Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

Gain of DNA methylation is enhanced in the absence of CTCF at the human retinoblastoma gene promoter

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

Long-term gene silencing throughout cell division is generally achieved by DNA methylation and other epigenetic processes. Aberrant DNA methylation is now widely recognized to be associated with cancer and other human diseases. Here we addressed the contribution of the multifunctional nuclear factor CTCF to the epigenetic regulation of the human retinoblastoma (Rb) gene promoter in different tumoral cell lines.

Methods

To assess the DNA methylation status of the Rb promoter, genomic DNA from stably transfected human erythroleukemic K562 cells expressing a GFP reporter transgene was transformed with sodium bisulfite, and then PCR-amplified with modified primers and sequenced. Single- and multi-copy integrants with the CTCF binding site mutated were isolated and characterized by Southern blotting. Silenced transgenes were reactivated using 5-aza-2'-deoxycytidine and Trichostatin-A, and their expression was monitored by fluorescent cytometry. Rb gene expression and protein abundance were assessed by RT-PCR and Western blotting in three different glioma cell lines, and DNA methylation of the promoter region was determined by sodium bisulfite sequencing, together with CTCF dissociation and methyl-CpG-binding protein incorporation by chromatin immunoprecipitation assays.

Results

We found that the inability of CTCF to bind to the Rb promoter causes a dramatic loss of gene expression and a progressive gain of DNA methylation.

Conclusions

This study indicates that CTCF plays an important role in maintaining the Rb promoter in an optimal chromatin configuration. The absence of CTCF induces a rapid epigenetic silencing through a progressive gain of DNA methylation. Consequently, CTCF can now be seen as one of the epigenetic components that allows the proper configuration of tumor suppressor gene promoters. Its aberrant dissociation can then predispose key genes in cancer cells to acquire DNA methylation and epigenetic silencing.
Appendix
Available only for authorised users
Literature
3.
go back to reference Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rabhan M, Schübeler D: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 2007, 39: 457-66. 10.1038/ng1990.CrossRefPubMed Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rabhan M, Schübeler D: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 2007, 39: 457-66. 10.1038/ng1990.CrossRefPubMed
4.
go back to reference Mohn F, Schübeler D: Genetics and epigenetics: stability and plasticity during cellular differentiation. Trends Genet. 2009, 25: 129-36. 10.1016/j.tig.2008.12.005.CrossRefPubMed Mohn F, Schübeler D: Genetics and epigenetics: stability and plasticity during cellular differentiation. Trends Genet. 2009, 25: 129-36. 10.1016/j.tig.2008.12.005.CrossRefPubMed
5.
go back to reference Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S, Miller J, Schlaeger T, Daley GQ, Feinberg AP: Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet. 2009, 41: 1350-3. 10.1038/ng.471.CrossRefPubMedPubMedCentral Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S, Miller J, Schlaeger T, Daley GQ, Feinberg AP: Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet. 2009, 41: 1350-3. 10.1038/ng.471.CrossRefPubMedPubMedCentral
6.
go back to reference Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C, Yamochi T, Urano T, Furukawa K, Kwabi-Addo B, Gold DL, Sekido Y, Huang TH, Issa JP: Gene silencing in cancer by histone H3 trimethylation independent of promoter DNA methylation. Nat Genet. 2008, 40: 741-50. 10.1038/ng.159.CrossRefPubMed Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C, Yamochi T, Urano T, Furukawa K, Kwabi-Addo B, Gold DL, Sekido Y, Huang TH, Issa JP: Gene silencing in cancer by histone H3 trimethylation independent of promoter DNA methylation. Nat Genet. 2008, 40: 741-50. 10.1038/ng.159.CrossRefPubMed
7.
go back to reference Coolen MW, Stirzaker C, Song JZ, Stathan AL, Kassir Z, Moreno CS, Young AN, Varma V, Speed TP, Cowley M, Lacaze P, Kaplan W, Robinson MD, Clark SJ: Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat Cell Biol. 2010, 12: 235-46.PubMedPubMedCentral Coolen MW, Stirzaker C, Song JZ, Stathan AL, Kassir Z, Moreno CS, Young AN, Varma V, Speed TP, Cowley M, Lacaze P, Kaplan W, Robinson MD, Clark SJ: Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat Cell Biol. 2010, 12: 235-46.PubMedPubMedCentral
8.
go back to reference De La Rosa-Velázquez IA, Rincón-Arano H, Benítez-Bribiesca L, Recillas-Targa F: Epigenetic regulation of the human retinoblastoma tumor suppressor gene promoter by CTCF. Cancer Res. 2007, 67: 2577-85. 10.1158/0008-5472.CAN-06-2024.CrossRefPubMed De La Rosa-Velázquez IA, Rincón-Arano H, Benítez-Bribiesca L, Recillas-Targa F: Epigenetic regulation of the human retinoblastoma tumor suppressor gene promoter by CTCF. Cancer Res. 2007, 67: 2577-85. 10.1158/0008-5472.CAN-06-2024.CrossRefPubMed
9.
go back to reference Soto-Reyes E, Recillas-Targa F: Epigenetic regulation of the human p53 gene promoter by the CTCF transcription factor in transformed cell lines. Oncogene. 2010, 29: 2217-27. 10.1038/onc.2009.509.CrossRefPubMed Soto-Reyes E, Recillas-Targa F: Epigenetic regulation of the human p53 gene promoter by the CTCF transcription factor in transformed cell lines. Oncogene. 2010, 29: 2217-27. 10.1038/onc.2009.509.CrossRefPubMed
10.
go back to reference Butcher DT, Mancini-DiNardo DN, Archer TK, Rodenhiser DI: DNA binding sites for putative methylation boundaries in the unmethylated region of the BRCA1 promoter. Int J Cancer. 2004, 111: 669-78. 10.1002/ijc.20324.CrossRefPubMed Butcher DT, Mancini-DiNardo DN, Archer TK, Rodenhiser DI: DNA binding sites for putative methylation boundaries in the unmethylated region of the BRCA1 promoter. Int J Cancer. 2004, 111: 669-78. 10.1002/ijc.20324.CrossRefPubMed
11.
go back to reference Recillas-Targa F, De La Rosa-Velázquez IA, Soto-Reyes E, Benítez-Bribiesca L: Epigenetic boundaries of tumour suppressor gene promoters: the CTCF connection and its role in carcinogenesis. J Cell Mol Med. 2006, 10: 554-68. 10.1111/j.1582-4934.2006.tb00420.x.CrossRefPubMed Recillas-Targa F, De La Rosa-Velázquez IA, Soto-Reyes E, Benítez-Bribiesca L: Epigenetic boundaries of tumour suppressor gene promoters: the CTCF connection and its role in carcinogenesis. J Cell Mol Med. 2006, 10: 554-68. 10.1111/j.1582-4934.2006.tb00420.x.CrossRefPubMed
12.
go back to reference Witcher M, Emerson BM: Epigenetic silencing of the p16 INK4a tumor suppressor is associated with loss of CTCF binding and a chromatin boundary. Mol Cell. 2009, 34: 271-84. 10.1016/j.molcel.2009.04.001.CrossRefPubMedPubMedCentral Witcher M, Emerson BM: Epigenetic silencing of the p16 INK4a tumor suppressor is associated with loss of CTCF binding and a chromatin boundary. Mol Cell. 2009, 34: 271-84. 10.1016/j.molcel.2009.04.001.CrossRefPubMedPubMedCentral
13.
go back to reference Ohtani-Fujita N, Dryia TP, Rapaport JM, Fujita T, Matsumura S, Ozasa K, Watanabe Y, Hayashi K, Maeda K, Kinoshita S, Matsumura T, Ohnishi Y, Hotta Y, Takahashi R, Kato MV, Ishizaki K, Sasaki MS, Horsthemke B, Minoda K, Sakai T: Hypermethylation in retinoblastoma gene is associated with unilateral, sporadic retinoblastoma. Cancer Genet Cytogenet. 1997, 98: 43-9. 10.1016/S0165-4608(96)00395-0.CrossRefPubMed Ohtani-Fujita N, Dryia TP, Rapaport JM, Fujita T, Matsumura S, Ozasa K, Watanabe Y, Hayashi K, Maeda K, Kinoshita S, Matsumura T, Ohnishi Y, Hotta Y, Takahashi R, Kato MV, Ishizaki K, Sasaki MS, Horsthemke B, Minoda K, Sakai T: Hypermethylation in retinoblastoma gene is associated with unilateral, sporadic retinoblastoma. Cancer Genet Cytogenet. 1997, 98: 43-9. 10.1016/S0165-4608(96)00395-0.CrossRefPubMed
14.
go back to reference Simpson DJ, Hibberts NA, McNicol AM, Clayton RN, Farrell WE: Loss of pRb expression in pituitary adenomas is associated with methylation of the Rb1 CpG island. Cancer Res. 2000, 60: 1211-6.PubMed Simpson DJ, Hibberts NA, McNicol AM, Clayton RN, Farrell WE: Loss of pRb expression in pituitary adenomas is associated with methylation of the Rb1 CpG island. Cancer Res. 2000, 60: 1211-6.PubMed
15.
go back to reference Nakamura M, Yonekawa Y, Kleihues P, Ohgaki H: Promoter hypermethylation of the RB1 gene in glioblastomas. Lab Invest. 2001, 81: 77-82.CrossRefPubMed Nakamura M, Yonekawa Y, Kleihues P, Ohgaki H: Promoter hypermethylation of the RB1 gene in glioblastomas. Lab Invest. 2001, 81: 77-82.CrossRefPubMed
16.
go back to reference Joseph B, Mamatha G, Raman G, Shanmugan MP, Kumaramanickavel G: Methylation status of RB1 promoter in indian retinoblastoma patients. Cancer Biol Ther. 2004, 3: 184-7.CrossRefPubMed Joseph B, Mamatha G, Raman G, Shanmugan MP, Kumaramanickavel G: Methylation status of RB1 promoter in indian retinoblastoma patients. Cancer Biol Ther. 2004, 3: 184-7.CrossRefPubMed
17.
go back to reference Garrick D, Fiering S, Martin DI, Whitelaw E: Repeat-induced gene silencing in mammals. Nat Genet. 1998, 18: 56-9. 10.1038/ng0198-56.CrossRefPubMed Garrick D, Fiering S, Martin DI, Whitelaw E: Repeat-induced gene silencing in mammals. Nat Genet. 1998, 18: 56-9. 10.1038/ng0198-56.CrossRefPubMed
18.
go back to reference Recillas-Targa F, Valadez-Graham V, Farrell CM: Prospects and implications of using chromatin insulators in gene therapy and transgenesis. BioEssays. 2004, 26: 796-807. 10.1002/bies.20059.CrossRefPubMed Recillas-Targa F, Valadez-Graham V, Farrell CM: Prospects and implications of using chromatin insulators in gene therapy and transgenesis. BioEssays. 2004, 26: 796-807. 10.1002/bies.20059.CrossRefPubMed
19.
go back to reference Calero-Nieto FJ, Bert AG, Cockerill PN: Transcription-dependent silencing of inducible convergent transgenes in transgenic mice. Epigenet Chromat. 2010, 19: 3-CrossRef Calero-Nieto FJ, Bert AG, Cockerill PN: Transcription-dependent silencing of inducible convergent transgenes in transgenic mice. Epigenet Chromat. 2010, 19: 3-CrossRef
20.
go back to reference Bell AC, Felsenfeld G: Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature. 2000, 405: 482-5. 10.1038/35013100.CrossRefPubMed Bell AC, Felsenfeld G: Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature. 2000, 405: 482-5. 10.1038/35013100.CrossRefPubMed
21.
go back to reference Szabó P, Tang SH, Rentsendorj A, Pfeifer GP, Mann JR: Maternal-specific footprints at putative CTCF sites in the H19 imprinting control region give evidence for insulator function. Curr Biol. 2000, 10: 607-10. 10.1016/S0960-9822(00)00489-9.CrossRefPubMed Szabó P, Tang SH, Rentsendorj A, Pfeifer GP, Mann JR: Maternal-specific footprints at putative CTCF sites in the H19 imprinting control region give evidence for insulator function. Curr Biol. 2000, 10: 607-10. 10.1016/S0960-9822(00)00489-9.CrossRefPubMed
22.
go back to reference Issa JP: CpG island methylator phenotype in cancer. Nat Rev Cancer. 2004, 4: 988-93. 10.1038/nrc1507.CrossRefPubMed Issa JP: CpG island methylator phenotype in cancer. Nat Rev Cancer. 2004, 4: 988-93. 10.1038/nrc1507.CrossRefPubMed
24.
go back to reference Gomes NP, Espinosa JM: Gene-specific repression of the p53 target gene PUMA via intragenic CTCF-cohesin binding. Genes Dev. 2010, 24: 1022-34. 10.1101/gad.1881010.CrossRefPubMedPubMedCentral Gomes NP, Espinosa JM: Gene-specific repression of the p53 target gene PUMA via intragenic CTCF-cohesin binding. Genes Dev. 2010, 24: 1022-34. 10.1101/gad.1881010.CrossRefPubMedPubMedCentral
25.
go back to reference Jothi R, Cuddapah S, Barski A, Cui K, Zhao K: Genome-wide identification on in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res. 2008, 16: 5221-31.CrossRef Jothi R, Cuddapah S, Barski A, Cui K, Zhao K: Genome-wide identification on in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res. 2008, 16: 5221-31.CrossRef
27.
go back to reference McGarvey KM, Fahrner JA, Greene E, Martens J, Jenuwein T, Baylin SB: Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatin chromatin state. Cancer Res. 2006, 66: 3541-9. 10.1158/0008-5472.CAN-05-2481.CrossRefPubMed McGarvey KM, Fahrner JA, Greene E, Martens J, Jenuwein T, Baylin SB: Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatin chromatin state. Cancer Res. 2006, 66: 3541-9. 10.1158/0008-5472.CAN-05-2481.CrossRefPubMed
28.
go back to reference Tiwari VK, McGarvey KM, Licchesi JD, Ohm JEm Herman JG, Schübeler D, Baylin SB: PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol. 2008, 6: 2911-27.CrossRefPubMed Tiwari VK, McGarvey KM, Licchesi JD, Ohm JEm Herman JG, Schübeler D, Baylin SB: PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol. 2008, 6: 2911-27.CrossRefPubMed
29.
go back to reference McGarvey KM, Greene E, Fahrner JA, Jenuwein T, Baylin SB: DNA methylation and complete transcriptional silencing of cancer genes persist after depletion of EZH2. Cancer Res. 2007, 67: 5097-102. 10.1158/0008-5472.CAN-06-2029.CrossRefPubMed McGarvey KM, Greene E, Fahrner JA, Jenuwein T, Baylin SB: DNA methylation and complete transcriptional silencing of cancer genes persist after depletion of EZH2. Cancer Res. 2007, 67: 5097-102. 10.1158/0008-5472.CAN-06-2029.CrossRefPubMed
30.
go back to reference Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C, Yamochi T, Urano T, Furukawa K, Kwabi-Addo B, Gold DL, Sekido Y, Huang TH, Issa JP: Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet. 2008, 40: 741-50. 10.1038/ng.159.CrossRefPubMed Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C, Yamochi T, Urano T, Furukawa K, Kwabi-Addo B, Gold DL, Sekido Y, Huang TH, Issa JP: Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet. 2008, 40: 741-50. 10.1038/ng.159.CrossRefPubMed
31.
go back to reference Jiang Z, Guo Z, Saad FA, Ellis J, Zacksenhaus E: Retinoblastoma gene promoter directs transgene expression exclusively to the nervous system. J Biol Chem. 2001, 276: 593-600.CrossRefPubMed Jiang Z, Guo Z, Saad FA, Ellis J, Zacksenhaus E: Retinoblastoma gene promoter directs transgene expression exclusively to the nervous system. J Biol Chem. 2001, 276: 593-600.CrossRefPubMed
32.
go back to reference Farrar D, Rai S, Chernukhin I, Jagodic M, Ito Y, Yammine S, Ohlsson R, Murrell A, Klenova E: Mutational analysis of the poly(ADP-ribosyl)ation sites of the transcription factor CTCF provides an insight into the mechanism of its regulation by poly(ADP-ribosyl)ation. Mol Cell Biol. 2010, 30: 1199-216. 10.1128/MCB.00827-09.CrossRefPubMed Farrar D, Rai S, Chernukhin I, Jagodic M, Ito Y, Yammine S, Ohlsson R, Murrell A, Klenova E: Mutational analysis of the poly(ADP-ribosyl)ation sites of the transcription factor CTCF provides an insight into the mechanism of its regulation by poly(ADP-ribosyl)ation. Mol Cell Biol. 2010, 30: 1199-216. 10.1128/MCB.00827-09.CrossRefPubMed
33.
go back to reference Guastafierro T, Cecchinelli B, Zampieri M, Reale A, Riggio G, Sthandier O, Zupi G, Calabrese L, Caiafa P: CCCTC-binding factor activates PARP-1 affecting DNA methylation machinery. J Biol Chem. 2008, 283: 21873-80. 10.1074/jbc.M801170200.CrossRefPubMedPubMedCentral Guastafierro T, Cecchinelli B, Zampieri M, Reale A, Riggio G, Sthandier O, Zupi G, Calabrese L, Caiafa P: CCCTC-binding factor activates PARP-1 affecting DNA methylation machinery. J Biol Chem. 2008, 283: 21873-80. 10.1074/jbc.M801170200.CrossRefPubMedPubMedCentral
34.
go back to reference Gupsta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumars , Chan HY: Long non-coding RNA HOTAIR mediates global gene repression in the p53 response. Cell. 2010, 142: 409-19. 10.1016/j.cell.2010.06.040.CrossRef Gupsta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumars , Chan HY: Long non-coding RNA HOTAIR mediates global gene repression in the p53 response. Cell. 2010, 142: 409-19. 10.1016/j.cell.2010.06.040.CrossRef
35.
go back to reference Huarte A, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010, 142: 409-19. 10.1016/j.cell.2010.06.040.CrossRefPubMedPubMedCentral Huarte A, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010, 142: 409-19. 10.1016/j.cell.2010.06.040.CrossRefPubMedPubMedCentral
Metadata
Title
Gain of DNA methylation is enhanced in the absence of CTCF at the human retinoblastoma gene promoter
Publication date
01-12-2011
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-232

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine