Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

ER stress drives Lipocalin 2 upregulation in prostate cancer cells in an NF-κB-dependent manner

Authors: Navin R Mahadevan, Jeffrey Rodvold, Gonzalo Almanza, Antonio Fernández Pérez, Matthew C Wheeler, Maurizio Zanetti

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

Tumor cells adapt to endoplasmic reticulum (ER) stress through a set of conserved intracellular pathways, as part of a process termed the unfolded protein response (UPR). The expression of UPR genes/proteins correlates with increasing progression and poor clinical outcome of several tumor types, including prostate cancer. UPR signaling can activate NF-κB, a master regulator of transcription of pro-inflammatory, tumorigenic cytokines. Previous studies have shown that Lipocalin 2 (Lcn2) is upregulated in several epithelial cancers, including prostate cancer, and recently Lcn2 was implicated as a key mediator of breast cancer progression. Here, we hypothesize that the tumor cell UPR regulates Lcn2 production.

Methods

We interrogated Lcn2 regulation in murine and human prostate cancer cells undergoing pharmacological and physiological ER stress, and tested UPR and NF-κB dependence by using pharmacological inhibitors of these signaling pathways.

Results

Induction of ER stress using thapsigargin (Tg), a canonical pharmacologic ER stress inducer, or via glucose deprivation, a physiologic ER stressor present in the tumor microenvironment, upregulates LCN2 production in murine and human prostate cancer cells. Inhibition of the UPR using 4-phenylbutyric acid (PBA) dramatically decreases Lcn2 transcription and translation. Inhibition of NF-κB in prostate cancer cells undergoing Tg-mediated ER stress by BAY 11-7082 abrogates Lcn2 upregulation.

Conclusions

We conclude that the UPR activates Lcn2 production in prostate cancer cells in an NF-κB-dependent manner. Our results imply that the observed upregulation of Lipocalin 2 in various types of cancer cells may be the direct consequence of concomitant UPR activation, and that the ER stress/Lipocalin 2 axis is a potential new target for intervention in cancer progression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Yang J, Bielenberg DR, Rodig SJ, Doiron R, Clifton MC, Kung AL, Strong RK, Zurakowski D, Moses MA: Lipocalin 2 promotes breast cancer progression. Proc Natl Acad Sci USA. 2009, 106 (10): 3913-3918. 10.1073/pnas.0810617106.CrossRefPubMedPubMedCentral Yang J, Bielenberg DR, Rodig SJ, Doiron R, Clifton MC, Kung AL, Strong RK, Zurakowski D, Moses MA: Lipocalin 2 promotes breast cancer progression. Proc Natl Acad Sci USA. 2009, 106 (10): 3913-3918. 10.1073/pnas.0810617106.CrossRefPubMedPubMedCentral
2.
go back to reference Leng X, Ding T, Lin H, Wang Y, Hu L, Hu J, Feig B, Zhang W, Pusztai L, Symmans WF, Wu Y, Arlinghaus RB: Inhibition of lipocalin 2 impairs breast tumorigenesis and metastasis. Cancer Res. 2009, 69 (22): 8579-8584. 10.1158/0008-5472.CAN-09-1934.CrossRefPubMed Leng X, Ding T, Lin H, Wang Y, Hu L, Hu J, Feig B, Zhang W, Pusztai L, Symmans WF, Wu Y, Arlinghaus RB: Inhibition of lipocalin 2 impairs breast tumorigenesis and metastasis. Cancer Res. 2009, 69 (22): 8579-8584. 10.1158/0008-5472.CAN-09-1934.CrossRefPubMed
3.
go back to reference Berger T, Cheung CC, Elia AJ, Mak TW: Disruption of the Lcn2 gene in mice suppresses primary mammary tumor formation but does not decrease lung metastasis. Proc Natl Acad Sci USA. 2010, 107 (7): 2995-3000. 10.1073/pnas.1000101107.CrossRefPubMedPubMedCentral Berger T, Cheung CC, Elia AJ, Mak TW: Disruption of the Lcn2 gene in mice suppresses primary mammary tumor formation but does not decrease lung metastasis. Proc Natl Acad Sci USA. 2010, 107 (7): 2995-3000. 10.1073/pnas.1000101107.CrossRefPubMedPubMedCentral
4.
go back to reference Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N: Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem. 1993, 268 (14): 10425-10432.PubMed Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N: Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem. 1993, 268 (14): 10425-10432.PubMed
5.
go back to reference Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK: The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell. 2002, 10 (5): 1033-1043. 10.1016/S1097-2765(02)00708-6.CrossRefPubMed Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK: The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell. 2002, 10 (5): 1033-1043. 10.1016/S1097-2765(02)00708-6.CrossRefPubMed
6.
go back to reference Bao G, Clifton M, Hoette TM, Mori K, Deng SX, Qiu A, Viltard M, Williams D, Paragas N, Leete T, Kulkarni R, Li X, Lee B, Kalandadze A, Ratner AJ, Pizarro JC, Schmidt-Ott KM, Landry DW, Raymond KN, Strong RK, Barasch J: Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat Chem Biol. 2010, 6 (8): 602-609.CrossRefPubMedPubMedCentral Bao G, Clifton M, Hoette TM, Mori K, Deng SX, Qiu A, Viltard M, Williams D, Paragas N, Leete T, Kulkarni R, Li X, Lee B, Kalandadze A, Ratner AJ, Pizarro JC, Schmidt-Ott KM, Landry DW, Raymond KN, Strong RK, Barasch J: Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat Chem Biol. 2010, 6 (8): 602-609.CrossRefPubMedPubMedCentral
7.
go back to reference Devireddy LR, Hart DO, Goetz DH, Green MR: A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell. 141 (6): 1006-1017. Devireddy LR, Hart DO, Goetz DH, Green MR: A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell. 141 (6): 1006-1017.
8.
go back to reference Yang J, Goetz D, Li JY, Wang W, Mori K, Setlik D, Du T, Erdjument-Bromage H, Tempst P, Strong R, Barasch J: An iron delivery pathway mediated by a lipocalin. Mol Cell. 2002, 10 (5): 1045-1056. 10.1016/S1097-2765(02)00710-4.CrossRefPubMed Yang J, Goetz D, Li JY, Wang W, Mori K, Setlik D, Du T, Erdjument-Bromage H, Tempst P, Strong R, Barasch J: An iron delivery pathway mediated by a lipocalin. Mol Cell. 2002, 10 (5): 1045-1056. 10.1016/S1097-2765(02)00710-4.CrossRefPubMed
9.
go back to reference Xu S, Venge P: Lipocalins as biochemical markers of disease. Biochim Biophys Acta. 2000, 1482 (1-2): 298-307. 10.1016/S0167-4838(00)00163-1.CrossRefPubMed Xu S, Venge P: Lipocalins as biochemical markers of disease. Biochim Biophys Acta. 2000, 1482 (1-2): 298-307. 10.1016/S0167-4838(00)00163-1.CrossRefPubMed
10.
go back to reference Iannetti A, Pacifico F, Acquaviva R, Lavorgna A, Crescenzi E, Vascotto C, Tell G, Salzano AM, Scaloni A, Vuttariello E, Chiappetta G, Formisano S, Leonardi A: The neutrophil gelatinase-associated lipocalin (NGAL), a NF-kappaB-regulated gene, is a survival factor for thyroid neoplastic cells. Proc Natl Acad Sci USA. 2008, 105 (37): 14058-14063. 10.1073/pnas.0710846105.CrossRefPubMedPubMedCentral Iannetti A, Pacifico F, Acquaviva R, Lavorgna A, Crescenzi E, Vascotto C, Tell G, Salzano AM, Scaloni A, Vuttariello E, Chiappetta G, Formisano S, Leonardi A: The neutrophil gelatinase-associated lipocalin (NGAL), a NF-kappaB-regulated gene, is a survival factor for thyroid neoplastic cells. Proc Natl Acad Sci USA. 2008, 105 (37): 14058-14063. 10.1073/pnas.0710846105.CrossRefPubMedPubMedCentral
11.
go back to reference Li SH, Hawthorne VS, Neal CL, Sanghera S, Xu J, Yang J, Guo H, Steeg PS, Yu D: Upregulation of neutrophil gelatinase-associated lipocalin by ErbB2 through nuclear factor-kappaB activation. Cancer Res. 2009, 69 (24): 9163-9168. 10.1158/0008-5472.CAN-09-2483.CrossRefPubMedPubMedCentral Li SH, Hawthorne VS, Neal CL, Sanghera S, Xu J, Yang J, Guo H, Steeg PS, Yu D: Upregulation of neutrophil gelatinase-associated lipocalin by ErbB2 through nuclear factor-kappaB activation. Cancer Res. 2009, 69 (24): 9163-9168. 10.1158/0008-5472.CAN-09-2483.CrossRefPubMedPubMedCentral
12.
go back to reference Ma Y, Hendershot LM: The role of the unfolded protein response in tumour development: friend or foe?. Nat Rev Cancer. 2004, 4 (12): 966-977. 10.1038/nrc1505.CrossRefPubMed Ma Y, Hendershot LM: The role of the unfolded protein response in tumour development: friend or foe?. Nat Rev Cancer. 2004, 4 (12): 966-977. 10.1038/nrc1505.CrossRefPubMed
13.
go back to reference Harding HP, Calfon M, Urano F, Novoa I, Ron D: Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol. 2002, 18: 575-599. 10.1146/annurev.cellbio.18.011402.160624.CrossRefPubMed Harding HP, Calfon M, Urano F, Novoa I, Ron D: Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol. 2002, 18: 575-599. 10.1146/annurev.cellbio.18.011402.160624.CrossRefPubMed
14.
15.
go back to reference Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ: Cancer statistics, 2004. CA Cancer J Clin. 2004, 54 (1): 8-29. 10.3322/canjclin.54.1.8.CrossRefPubMed Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ: Cancer statistics, 2004. CA Cancer J Clin. 2004, 54 (1): 8-29. 10.3322/canjclin.54.1.8.CrossRefPubMed
16.
go back to reference Fu Y, Wey S, Wang M, Ye R, Liao CP, Roy-Burman P, Lee AS: Pten null prostate tumorigenesis and AKT activation are blocked by targeted knockout of ER chaperone GRP78/BiP in prostate epithelium. Proc Natl Acad Sci USA. 2008, 105 (49): 19444-19449. 10.1073/pnas.0807691105.CrossRefPubMedPubMedCentral Fu Y, Wey S, Wang M, Ye R, Liao CP, Roy-Burman P, Lee AS: Pten null prostate tumorigenesis and AKT activation are blocked by targeted knockout of ER chaperone GRP78/BiP in prostate epithelium. Proc Natl Acad Sci USA. 2008, 105 (49): 19444-19449. 10.1073/pnas.0807691105.CrossRefPubMedPubMedCentral
17.
go back to reference Daneshmand S, Quek ML, Lin E, Lee C, Cote RJ, Hawes D, Cai J, Groshen S, Lieskovsky G, Skinner DG, Lee AS, Pinski J: Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival. Hum Pathol. 2007, 38 (10): 1547-1552. 10.1016/j.humpath.2007.03.014.CrossRefPubMed Daneshmand S, Quek ML, Lin E, Lee C, Cote RJ, Hawes D, Cai J, Groshen S, Lieskovsky G, Skinner DG, Lee AS, Pinski J: Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival. Hum Pathol. 2007, 38 (10): 1547-1552. 10.1016/j.humpath.2007.03.014.CrossRefPubMed
18.
go back to reference Roy R, Louis G, Loughlin KR, Wiederschain D, Kilroy SM, Lamb CC, Zurakowski D, Moses MA: Tumor-specific urinary matrix metalloproteinase fingerprinting: identification of high molecular weight urinary matrix metalloproteinase species. Clin Cancer Res. 2008, 14 (20): 6610-6617. 10.1158/1078-0432.CCR-08-1136.CrossRefPubMedPubMedCentral Roy R, Louis G, Loughlin KR, Wiederschain D, Kilroy SM, Lamb CC, Zurakowski D, Moses MA: Tumor-specific urinary matrix metalloproteinase fingerprinting: identification of high molecular weight urinary matrix metalloproteinase species. Clin Cancer Res. 2008, 14 (20): 6610-6617. 10.1158/1078-0432.CCR-08-1136.CrossRefPubMedPubMedCentral
19.
go back to reference Wheeler MC, Rizzi M, Sasik R, Almanza G, Hardiman G, Zanetti M: KDEL-Retained Antigen in B Lymphocytes Induces a Proinflammatory Response: A Possible Role for Endoplasmic Reticulum Stress in Adaptive T Cell Immunity. J Immunol. 2008, 181 (1): 256-264.CrossRefPubMed Wheeler MC, Rizzi M, Sasik R, Almanza G, Hardiman G, Zanetti M: KDEL-Retained Antigen in B Lymphocytes Induces a Proinflammatory Response: A Possible Role for Endoplasmic Reticulum Stress in Adaptive T Cell Immunity. J Immunol. 2008, 181 (1): 256-264.CrossRefPubMed
20.
go back to reference Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO, Cunha GR, Donjacour AA, Matusik RJ, Rosen JM: Prostate cancer in a transgenic mouse. Proceedings of the National Academy of Sciences of the United States of America. 1995, 92 (8): 3439-3443. 10.1073/pnas.92.8.3439.CrossRefPubMedPubMedCentral Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO, Cunha GR, Donjacour AA, Matusik RJ, Rosen JM: Prostate cancer in a transgenic mouse. Proceedings of the National Academy of Sciences of the United States of America. 1995, 92 (8): 3439-3443. 10.1073/pnas.92.8.3439.CrossRefPubMedPubMedCentral
21.
go back to reference Hurwitz AA, Foster BA, Allison JP, Greenberg NM, Kwon ED: The TRAMP mouse as a model for prostate cancer. Curr Protoc Immunol. 2001, Chapter 20: Unit 20 25 Hurwitz AA, Foster BA, Allison JP, Greenberg NM, Kwon ED: The TRAMP mouse as a model for prostate cancer. Curr Protoc Immunol. 2001, Chapter 20: Unit 20 25
22.
go back to reference Stathopoulos GT, Zhu Z, Everhart MB, Kalomenidis I, Lawson WE, Bilaceroglu S, Peterson TE, Mitchell D, Yull FE, Light RW, Blackwell TS: Nuclear factor-kappaB affects tumor progression in a mouse model of malignant pleural effusion. Am J Respir Cell Mol Biol. 2006, 34 (2): 142-150. 10.1165/rcmb.2005-0130OC.CrossRefPubMed Stathopoulos GT, Zhu Z, Everhart MB, Kalomenidis I, Lawson WE, Bilaceroglu S, Peterson TE, Mitchell D, Yull FE, Light RW, Blackwell TS: Nuclear factor-kappaB affects tumor progression in a mouse model of malignant pleural effusion. Am J Respir Cell Mol Biol. 2006, 34 (2): 142-150. 10.1165/rcmb.2005-0130OC.CrossRefPubMed
23.
go back to reference Hung JH, Su IJ, Lei HY, Wang HC, Lin WC, Chang WT, Huang W, Chang WC, Chang YS, Chen CC, Lai MD: Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated protein kinase. J Biol Chem. 2004, 279 (45): 46384-46392. 10.1074/jbc.M403568200.CrossRefPubMed Hung JH, Su IJ, Lei HY, Wang HC, Lin WC, Chang WT, Huang W, Chang WC, Chang YS, Chen CC, Lai MD: Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated protein kinase. J Biol Chem. 2004, 279 (45): 46384-46392. 10.1074/jbc.M403568200.CrossRefPubMed
24.
go back to reference Kaneko M, Niinuma Y, Nomura Y: Activation signal of nuclear factor-kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol Pharm Bull. 2003, 26 (7): 931-935. 10.1248/bpb.26.931.CrossRefPubMed Kaneko M, Niinuma Y, Nomura Y: Activation signal of nuclear factor-kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol Pharm Bull. 2003, 26 (7): 931-935. 10.1248/bpb.26.931.CrossRefPubMed
25.
go back to reference Grivennikov S, Karin M: Autocrine IL-6 signaling: a key event in tumorigenesis?. Cancer Cell. 2008, 13 (1): 7-9. 10.1016/j.ccr.2007.12.020.CrossRefPubMed Grivennikov S, Karin M: Autocrine IL-6 signaling: a key event in tumorigenesis?. Cancer Cell. 2008, 13 (1): 7-9. 10.1016/j.ccr.2007.12.020.CrossRefPubMed
26.
go back to reference Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K, Basham B, McClanahan T, Kastelein RA, Oft M: IL-23 promotes tumour incidence and growth. Nature. 2006, 442 (7101): 461-465. 10.1038/nature04808.CrossRefPubMed Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K, Basham B, McClanahan T, Kastelein RA, Oft M: IL-23 promotes tumour incidence and growth. Nature. 2006, 442 (7101): 461-465. 10.1038/nature04808.CrossRefPubMed
27.
go back to reference Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, Hotamisligil GS: Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006, 313 (5790): 1137-1140. 10.1126/science.1128294.CrossRefPubMedPubMedCentral Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, Hotamisligil GS: Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006, 313 (5790): 1137-1140. 10.1126/science.1128294.CrossRefPubMedPubMedCentral
28.
go back to reference Pierce JW, Schoenleber R, Jesmok G, Best J, Moore SA, Collins T, Gerritsen ME: Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem. 1997, 272 (34): 21096-21103. 10.1074/jbc.272.34.21096.CrossRefPubMed Pierce JW, Schoenleber R, Jesmok G, Best J, Moore SA, Collins T, Gerritsen ME: Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem. 1997, 272 (34): 21096-21103. 10.1074/jbc.272.34.21096.CrossRefPubMed
29.
go back to reference Cooper GM: Oncogenes. 1990, Boston MA: Jones and Bartlett Publishers Inc., 1 Cooper GM: Oncogenes. 1990, Boston MA: Jones and Bartlett Publishers Inc., 1
30.
go back to reference Flowers MT, Keller MP, Choi Y, Lan H, Kendziorski C, Ntambi JM, Attie AD: Liver gene expression analysis reveals endoplasmic reticulum stress and metabolic dysfunction in SCD1-deficient mice fed a very low-fat diet. Physiol Genomics. 2008, 33 (3): 361-372. 10.1152/physiolgenomics.00139.2007.CrossRefPubMed Flowers MT, Keller MP, Choi Y, Lan H, Kendziorski C, Ntambi JM, Attie AD: Liver gene expression analysis reveals endoplasmic reticulum stress and metabolic dysfunction in SCD1-deficient mice fed a very low-fat diet. Physiol Genomics. 2008, 33 (3): 361-372. 10.1152/physiolgenomics.00139.2007.CrossRefPubMed
31.
go back to reference Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ, Sonenberg N, Harding HP, Ron D: Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol. 2004, 24 (23): 10161-10168. 10.1128/MCB.24.23.10161-10168.2004.CrossRefPubMedPubMedCentral Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ, Sonenberg N, Harding HP, Ron D: Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol. 2004, 24 (23): 10161-10168. 10.1128/MCB.24.23.10161-10168.2004.CrossRefPubMedPubMedCentral
32.
go back to reference Shen F, Hu Z, Goswami J, Gaffen SL: Identification of common transcriptional regulatory elements in interleukin-17 target genes. J Biol Chem. 2006, 281 (34): 24138-24148. 10.1074/jbc.M604597200.CrossRefPubMed Shen F, Hu Z, Goswami J, Gaffen SL: Identification of common transcriptional regulatory elements in interleukin-17 target genes. J Biol Chem. 2006, 281 (34): 24138-24148. 10.1074/jbc.M604597200.CrossRefPubMed
33.
go back to reference Dong D, Ni M, Li J, Xiong S, Ye W, Virrey JJ, Mao C, Ye R, Wang M, Pen L, Dubeau L, Groshen S, Hofman FM, Lee AS: Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res. 2008, 68 (2): 498-505. 10.1158/0008-5472.CAN-07-2950.CrossRefPubMed Dong D, Ni M, Li J, Xiong S, Ye W, Virrey JJ, Mao C, Ye R, Wang M, Pen L, Dubeau L, Groshen S, Hofman FM, Lee AS: Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res. 2008, 68 (2): 498-505. 10.1158/0008-5472.CAN-07-2950.CrossRefPubMed
34.
go back to reference Bi M, Naczki C, Koritzinsky M, Fels D, Blais J, Hu N, Harding H, Novoa I, Varia M, Raleigh RJ, Bell J, Ron D, Wouters BG, Koumenis C: ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J. 2005, 24 (19): 3470-3481. 10.1038/sj.emboj.7600777.CrossRefPubMedPubMedCentral Bi M, Naczki C, Koritzinsky M, Fels D, Blais J, Hu N, Harding H, Novoa I, Varia M, Raleigh RJ, Bell J, Ron D, Wouters BG, Koumenis C: ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J. 2005, 24 (19): 3470-3481. 10.1038/sj.emboj.7600777.CrossRefPubMedPubMedCentral
35.
go back to reference Zhuang L, Scolyer RA, Lee CS, McCarthy SW, Cooper WA, Zhang XD, Thompson JF, Hersey P: Expression of glucose-regulated stress protein GRP78 is related to progression of melanoma. Histopathology. 2009, 54 (4): 462-470. 10.1111/j.1365-2559.2009.03242.x.CrossRefPubMed Zhuang L, Scolyer RA, Lee CS, McCarthy SW, Cooper WA, Zhang XD, Thompson JF, Hersey P: Expression of glucose-regulated stress protein GRP78 is related to progression of melanoma. Histopathology. 2009, 54 (4): 462-470. 10.1111/j.1365-2559.2009.03242.x.CrossRefPubMed
36.
go back to reference Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, et al: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005, 310 (5748): 644-648. 10.1126/science.1117679.CrossRefPubMed Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, et al: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005, 310 (5748): 644-648. 10.1126/science.1117679.CrossRefPubMed
37.
go back to reference Lee AS: GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 2007, 67 (8): 3496-3499. 10.1158/0008-5472.CAN-07-0325.CrossRefPubMed Lee AS: GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 2007, 67 (8): 3496-3499. 10.1158/0008-5472.CAN-07-0325.CrossRefPubMed
Metadata
Title
ER stress drives Lipocalin 2 upregulation in prostate cancer cells in an NF-κB-dependent manner
Authors
Navin R Mahadevan
Jeffrey Rodvold
Gonzalo Almanza
Antonio Fernández Pérez
Matthew C Wheeler
Maurizio Zanetti
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-229

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine