chapelle A, Hamilton SR: Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nat Genet. 1995, 9: 48-55. 10.1038/ng0195-48.CrossRefPubMed
8.
go back to reference Aarnio M, Sankila R, Pukkala E, Salovaara R, Aaltonen LA, de la Chapelle A, Peltomaki P, Mecklin JP, Jarvinen HJ: Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer. 1999, 81: 214-218. 10.1002/(SICI)1097-0215(19990412)81:2<214::AID-IJC8>3.0.CO;2-L.CrossRefPubMed Aarnio M, Sankila R, Pukkala E, Salovaara R, Aaltonen LA, de la Chapelle A, Peltomaki P, Mecklin JP, Jarvinen HJ: Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer. 1999, 81: 214-218. 10.1002/(SICI)1097-0215(19990412)81:2<214::AID-IJC8>3.0.CO;2-L.CrossRefPubMed
9.
go back to reference Haenszel W, Kurihara M: Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J Natl Cancer Inst. 1968, 40: 43-68.PubMed Haenszel W, Kurihara M: Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J Natl Cancer Inst. 1968, 40: 43-68.PubMed
10.
go back to reference Whittemore AS, Zheng S, Wu A, Wu ML, Fingar T, Jiao DA, Ling CD, Bao JL, Henderson BE, Paffenbarger RS: Colorectal cancer in Chinese and Chinese-Americans. Natl Cancer Inst Monogr. 1985, 69: 43-46.PubMed Whittemore AS, Zheng S, Wu A, Wu ML, Fingar T, Jiao DA, Ling CD, Bao JL, Henderson BE, Paffenbarger RS: Colorectal cancer in Chinese and Chinese-Americans. Natl Cancer Inst Monogr. 1985, 69: 43-46.PubMed
11.
go back to reference Michels KB, Giovannucci E, Chan AT, Singhania R, Fuchs CS, Willett WC: Fruit and vegetable consumption and colorectal adenomas in the Nurses' Health Study. Cancer Res. 2006, 66: 3942-3953. 10.1158/0008-5472.CAN-05-3637.CrossRefPubMed Michels KB, Giovannucci E, Chan AT, Singhania R, Fuchs CS, Willett WC: Fruit and vegetable consumption and colorectal adenomas in the Nurses' Health Study. Cancer Res. 2006, 66: 3942-3953. 10.1158/0008-5472.CAN-05-3637.CrossRefPubMed
12.
go back to reference Liang W, Binns CW: Fruit, vegetables, and colorectal cancer risk: the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr. 2009, 90: 1112-1114.CrossRefPubMed Liang W, Binns CW: Fruit, vegetables, and colorectal cancer risk: the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr. 2009, 90: 1112-1114.CrossRefPubMed
13.
go back to reference Kim DH, Smith-Warner SA, Spiegelman D, Yaun SS, Colditz GA, Freudenheim JL, Giovannucci E, Goldbohm RA, Graham S, Harnack L, et al: Pooled analyses of 13 prospective cohort studies on folate intake and colon cancer. Cancer Causes Control. 2010, 21: 1919-1930. 10.1007/s10552-010-9620-8.CrossRefPubMedPubMedCentral Kim DH, Smith-Warner SA, Spiegelman D, Yaun SS, Colditz GA, Freudenheim JL, Giovannucci E, Goldbohm RA, Graham S, Harnack L, et al: Pooled analyses of 13 prospective cohort studies on folate intake and colon cancer. Cancer Causes Control. 2010, 21: 1919-1930. 10.1007/s10552-010-9620-8.CrossRefPubMedPubMedCentral
14.
go back to reference Eussen SJ, Vollset SE, Igland J, Meyer K, Fredriksen A, Ueland PM, Jenab M, Slimani N, Boffetta P, Overvad K, et al: Plasma folate, related genetic variants, and colorectal cancer risk in EPIC. Cancer Epidemiol Biomarkers Prev. 2010, 19: 1328-1340. 10.1158/1055-9965.EPI-09-0841.CrossRefPubMedPubMedCentral Eussen SJ, Vollset SE, Igland J, Meyer K, Fredriksen A, Ueland PM, Jenab M, Slimani N, Boffetta P, Overvad K, et al: Plasma folate, related genetic variants, and colorectal cancer risk in EPIC. Cancer Epidemiol Biomarkers Prev. 2010, 19: 1328-1340. 10.1158/1055-9965.EPI-09-0841.CrossRefPubMedPubMedCentral
15.
go back to reference Chawla AK, Kachnic LA, Clark JW, Willett CG: Combined modality therapy for rectal and colon cancer. Semin Oncol. 2003, 30: 101-112.CrossRefPubMed Chawla AK, Kachnic LA, Clark JW, Willett CG: Combined modality therapy for rectal and colon cancer. Semin Oncol. 2003, 30: 101-112.CrossRefPubMed
16.
go back to reference Cascinu S, Georgoulias V, Kerr D, Maughan T, Labianca R, Ychou M: Colorectal cancer in the adjuvant setting: perspectives on treatment and the role of prognostic factors. Ann Oncol. 2003, 14 (Suppl 2): ii25-ii29.PubMed Cascinu S, Georgoulias V, Kerr D, Maughan T, Labianca R, Ychou M: Colorectal cancer in the adjuvant setting: perspectives on treatment and the role of prognostic factors. Ann Oncol. 2003, 14 (Suppl 2): ii25-ii29.PubMed
17.
go back to reference Chau I, Cunningham D: Adjuvant therapy in colon cancer: current status and future directions. Cancer Treat Rev. 2002, 28: 223-236. 10.1016/S0305-7372(02)00047-6.CrossRefPubMed Chau I, Cunningham D: Adjuvant therapy in colon cancer: current status and future directions. Cancer Treat Rev. 2002, 28: 223-236. 10.1016/S0305-7372(02)00047-6.CrossRefPubMed
18.
go back to reference Abdelrahim M, Safe S: Cyclooxygenase-2 inhibitors decrease vascular endothelial growth factor expession in colon cancer cells by enhanced degradation of Sp1 and Sp4 proteins. Mol Pharmacol. 2005, 68: 317-329.PubMed Abdelrahim M, Safe S: Cyclooxygenase-2 inhibitors decrease vascular endothelial growth factor expession in colon cancer cells by enhanced degradation of Sp1 and Sp4 proteins. Mol Pharmacol. 2005, 68: 317-329.PubMed
19.
go back to reference Abdelrahim M, Baker CH, Abbruzzese JL, Safe S: Tolfenamic acid and pancreatic cancer growth, angiogenesis, and Sp protein degradation. J Natl Cancer Inst. 2006, 98: 855-868. 10.1093/jnci/djj232.CrossRefPubMed Abdelrahim M, Baker CH, Abbruzzese JL, Safe S: Tolfenamic acid and pancreatic cancer growth, angiogenesis, and Sp protein degradation. J Natl Cancer Inst. 2006, 98: 855-868. 10.1093/jnci/djj232.CrossRefPubMed
20.
go back to reference Chintharlapalli S, Papineni S, Ramaiah SK, Safe S: Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors. Cancer Res. 2007, 67: 2816-2823. 10.1158/0008-5472.CAN-06-3735.CrossRefPubMed Chintharlapalli S, Papineni S, Ramaiah SK, Safe S: Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors. Cancer Res. 2007, 67: 2816-2823. 10.1158/0008-5472.CAN-06-3735.CrossRefPubMed
21.
go back to reference Chadalapaka G, Jutooru I, Chintharlapalli S, Papineni S, Smith R, Li X, Safe S: Curcumin decreases specificity protein expression in bladder cancer cells. Cancer Res. 2008, 68: 5345-5354. 10.1158/0008-5472.CAN-07-6805.CrossRefPubMedPubMedCentral Chadalapaka G, Jutooru I, Chintharlapalli S, Papineni S, Smith R, Li X, Safe S: Curcumin decreases specificity protein expression in bladder cancer cells. Cancer Res. 2008, 68: 5345-5354. 10.1158/0008-5472.CAN-07-6805.CrossRefPubMedPubMedCentral
22.
go back to reference Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S: The oncogenic microRNA-27a targets genes that regulate specificity protein (Sp) transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res. 2007, 67: 11001-11011. 10.1158/0008-5472.CAN-07-2416.CrossRefPubMed Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S: The oncogenic microRNA-27a targets genes that regulate specificity protein (Sp) transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res. 2007, 67: 11001-11011. 10.1158/0008-5472.CAN-07-2416.CrossRefPubMed
23.
go back to reference Papineni S, Chintharlapalli S, Abdelrahim M, Lee SO, Burghardt R, Abudayyeh A, Baker C, Herrera L, Safe S: Tolfenamic acid inhibits esophageal cancer through repression of specificity proteins and c-Met. Carcinogenesis. 2009, 30: 1193-1201. 10.1093/carcin/bgp092.CrossRefPubMedPubMedCentral Papineni S, Chintharlapalli S, Abdelrahim M, Lee SO, Burghardt R, Abudayyeh A, Baker C, Herrera L, Safe S: Tolfenamic acid inhibits esophageal cancer through repression of specificity proteins and c-Met. Carcinogenesis. 2009, 30: 1193-1201. 10.1093/carcin/bgp092.CrossRefPubMedPubMedCentral
24.
go back to reference Yao JC, Wang L, Wei D, Gong W, Hassan M, Wu TT, Mansfield P, Ajani J, Xie K: Association between expression of transcription factor Sp1 and increased vascular endothelial growth factor expression, advanced stage, and poor survival in patients with resected gastric cancer. Clin Cancer Res. 2004, 10: 4109-4117. 10.1158/1078-0432.CCR-03-0628.CrossRefPubMed Yao JC, Wang L, Wei D, Gong W, Hassan M, Wu TT, Mansfield P, Ajani J, Xie K: Association between expression of transcription factor Sp1 and increased vascular endothelial growth factor expression, advanced stage, and poor survival in patients with resected gastric cancer. Clin Cancer Res. 2004, 10: 4109-4117. 10.1158/1078-0432.CCR-03-0628.CrossRefPubMed
25.
go back to reference Jiang NY, Woda BA, Banner BF, Whalen GF, Dresser KA, Lu D: Sp1, a new biomarker that identifies a subset of aggressive pancreatic ductal adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 2008, 17: 1648-1652. 10.1158/1055-9965.EPI-07-2791.CrossRefPubMed Jiang NY, Woda BA, Banner BF, Whalen GF, Dresser KA, Lu D: Sp1, a new biomarker that identifies a subset of aggressive pancreatic ductal adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 2008, 17: 1648-1652. 10.1158/1055-9965.EPI-07-2791.CrossRefPubMed
26.
go back to reference Ammendola R, Mesuraca M, Russo T, Cimino F: Sp1 DNA binding efficiency is highly reduced in nuclear extracts from aged rat tissues. J Biol Chem. 1992, 267: 17944-17948.PubMed Ammendola R, Mesuraca M, Russo T, Cimino F: Sp1 DNA binding efficiency is highly reduced in nuclear extracts from aged rat tissues. J Biol Chem. 1992, 267: 17944-17948.PubMed
27.
go back to reference Adrian GS, Seto E, Fischbach KS, Rivera EV, Adrian EK, Herbert DC, Walter CA, Weaker FJ, Bowman BH: YY1 and Sp1 transcription factors bind the human transferrin gene in an age-related manner. J Gerontol A Biol Sci Med Sci. 1996, 51: B66-B75.CrossRefPubMed Adrian GS, Seto E, Fischbach KS, Rivera EV, Adrian EK, Herbert DC, Walter CA, Weaker FJ, Bowman BH: YY1 and Sp1 transcription factors bind the human transferrin gene in an age-related manner. J Gerontol A Biol Sci Med Sci. 1996, 51: B66-B75.CrossRefPubMed
28.
go back to reference Oh JE, Han JA, Hwang ES: Downregulation of transcription factor, Sp1, during cellular senescence. Biochem Biophys Res Commun. 2007, 353: 86-91. 10.1016/j.bbrc.2006.11.118.CrossRefPubMed Oh JE, Han JA, Hwang ES: Downregulation of transcription factor, Sp1, during cellular senescence. Biochem Biophys Res Commun. 2007, 353: 86-91. 10.1016/j.bbrc.2006.11.118.CrossRefPubMed
29.
go back to reference Abdelrahim M, Smith III R, Burghardt R, Safe S: Role of Sp proteins in regulation of vascular endothelial growth factor expression and proliferation of pancreatic cancer cells. Cancer Res. 2004, 64: 6740-6749. 10.1158/0008-5472.CAN-04-0713.CrossRefPubMed Abdelrahim M, Smith III R, Burghardt R, Safe S: Role of Sp proteins in regulation of vascular endothelial growth factor expression and proliferation of pancreatic cancer cells. Cancer Res. 2004, 64: 6740-6749. 10.1158/0008-5472.CAN-04-0713.CrossRefPubMed
30.
go back to reference Abdelrahim M, Baker CH, Abbruzzese JL, Sheikh-Hamad D, Liu S, Cho SD, Yoon K, Safe S: Regulation of vascular endothelial growth factor receptor-1 (VEGFR1) expression by specificity proteins 1, 3 and 4 in pancreatic cancer cells. Cancer Res. 2007, 67: 3286-3294. 10.1158/0008-5472.CAN-06-3831.CrossRefPubMed Abdelrahim M, Baker CH, Abbruzzese JL, Sheikh-Hamad D, Liu S, Cho SD, Yoon K, Safe S: Regulation of vascular endothelial growth factor receptor-1 (VEGFR1) expression by specificity proteins 1, 3 and 4 in pancreatic cancer cells. Cancer Res. 2007, 67: 3286-3294. 10.1158/0008-5472.CAN-06-3831.CrossRefPubMed
31.
go back to reference Higgins KJ, Abdelrahim M, Liu S, Yoon K, Safe S: Regulation of vascular endothelial growth factor receptor-2 expression in pancreatic cancer cells by Sp proteins. Biochem Biophys Res Commun. 2006, 345: 292-301. 10.1016/j.bbrc.2006.04.111.CrossRefPubMed Higgins KJ, Abdelrahim M, Liu S, Yoon K, Safe S: Regulation of vascular endothelial growth factor receptor-2 expression in pancreatic cancer cells by Sp proteins. Biochem Biophys Res Commun. 2006, 345: 292-301. 10.1016/j.bbrc.2006.04.111.CrossRefPubMed
32.
go back to reference Chadalapaka G, Jutooru I, Burghardt R, Safe S: Drugs that target specificity proteins downregulate epidermal growth factor receptor in bladder cancer cells. Mol Cancer Res. 2010, 8: 739-750. 10.1158/1541-7786.MCR-09-0493.CrossRefPubMedPubMedCentral Chadalapaka G, Jutooru I, Burghardt R, Safe S: Drugs that target specificity proteins downregulate epidermal growth factor receptor in bladder cancer cells. Mol Cancer Res. 2010, 8: 739-750. 10.1158/1541-7786.MCR-09-0493.CrossRefPubMedPubMedCentral
33.
go back to reference Jutooru I, Chadalapaka G, Abdelrahim M, Basha MR, Samudio I, Konopleva M, Andreeff M, Safe SH: Methyl 2-Cyano-3,12-dioxooleana-1,9-dien-28-oate (CDDO-Me) decreases specificity protein (Sp) transcription factors and inhibits pancreatic tumor growth: role of microRNA-27a. Mol Pharmacol. 2010, 78: 226-236. 10.1124/mol.110.064451.CrossRefPubMedPubMedCentral Jutooru I, Chadalapaka G, Abdelrahim M, Basha MR, Samudio I, Konopleva M, Andreeff M, Safe SH: Methyl 2-Cyano-3,12-dioxooleana-1,9-dien-28-oate (CDDO-Me) decreases specificity protein (Sp) transcription factors and inhibits pancreatic tumor growth: role of microRNA-27a. Mol Pharmacol. 2010, 78: 226-236. 10.1124/mol.110.064451.CrossRefPubMedPubMedCentral
34.
go back to reference Jutooru I, Chadalapaka G, Lei P, Safe S: Inhibition of NFκB and pancreatic cancer cell and tumor growth by curcumin is dependent on specificity protein downregulation. J Biol Chem. 2010, 285: 25332-25344. 10.1074/jbc.M109.095240.CrossRefPubMedPubMedCentral Jutooru I, Chadalapaka G, Lei P, Safe S: Inhibition of NFκB and pancreatic cancer cell and tumor growth by curcumin is dependent on specificity protein downregulation. J Biol Chem. 2010, 285: 25332-25344. 10.1074/jbc.M109.095240.CrossRefPubMedPubMedCentral
35.
go back to reference Chintharlapalli S, Papineni S, Lee SO, Lei P, Jin U-H, Sherman SI, Santarpia L, Safe S: Inhibition of pituitary tumor-transforming gene-1 in thyroid cancer cells by drugs that decrease specificity proteins. Mol Carcinog. Chintharlapalli S, Papineni S, Lee SO, Lei P, Jin U-H, Sherman SI, Santarpia L, Safe S: Inhibition of pituitary tumor-transforming gene-1 in thyroid cancer cells by drugs that decrease specificity proteins. Mol Carcinog.
36.
go back to reference Chintharlapalli S, Papineni S, Abdelrahim M, Abudayyeh A, Abudayyeh A, Jutooru I, Chadalapaka G, Wu F, Mertens-Talcott SU, Vanderlaag K, et al: Oncogenic microRNA-27a is a target for anticancer agent methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate in colon cancer cells. Int J Cancer. 2009, 125: 1965-1974. 10.1002/ijc.24530.CrossRefPubMedPubMedCentral Chintharlapalli S, Papineni S, Abdelrahim M, Abudayyeh A, Abudayyeh A, Jutooru I, Chadalapaka G, Wu F, Mertens-Talcott SU, Vanderlaag K, et al: Oncogenic microRNA-27a is a target for anticancer agent methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate in colon cancer cells. Int J Cancer. 2009, 125: 1965-1974. 10.1002/ijc.24530.CrossRefPubMedPubMedCentral
37.
go back to reference Jutooru I, Chadalapaka G, Sreevalsan S, Lei P, Barhoumi R, Burghardt R, Safe S: Arsenic trioxide downregulation of specificity protein (Sp) transcription factors in bladder cancer cells is dependent on reactive oxygen species (ROS). Exper Cell Res. 2010, 316: 2174-2188. 10.1016/j.yexcr.2010.04.027.CrossRef Jutooru I, Chadalapaka G, Sreevalsan S, Lei P, Barhoumi R, Burghardt R, Safe S: Arsenic trioxide downregulation of specificity protein (Sp) transcription factors in bladder cancer cells is dependent on reactive oxygen species (ROS). Exper Cell Res. 2010, 316: 2174-2188. 10.1016/j.yexcr.2010.04.027.CrossRef
38.
go back to reference Pathi SS, Jutooru I, Chadalapaka G, Sreevalsan S, Anand S, Thatcher GR, Safe SH: GT-094, a NO-NSAID, inhibits colon cancer cell growth by activation of a reactive oxygen species (ROS)-microRNA-27a:ZBTB10-specificity protein (Sp) pathway. Mol Cancer Res. 2010, 9: 195-202. 10.1186/1476-4598-9-195.CrossRefPubMedPubMedCentral Pathi SS, Jutooru I, Chadalapaka G, Sreevalsan S, Anand S, Thatcher GR, Safe SH: GT-094, a NO-NSAID, inhibits colon cancer cell growth by activation of a reactive oxygen species (ROS)-microRNA-27a:ZBTB10-specificity protein (Sp) pathway. Mol Cancer Res. 2010, 9: 195-202. 10.1186/1476-4598-9-195.CrossRefPubMedPubMedCentral
40.
go back to reference Fulda S, Kroemer G: Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discov Today. 2009, 14: 885-890. 10.1016/j.drudis.2009.05.015.CrossRefPubMed Fulda S, Kroemer G: Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discov Today. 2009, 14: 885-890. 10.1016/j.drudis.2009.05.015.CrossRefPubMed
41.
go back to reference Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004, 23: 4051-4060. 10.1038/sj.emboj.7600385.CrossRefPubMedPubMedCentral Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004, 23: 4051-4060. 10.1038/sj.emboj.7600385.CrossRefPubMedPubMedCentral
42.
go back to reference Pisha E, Chai H, Lee IS, Chagwedera TE, Farnsworth NR, Cordell GA, Beecher CW, Fong HH, Kinghorn AD, Brown DM: Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med. 1995, 1: 1046-1051. 10.1038/nm1095-1046.CrossRefPubMed Pisha E, Chai H, Lee IS, Chagwedera TE, Farnsworth NR, Cordell GA, Beecher CW, Fong HH, Kinghorn AD, Brown DM: Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med. 1995, 1: 1046-1051. 10.1038/nm1095-1046.CrossRefPubMed
43.
go back to reference Mullauer FB, van BL, Daalhuisen JB, Ten Brink MS, Storm G, Medema JP, Schiffelers RM, Kessler JH: Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anticancer Drugs. 2011, 22: 223-233. 10.1097/CAD.0b013e3283421035.CrossRefPubMed Mullauer FB, van BL, Daalhuisen JB, Ten Brink MS, Storm G, Medema JP, Schiffelers RM, Kessler JH: Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anticancer Drugs. 2011, 22: 223-233. 10.1097/CAD.0b013e3283421035.CrossRefPubMed
44.
go back to reference Mullauer FB, Kessler JH, Medema JP: Betulinic acid induces cytochrome c release and apoptosis in a Bax/Bak-independent, permeability transition pore dependent fashion. Apoptosis. 2009, 14: 191-202. 10.1007/s10495-008-0290-x.CrossRefPubMed Mullauer FB, Kessler JH, Medema JP: Betulinic acid induces cytochrome c release and apoptosis in a Bax/Bak-independent, permeability transition pore dependent fashion. Apoptosis. 2009, 14: 191-202. 10.1007/s10495-008-0290-x.CrossRefPubMed
45.
go back to reference Takada Y, Aggarwal BB: Betulinic acid suppresses carcinogen-induced NF-kappa B activation through inhibition of I kappa B alpha kinase and p65 phosphorylation: abrogation of cyclooxygenase-2 and matrix metalloprotease-9. J Immunol. 2003, 171: 3278-3286.CrossRefPubMed Takada Y, Aggarwal BB: Betulinic acid suppresses carcinogen-induced NF-kappa B activation through inhibition of I kappa B alpha kinase and p65 phosphorylation: abrogation of cyclooxygenase-2 and matrix metalloprotease-9. J Immunol. 2003, 171: 3278-3286.CrossRefPubMed
46.
go back to reference Jung GR, Kim KJ, Choi CH, Lee TB, Han SI, Han HK, Lim SC: Effect of betulinic acid on anticancer drug-resistant colon cancer cells. Basic Clin Pharmacol Toxicol. 2007, 101: 277-285. 10.1111/j.1742-7843.2007.00115.x.CrossRefPubMed Jung GR, Kim KJ, Choi CH, Lee TB, Han SI, Han HK, Lim SC: Effect of betulinic acid on anticancer drug-resistant colon cancer cells. Basic Clin Pharmacol Toxicol. 2007, 101: 277-285. 10.1111/j.1742-7843.2007.00115.x.CrossRefPubMed
47.
go back to reference Gao Y, Jia Z, Kong X, Li Q, Chang DZ, Wei D, Le X, Suyun H, Huang S, Wang L, et al: Combining betulinic acid and mithramycin A effectively suppresses pancreatic cancer by inhibiting proliferation, invasion, and angiogenesis. Cancer Res. 2011, 71: 5182-5193. 10.1158/0008-5472.CAN-10-2016.CrossRefPubMedPubMedCentral Gao Y, Jia Z, Kong X, Li Q, Chang DZ, Wei D, Le X, Suyun H, Huang S, Wang L, et al: Combining betulinic acid and mithramycin A effectively suppresses pancreatic cancer by inhibiting proliferation, invasion, and angiogenesis. Cancer Res. 2011, 71: 5182-5193. 10.1158/0008-5472.CAN-10-2016.CrossRefPubMedPubMedCentral
48.
go back to reference Dehelean CA, Feflea S, Ganta S, Amiji M: Anti-angiogenic effects of betulinic acid administered in nanoemulsion formulation using chorioallantoic membrane assay. J Biomed Nanotechnol. 2011, 7: 317-324. 10.1166/jbn.2011.1297.CrossRefPubMed Dehelean CA, Feflea S, Ganta S, Amiji M: Anti-angiogenic effects of betulinic acid administered in nanoemulsion formulation using chorioallantoic membrane assay. J Biomed Nanotechnol. 2011, 7: 317-324. 10.1166/jbn.2011.1297.CrossRefPubMed
49.
go back to reference Li Q, Li Y, Wang X, Fang X, He K, Guo X, Zhan Z, Sun C, Jin YH: Co-treatment with ginsenoside Rh2 and betulinic acid synergistically induces apoptosis in human cancer cells in association with enhanced capsase-8 activation, bax translocation, and cytochrome c release. Mol Carcinog. Li Q, Li Y, Wang X, Fang X, He K, Guo X, Zhan Z, Sun C, Jin YH: Co-treatment with ginsenoside Rh2 and betulinic acid synergistically induces apoptosis in human cancer cells in association with enhanced capsase-8 activation, bax translocation, and cytochrome c release. Mol Carcinog.
Metadata
Title
Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors
Authors
Sudhakar Chintharlapalli
Sabitha Papineni
Ping Lei
Satya Pathi
Stephen Safe
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-371

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine