Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

Myofibrillogenesis regulator 1 (MR-1) is a novel biomarker and potential therapeutic target for human ovarian cancer

Authors: Renquan Lu, Min Sun, Jingjing Feng, Xiang Gao, Lin Guo

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

Myofibrillogenesis regulator 1 (MR-1) is overexpressed in human cancer cells and plays an essential role in cancer cell growth. However, the significance of MR-1 in human ovarian cancer has not yet been explored. The aim of this study was to examine whether MR-1 is a predictor of ovarian cancer and its value as a therapeutic target in ovarian cancer patients.

Methods

Reverse-transcription polymerase chain reaction (PCR) and quantitative real-time PCR were used to detect MR-1 mRNA levels in tissue samples from 26 ovarian cancer patients and 25 controls with benign ovarian disease. Anti-MR-1 polyclonal antibodies were prepared, tested by ELISA and western blotting, and then used for immunohistochemical analysis of the tissue samples. Adhesion and invasion of 292T cells was also examined after transfection of a pMX-MR-1 plasmid. Knockdown of MR-1 expression was achieved after stable transfection of SKOV3 cells with a short hairpin DNA pGPU6/GFP/Neo plasmid against the MR-1 gene. In addition, SKOV3 cells were treated with paclitaxel and carboplatin, and a potential role for MR-1 as a therapeutic target was evaluated.

Results

MR-1 was overexpressed in ovarian cancer tissues and SKOV3 cells. 293T cells overexpressed MR-1, and cellular spread and invasion were enhanced after transfection of the pMX-MR-1 plasmid, suggesting that MR-1 is critical for ovarian cancer cell growth. Knockdown of MR-1 expression inhibited cell adhesion and invasion, and treatment with anti-cancer drugs decreased its expression in cancer cells. Taken together, these results provide the first evidence of the cellular and molecular mechanisms by which MR-1 might serve as a novel biological marker and potential therapeutic target for ovarian cancer.

Conclusions

MR-1 may be a biomarker for diagnosis of ovarian cancer. It may also be useful for monitoring of the effects of anti-cancer therapies. Further studies are needed to clarify whether MR-1 is an early diagnostic marker for ovarian cancer and a possible therapeutic target.
Appendix
Available only for authorised users
Literature
1.
go back to reference American Cancer Society: Cancer Facts & Figures 2009. 2009, Atlanta: American Cancer Society, 4- American Cancer Society: Cancer Facts & Figures 2009. 2009, Atlanta: American Cancer Society, 4-
2.
go back to reference Liu B, Nash J, Runowicz C, Swede H, Stevens R, Li Z: Ovarian cancer immunotherapy: opportunities, progresses and challenges. J Hematol Oncol. 2010, 3: 7-10.1186/1756-8722-3-7.CrossRefPubMedPubMedCentral Liu B, Nash J, Runowicz C, Swede H, Stevens R, Li Z: Ovarian cancer immunotherapy: opportunities, progresses and challenges. J Hematol Oncol. 2010, 3: 7-10.1186/1756-8722-3-7.CrossRefPubMedPubMedCentral
3.
go back to reference Fazal F, Gu LZ, Ihnatovych I, Han YJ, Hu WY, Antic N, Carreira F, Blomquist JF, Hope TJ, Ucker DS, Lanerolle PD: Inhibiting myosin light chain kinase induces apoptosis in vitro and in vivo. Mol Cell Biol. 2005, 25: 6259-6266. 10.1128/MCB.25.14.6259-6266.2005.CrossRefPubMedPubMedCentral Fazal F, Gu LZ, Ihnatovych I, Han YJ, Hu WY, Antic N, Carreira F, Blomquist JF, Hope TJ, Ucker DS, Lanerolle PD: Inhibiting myosin light chain kinase induces apoptosis in vitro and in vivo. Mol Cell Biol. 2005, 25: 6259-6266. 10.1128/MCB.25.14.6259-6266.2005.CrossRefPubMedPubMedCentral
4.
go back to reference Roovers K, Assoian RK: Effects of Rho kinase and actin stress fibers on sustained extracellular signal-regulated kinase activity and activation of G (1) phase cyclin-dependent kinases. Mol Cell Biol. 2003, 23: 4283-4294. 10.1128/MCB.23.12.4283-4294.2003.CrossRefPubMedPubMedCentral Roovers K, Assoian RK: Effects of Rho kinase and actin stress fibers on sustained extracellular signal-regulated kinase activity and activation of G (1) phase cyclin-dependent kinases. Mol Cell Biol. 2003, 23: 4283-4294. 10.1128/MCB.23.12.4283-4294.2003.CrossRefPubMedPubMedCentral
5.
go back to reference Gutjahr MC, Rossy J, sNiggli V: Role of Rho, Rac, and Rho-kinase in phosphorylation of myosin light chain, development of polarity, and spontaneous migration of Walker 256 carcinosarcoma cells. Exp Cell Res. 2005, 308: 422-438. 10.1016/j.yexcr.2005.05.001.CrossRefPubMed Gutjahr MC, Rossy J, sNiggli V: Role of Rho, Rac, and Rho-kinase in phosphorylation of myosin light chain, development of polarity, and spontaneous migration of Walker 256 carcinosarcoma cells. Exp Cell Res. 2005, 308: 422-438. 10.1016/j.yexcr.2005.05.001.CrossRefPubMed
6.
go back to reference Ren KH, Jin HX, Bian CJ, He HW, Liu X, Zhang SH, Wang YG, Shao RG: MR-1 modulates proliferation and migration of human hepatoma HEPG2 cells through MLC2/FAK/AKT signaling pathway. J Bio Chem. 2008, 283: 35598-35605. 10.1074/jbc.M802253200.CrossRef Ren KH, Jin HX, Bian CJ, He HW, Liu X, Zhang SH, Wang YG, Shao RG: MR-1 modulates proliferation and migration of human hepatoma HEPG2 cells through MLC2/FAK/AKT signaling pathway. J Bio Chem. 2008, 283: 35598-35605. 10.1074/jbc.M802253200.CrossRef
7.
go back to reference Li TB, Liu XH, Feng S, Hu Y, Yang WX, Han Y, Wang YG, Gong LM: Characterization of MR-1, a novel myofibrillogenesis regulator in human muscle. Acta Biochimica et Biophysica Sinica. 2004, 36: 405-411. 10.1093/abbs/36.6.405.CrossRefPubMed Li TB, Liu XH, Feng S, Hu Y, Yang WX, Han Y, Wang YG, Gong LM: Characterization of MR-1, a novel myofibrillogenesis regulator in human muscle. Acta Biochimica et Biophysica Sinica. 2004, 36: 405-411. 10.1093/abbs/36.6.405.CrossRefPubMed
8.
go back to reference Rainier S, Thomas D, Tokarz D, Ming L, Bui M, Plein E, Zhao X, Lemons R, Albin R, Delaney C, Alvarado D, Fink JK: Myofibrillogenesis regulator 1 gene mutations cause paroxysmal dystonia choreoathetosis. Arch Neurol. 2004, 61: 1025-1029. 10.1001/archneur.61.7.1025.CrossRefPubMed Rainier S, Thomas D, Tokarz D, Ming L, Bui M, Plein E, Zhao X, Lemons R, Albin R, Delaney C, Alvarado D, Fink JK: Myofibrillogenesis regulator 1 gene mutations cause paroxysmal dystonia choreoathetosis. Arch Neurol. 2004, 61: 1025-1029. 10.1001/archneur.61.7.1025.CrossRefPubMed
9.
go back to reference Ghezzi D, Viscomi C, Ferlini A, Gualandi F, Mereghetti P, DeGrandis D, Zeviani M: Paroxysmal non-kinesigenic dyskinesia is caused by mutations of the MR-1 mitochondrial targeting sequence. Human Molecular Genetics. 2009, 18: 1058-1064. 10.1093/hmg/ddn441.CrossRefPubMed Ghezzi D, Viscomi C, Ferlini A, Gualandi F, Mereghetti P, DeGrandis D, Zeviani M: Paroxysmal non-kinesigenic dyskinesia is caused by mutations of the MR-1 mitochondrial targeting sequence. Human Molecular Genetics. 2009, 18: 1058-1064. 10.1093/hmg/ddn441.CrossRefPubMed
10.
go back to reference Chen DH, Matsushita M, Rainier S, Meaney B, Tisch L, Feleke A, Wolff J, Lipe H, Fink J, Bird TD, Raskind WH: Presence of alanine-to-valine substitutions in myofibrillogenesis regulator 1 in paroxysmal nonkinesigenic dyskinesia. Arch Neurol. 2005, 62: 597-600. 10.1001/archneur.62.4.597.CrossRefPubMed Chen DH, Matsushita M, Rainier S, Meaney B, Tisch L, Feleke A, Wolff J, Lipe H, Fink J, Bird TD, Raskind WH: Presence of alanine-to-valine substitutions in myofibrillogenesis regulator 1 in paroxysmal nonkinesigenic dyskinesia. Arch Neurol. 2005, 62: 597-600. 10.1001/archneur.62.4.597.CrossRefPubMed
11.
go back to reference Li HL, She ZG, Li TB, Wang AB, Yang QL, Wei YS, Wang YG, Liu DP: Overexpression of Myofibrillogenesis Regulator-1 Aggravates Cardiac Hypertrophy Induced by Angiotensin II in Mice. Hypertension. 2007, 49: 1399-1408. 10.1161/HYPERTENSIONAHA.106.085399.CrossRefPubMed Li HL, She ZG, Li TB, Wang AB, Yang QL, Wei YS, Wang YG, Liu DP: Overexpression of Myofibrillogenesis Regulator-1 Aggravates Cardiac Hypertrophy Induced by Angiotensin II in Mice. Hypertension. 2007, 49: 1399-1408. 10.1161/HYPERTENSIONAHA.106.085399.CrossRefPubMed
12.
go back to reference Clemens MJ, Bushel LM, Jeffrey IW, Pain VM, Morley SJ: Translation initiation factor modifications and the regulation of protein synthesis in apoptotic cells. Cell Death Differ. 2000, 7: 603-615. 10.1038/sj.cdd.4400695.CrossRefPubMed Clemens MJ, Bushel LM, Jeffrey IW, Pain VM, Morley SJ: Translation initiation factor modifications and the regulation of protein synthesis in apoptotic cells. Cell Death Differ. 2000, 7: 603-615. 10.1038/sj.cdd.4400695.CrossRefPubMed
13.
go back to reference Sambrook J, Russell DW: Molecular Cloning: A Laboratory Manual. 2001, New York: Cold Spring Harbor Laboratory Press, 3 Sambrook J, Russell DW: Molecular Cloning: A Laboratory Manual. 2001, New York: Cold Spring Harbor Laboratory Press, 3
14.
go back to reference Yamazaki D, Kurisu S, Takenawa T: Regulation of cancer cell motility through actin reorganization. Cancer Sci. 2005, 96: 379-386. 10.1111/j.1349-7006.2005.00062.x.CrossRefPubMed Yamazaki D, Kurisu S, Takenawa T: Regulation of cancer cell motility through actin reorganization. Cancer Sci. 2005, 96: 379-386. 10.1111/j.1349-7006.2005.00062.x.CrossRefPubMed
15.
go back to reference Lu RQ, Guo L, Hu J: Studies on the value of human epididymis protein 4 in patients with ovarian cancer. Ch J Clin Lab. 2009, 32: 1379-1383. Lu RQ, Guo L, Hu J: Studies on the value of human epididymis protein 4 in patients with ovarian cancer. Ch J Clin Lab. 2009, 32: 1379-1383.
16.
go back to reference McFadyen MC, Cruickshank ME, Miller ID, McLeod HL, Melvin WT, Haites NE, Parkin D, Murray GI: Cytochrome P450 over-expression in primary and metastatic ovarian cancer. Br J Cancer. 2001, 85: 242-246. 10.1054/bjoc.2001.1907.CrossRefPubMedPubMedCentral McFadyen MC, Cruickshank ME, Miller ID, McLeod HL, Melvin WT, Haites NE, Parkin D, Murray GI: Cytochrome P450 over-expression in primary and metastatic ovarian cancer. Br J Cancer. 2001, 85: 242-246. 10.1054/bjoc.2001.1907.CrossRefPubMedPubMedCentral
Metadata
Title
Myofibrillogenesis regulator 1 (MR-1) is a novel biomarker and potential therapeutic target for human ovarian cancer
Authors
Renquan Lu
Min Sun
Jingjing Feng
Xiang Gao
Lin Guo
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-270

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine