Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

Tumor-suppressor activity of RRIG1 in breast cancer

Authors: Guihong Zhang, Abenaa Brewster, Baoxiang Guan, Zhen Fan, Powel H Brown, Xiao-Chun Xu

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

Retinoid receptor-induced gene-1 (RRIG1) is a novel gene that has been lost in several types of human cancers. The aim of this study was to determine whether RRIG1 plays a role in breast cancer, such as in the suppression of breast cancer cell growth and invasion.

Methods

Immunohistochemistry was used to detect RRIG1 expression in breast tissue specimens. Gene transfection was used to restore or knock down RRIG1 expression in breast cancer cell lines for analysis of cell viability, colony formation, and migration/invasion potential. Reverse-transcription polymerase chain reaction and western blot assays were used to detect the changes in gene expression. The RhoA activation assay was used to assess RRIG1-induced inhibition of RhoA activity.

Results

The immunohistochemical data showed that RRIG1 expression was reduced in breast cancer tissues compared with normal and atypical hyperplastic breast tissues. RRIG1 expression was inversely correlated with lymph node metastasis of breast cancer but was not associated with the status of hormone receptors, such as estrogen receptor, progesterone receptor, or HER2. Furthermore, restoration of RRIG1 expression inhibited proliferation, colony formation, migration, and invasion of breast cancer cells. Expression of RRIG1 also reduced phosphorylated Erk1/2 and Akt levels; c-Jun, MMP9, and Akt expressions; and RhoA activity. In contrast, knockdown of RRIG1 expression promoted breast cancer cell proliferation, colony formation, migration, and invasion potential.

Conclusion

The data from the current study indicated that RRIG1 expression was reduced or lost in breast cancer and that restoration of RRIG1 expression suppressed breast cancer cell growth and invasion capacity. Future studies will determine the underlying molecular mechanisms and define RRIG1 as a tumor-suppressor gene in breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wu K, Zhang Y, Xu XC, Hill J, Celestino J, Kim HT, Mohsin SK, Hilsenbeck SG, Lamph WW, Bissonette R, Brown PH: The retinoid X receptor-selective retinoid, LGD1069, prevents the development of estrogen receptor-negative mammary tumors in transgenic mice. Cancer Res. 2002, 62: 6376-6380.PubMed Wu K, Zhang Y, Xu XC, Hill J, Celestino J, Kim HT, Mohsin SK, Hilsenbeck SG, Lamph WW, Bissonette R, Brown PH: The retinoid X receptor-selective retinoid, LGD1069, prevents the development of estrogen receptor-negative mammary tumors in transgenic mice. Cancer Res. 2002, 62: 6376-6380.PubMed
2.
go back to reference DeVita VT, Hellman S, Rosenberg SA, (eds): Cancer: Principles and Practice of Oncology. 1997, Philadelphia and New York: Lippincott-Raven Publishers, 1541-1616. DeVita VT, Hellman S, Rosenberg SA, (eds): Cancer: Principles and Practice of Oncology. 1997, Philadelphia and New York: Lippincott-Raven Publishers, 1541-1616.
3.
go back to reference Fidler I, Nicholson G: Concepts and mechanisms of breast cancer metastasis. The Breast. Edited by: Bland K, Copeland E. 1991, Philadelphia: WB Saunders, 395-408. Fidler I, Nicholson G: Concepts and mechanisms of breast cancer metastasis. The Breast. Edited by: Bland K, Copeland E. 1991, Philadelphia: WB Saunders, 395-408.
4.
go back to reference Fidler IJ: Molecular biology of cancer: invasion and metastasis. Cancer: Principles and Practice of Oncology. Edited by: DeVita VT Jr, Hellman S, Rosenberg SA. 1997, Philadelphia and New York: Lippincott-Raven Publishers, 135-152. Fidler IJ: Molecular biology of cancer: invasion and metastasis. Cancer: Principles and Practice of Oncology. Edited by: DeVita VT Jr, Hellman S, Rosenberg SA. 1997, Philadelphia and New York: Lippincott-Raven Publishers, 135-152.
5.
go back to reference Liang ZD, Lippman SM, Wu TT, Lotan R, Xu XC: RRIG1 mediates effects of retinoic acid receptor-β2 on tumor cell growth and gene expression through binding to and inhibiting RhoA. Cancer Res. 2006, 66: 7111-7118. 10.1158/0008-5472.CAN-06-0812.CrossRefPubMed Liang ZD, Lippman SM, Wu TT, Lotan R, Xu XC: RRIG1 mediates effects of retinoic acid receptor-β2 on tumor cell growth and gene expression through binding to and inhibiting RhoA. Cancer Res. 2006, 66: 7111-7118. 10.1158/0008-5472.CAN-06-0812.CrossRefPubMed
6.
go back to reference Huang J, Liang ZD, Wu TT, Hoque A, Chen H, Jiang Y, Zhang H, Xu XC: Tumor-suppressive effect of retinoid receptor-induced gene-1 (RRIG1) in esophageal cancer. Cancer Res. 2007, 67: 1589-1593. 10.1158/0008-5472.CAN-06-2472.CrossRefPubMed Huang J, Liang ZD, Wu TT, Hoque A, Chen H, Jiang Y, Zhang H, Xu XC: Tumor-suppressive effect of retinoid receptor-induced gene-1 (RRIG1) in esophageal cancer. Cancer Res. 2007, 67: 1589-1593. 10.1158/0008-5472.CAN-06-2472.CrossRefPubMed
7.
go back to reference Guan B, Li H, Chen Y, Hoque A, Xu X-C: Characterization of retinoid receptor-induced gene-1 gene and its relationship to SH3 domain GRB2-like endophilin B2 gene. J Cancer Mol. 2009, 5: 15-19. Guan B, Li H, Chen Y, Hoque A, Xu X-C: Characterization of retinoid receptor-induced gene-1 gene and its relationship to SH3 domain GRB2-like endophilin B2 gene. J Cancer Mol. 2009, 5: 15-19.
8.
go back to reference Hoque A, Chen H, Guan B, Xu X-C: Tumor-suppressive effect of RRIG1 in prostate cancer. Proc Amer Assoc Cancer Res. 2009, 50: 5334- Hoque A, Chen H, Guan B, Xu X-C: Tumor-suppressive effect of RRIG1 in prostate cancer. Proc Amer Assoc Cancer Res. 2009, 50: 5334-
9.
go back to reference Xu XC, Liu X, Tahara E, Lippman SM, Lotan R: Expression and up-regulation of retinoic acid receptor-β is associated with retinoid sensitivity and colony formation in esophageal cancer cell lines. Cancer Res. 1999, 59: 2477-2483.PubMed Xu XC, Liu X, Tahara E, Lippman SM, Lotan R: Expression and up-regulation of retinoic acid receptor-β is associated with retinoid sensitivity and colony formation in esophageal cancer cell lines. Cancer Res. 1999, 59: 2477-2483.PubMed
10.
go back to reference Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, Van de Rijn M, Waltham M, Pergamenschikov A, Lee JC, Lashkari D, Shalon D, Myers TG, Weinstein JN, Botstein D, Brown PO: Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet. 2000, 24: 227-235. 10.1038/73432.CrossRefPubMed Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, Van de Rijn M, Waltham M, Pergamenschikov A, Lee JC, Lashkari D, Shalon D, Myers TG, Weinstein JN, Botstein D, Brown PO: Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet. 2000, 24: 227-235. 10.1038/73432.CrossRefPubMed
11.
go back to reference Ellison G, Klinowska T, Westwood RF, Docter E, French T, Fox JC: Further evidence to support the melanocytic origin of MDA-MB-435. Mol Pathol. 2002, 55: 294-299. 10.1136/mp.55.5.294.CrossRefPubMedPubMedCentral Ellison G, Klinowska T, Westwood RF, Docter E, French T, Fox JC: Further evidence to support the melanocytic origin of MDA-MB-435. Mol Pathol. 2002, 55: 294-299. 10.1136/mp.55.5.294.CrossRefPubMedPubMedCentral
12.
go back to reference Song S, Xu X-C: Effect of benzo[a]pyrene diol epoxide on expression of retinoic acid receptor-beta in immortalized esophageal epithelial cells and esophageal cancer cells. Biochem Biophys Res Commun. 2001, 281: 872-877. 10.1006/bbrc.2001.4433.CrossRefPubMed Song S, Xu X-C: Effect of benzo[a]pyrene diol epoxide on expression of retinoic acid receptor-beta in immortalized esophageal epithelial cells and esophageal cancer cells. Biochem Biophys Res Commun. 2001, 281: 872-877. 10.1006/bbrc.2001.4433.CrossRefPubMed
13.
go back to reference Song S, Lippman SM, Zou Y, Ye X, Ajani JA, Xu X-C: Induction of cyclooxygenase-2 by benzo[a]pyrene diol epoxide through inhibition of retinoic acid receptor-b2 expression. Oncogene. 2005, 24: 8268-8276. 10.1038/sj.onc.1208992.CrossRefPubMed Song S, Lippman SM, Zou Y, Ye X, Ajani JA, Xu X-C: Induction of cyclooxygenase-2 by benzo[a]pyrene diol epoxide through inhibition of retinoic acid receptor-b2 expression. Oncogene. 2005, 24: 8268-8276. 10.1038/sj.onc.1208992.CrossRefPubMed
14.
go back to reference Xu X-C: Risk factors and gene expression in esophageal cancer. Cancer Epidemiology, Vol. I, Host Susceptibility Factors. Edited by: Verma M. 2009, Humana Press, 335-360. Xu X-C: Risk factors and gene expression in esophageal cancer. Cancer Epidemiology, Vol. I, Host Susceptibility Factors. Edited by: Verma M. 2009, Humana Press, 335-360.
15.
go back to reference Xu XC, Sneige N, Liu X, Nandagiri R, Lee JJ, Lukmanji F, Hortobagyi G, Lippman SM, Dhingra K, Lotan R: Progressive decrease in nuclear retinoic acid receptor beta messenger RNA level during breast carcinogenesis. Cancer Res. 1997, 57: 4992-4996.PubMed Xu XC, Sneige N, Liu X, Nandagiri R, Lee JJ, Lukmanji F, Hortobagyi G, Lippman SM, Dhingra K, Lotan R: Progressive decrease in nuclear retinoic acid receptor beta messenger RNA level during breast carcinogenesis. Cancer Res. 1997, 57: 4992-4996.PubMed
16.
go back to reference Widschwendter MJ, Berger G, Daxenbichler E, Muller-Holzner A, Widschwendter A, Mayr A, Marth C, Zeimet AG: Loss of retinoic acid receptor beta expression in breast cancer and morphologically normal adjacent tissue but not in the normal breast tissue distant from the cancer. Cancer Res. 1997, 57: 4158-4161.PubMed Widschwendter MJ, Berger G, Daxenbichler E, Muller-Holzner A, Widschwendter A, Mayr A, Marth C, Zeimet AG: Loss of retinoic acid receptor beta expression in breast cancer and morphologically normal adjacent tissue but not in the normal breast tissue distant from the cancer. Cancer Res. 1997, 57: 4158-4161.PubMed
17.
go back to reference Seewaldt VL, Johnson BS, Parker MB, Collins SJ, Swisshelm K: Expression of retinoic acid receptor beta mediates retinoic acid-induced growth arrest and apoptosis in breast cancer cells. Cell Growth Differ. 1995, 6: 1077-1088.PubMed Seewaldt VL, Johnson BS, Parker MB, Collins SJ, Swisshelm K: Expression of retinoic acid receptor beta mediates retinoic acid-induced growth arrest and apoptosis in breast cancer cells. Cell Growth Differ. 1995, 6: 1077-1088.PubMed
18.
go back to reference Wu ZS, Wu Q, Yang JH, Wang HQ, Ding XD, Yang F, Xu X-C: Prognostic significance of MMP-9 and TIMP-1 expression in breast cancer. Int J Cancer. 2008, 122: 2050-2056. 10.1002/ijc.23337.CrossRefPubMed Wu ZS, Wu Q, Yang JH, Wang HQ, Ding XD, Yang F, Xu X-C: Prognostic significance of MMP-9 and TIMP-1 expression in breast cancer. Int J Cancer. 2008, 122: 2050-2056. 10.1002/ijc.23337.CrossRefPubMed
19.
go back to reference Ramaswamy S, Nakamura N, Vazquez F, Batt DB, Perera S, Roberts TM, Sellers WR: Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci USA. 1999, 96: 2110-2115. 10.1073/pnas.96.5.2110.CrossRefPubMedPubMedCentral Ramaswamy S, Nakamura N, Vazquez F, Batt DB, Perera S, Roberts TM, Sellers WR: Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci USA. 1999, 96: 2110-2115. 10.1073/pnas.96.5.2110.CrossRefPubMedPubMedCentral
20.
go back to reference Song G, Ouyang G, Bao S: The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 2005, 9: 59-71. 10.1111/j.1582-4934.2005.tb00337.x.CrossRefPubMed Song G, Ouyang G, Bao S: The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 2005, 9: 59-71. 10.1111/j.1582-4934.2005.tb00337.x.CrossRefPubMed
21.
go back to reference Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida O, Shimada Y, Ari-i S, Wada H, Fujimoto J, Kohno M: Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene. 1999, 18: 813-822. 10.1038/sj.onc.1202367.CrossRefPubMed Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida O, Shimada Y, Ari-i S, Wada H, Fujimoto J, Kohno M: Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene. 1999, 18: 813-822. 10.1038/sj.onc.1202367.CrossRefPubMed
22.
go back to reference McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli AM, Franklin RA: Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. BBA-Mol Cancer Res. 2007, 1773: 1263-1284. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli AM, Franklin RA: Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. BBA-Mol Cancer Res. 2007, 1773: 1263-1284.
23.
go back to reference Syed Z, Cheepala SB, Gill JN, Stein J, Nathan CA, Digiovanni J, Batra V, Adegboyega P, Kleiner HE, Clifford JL: All-trans retinoic acid suppresses Stat3 signaling during skin carcinogenesis. Cancer Prev Res. 2009, 2: 903-911. 10.1158/1940-6207.CAPR-09-0041.CrossRef Syed Z, Cheepala SB, Gill JN, Stein J, Nathan CA, Digiovanni J, Batra V, Adegboyega P, Kleiner HE, Clifford JL: All-trans retinoic acid suppresses Stat3 signaling during skin carcinogenesis. Cancer Prev Res. 2009, 2: 903-911. 10.1158/1940-6207.CAPR-09-0041.CrossRef
24.
go back to reference Yuan ZL, Guan YJ, Wang L, Wei W, Kane AB, Chin YE: Central role of the threonine residue within the p+1 loop of receptor tyrosine kinase in STAT3 constitutive phosphorylation in metastatic cancer cells. Mol Cell Biol. 2004, 24: 9390-9400. 10.1128/MCB.24.21.9390-9400.2004.CrossRefPubMedPubMedCentral Yuan ZL, Guan YJ, Wang L, Wei W, Kane AB, Chin YE: Central role of the threonine residue within the p+1 loop of receptor tyrosine kinase in STAT3 constitutive phosphorylation in metastatic cancer cells. Mol Cell Biol. 2004, 24: 9390-9400. 10.1128/MCB.24.21.9390-9400.2004.CrossRefPubMedPubMedCentral
25.
go back to reference Silva CM: Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene. 2004, 23: 8017-8023. 10.1038/sj.onc.1208159.CrossRefPubMed Silva CM: Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene. 2004, 23: 8017-8023. 10.1038/sj.onc.1208159.CrossRefPubMed
26.
go back to reference Alexandropoulos K, Cheng G, Baltimore D: Proline-rich sequences that bind to Src homology 3 domains with individual specificities. Proc Natl Acad Sci USA. 1995, 92: 3110-3114. 10.1073/pnas.92.8.3110.CrossRefPubMedPubMedCentral Alexandropoulos K, Cheng G, Baltimore D: Proline-rich sequences that bind to Src homology 3 domains with individual specificities. Proc Natl Acad Sci USA. 1995, 92: 3110-3114. 10.1073/pnas.92.8.3110.CrossRefPubMedPubMedCentral
27.
28.
go back to reference Vial E, Sahai E, Marshall CJ: ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell. 2003, 4: 67-79. 10.1016/S1535-6108(03)00162-4.CrossRefPubMed Vial E, Sahai E, Marshall CJ: ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell. 2003, 4: 67-79. 10.1016/S1535-6108(03)00162-4.CrossRefPubMed
29.
go back to reference Gomez del Pulgar T, Benitah SA, Valeron PF, Espina C, Lacal JC: Rho GTPase expression in tumorigenesis: evidence for a significant link. Bioessays. 2005, 27: 602-613. 10.1002/bies.20238.CrossRefPubMed Gomez del Pulgar T, Benitah SA, Valeron PF, Espina C, Lacal JC: Rho GTPase expression in tumorigenesis: evidence for a significant link. Bioessays. 2005, 27: 602-613. 10.1002/bies.20238.CrossRefPubMed
30.
go back to reference Sahai E, Marshall CJ: Differing modes of tumor cell invasion have distinct requirements for Rho/ROCK signaling and extracellular proteolysis. Nat Cell Biol. 2003, 5: 711-719. 10.1038/ncb1019.CrossRefPubMed Sahai E, Marshall CJ: Differing modes of tumor cell invasion have distinct requirements for Rho/ROCK signaling and extracellular proteolysis. Nat Cell Biol. 2003, 5: 711-719. 10.1038/ncb1019.CrossRefPubMed
31.
go back to reference Yoshioka K, Nakamori S, Itoh K: Overexpression of small GTP-binding protein RhoA promotes invasion of tumor cells. Cancer Res. 1999, 59: 2004-2010.PubMed Yoshioka K, Nakamori S, Itoh K: Overexpression of small GTP-binding protein RhoA promotes invasion of tumor cells. Cancer Res. 1999, 59: 2004-2010.PubMed
Metadata
Title
Tumor-suppressor activity of RRIG1 in breast cancer
Authors
Guihong Zhang
Abenaa Brewster
Baoxiang Guan
Zhen Fan
Powel H Brown
Xiao-Chun Xu
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-32

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine