Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

Antiprogestin mifepristone inhibits the growth of cancer cells of reproductive and non-reproductive origin regardless of progesterone receptor expression

Authors: Chelsea R Tieszen, Alicia A Goyeneche, BreeAnn N Brandhagen, Casey T Ortbahn, Carlos M Telleria

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

Mifepristone (MF) has been largely used in reproductive medicine due to its capacity to modulate the progesterone receptor (PR). The study of MF has been expanded to the field of oncology; yet it remains unclear whether the expression of PR is required for MF to act as an anti-cancer agent. Our laboratory has shown that MF is a potent inhibitor of ovarian cancer cell growth. In this study we questioned whether the growth inhibitory properties of MF observed in ovarian cancer cells would translate to other cancers of reproductive and non-reproductive origin and, importantly, whether its efficacy is related to the expression of cognate PR.

Methods

Dose-response experiments were conducted with cancer cell lines of the nervous system, breast, prostate, ovary, and bone. Cultures were exposed to vehicle or increasing concentrations of MF for 72 h and analysed for cell number and cell cycle traverse, and hypodiploid DNA content characteristic of apoptotic cell death. For all cell lines, expression of steroid hormone receptors upon treatment with vehicle or cytostatic doses of MF for 24 h was studied by Western blot, whereas the activity of the G1/S regulatory protein Cdk2 in both treatment groups was monitored in vitro by the capacity of Cdk2 to phosphorylate histone H1.

Results

MF growth inhibited all cancer cell lines regardless of tissue of origin and hormone responsiveness, and reduced the activity of Cdk2. Cancer cells in which MF induced G1 growth arrest were less susceptible to lethality in the presence of high concentrations of MF, when compared to cancer cells that did not accumulate in G1. While all cancer cell lines were growth inhibited by MF, only the breast cancer MCF-7 cells expressed cognate PR.

Conclusions

Antiprogestin MF inhibits the growth of different cancer cell lines with a cytostatic effect at lower concentrations in association with a decline in the activity of the cell cycle regulatory protein Cdk2, and apoptotic lethality at higher doses in association with increased hypodiploid DNA content. Contrary to common opinion, growth inhibition of cancer cells by antiprogestin MF is not dependent upon expression of classical, nuclear PR.
Appendix
Available only for authorised users
Literature
1.
go back to reference Benagiano G, Bastianelli C, Farris M: Selective progesterone receptor modulators 1: use during pregnancy. Expert Opin Pharmacother. 2008, 9 (14): 2459-2472. 10.1517/14656566.9.14.2459.CrossRefPubMed Benagiano G, Bastianelli C, Farris M: Selective progesterone receptor modulators 1: use during pregnancy. Expert Opin Pharmacother. 2008, 9 (14): 2459-2472. 10.1517/14656566.9.14.2459.CrossRefPubMed
2.
go back to reference Benagiano G, Bastianelli C, Farris M: Selective progesterone receptor modulators 2: use in reproductive medicine. Expert Opin Pharmacother. 2008, 9 (14): 2473-2485. 10.1517/14656566.9.14.2473.CrossRefPubMed Benagiano G, Bastianelli C, Farris M: Selective progesterone receptor modulators 2: use in reproductive medicine. Expert Opin Pharmacother. 2008, 9 (14): 2473-2485. 10.1517/14656566.9.14.2473.CrossRefPubMed
3.
go back to reference Moller C, Hoffmann J, Kirkland TA, Schwede W: Investigational developments for the treatment of progesterone-dependent diseases. Expert Opin Investig Drugs. 2008, 17 (4): 469-479. 10.1517/13543784.17.4.469.CrossRefPubMed Moller C, Hoffmann J, Kirkland TA, Schwede W: Investigational developments for the treatment of progesterone-dependent diseases. Expert Opin Investig Drugs. 2008, 17 (4): 469-479. 10.1517/13543784.17.4.469.CrossRefPubMed
4.
go back to reference Benagiano G, Bastianelli C, Farris M: Selective progesterone receptor modulators 3: use in oncology, endocrinology and psychiatry. Expert Opin Pharmacother. 2008, 9 (14): 2487-2496. 10.1517/14656566.9.14.2487.CrossRefPubMed Benagiano G, Bastianelli C, Farris M: Selective progesterone receptor modulators 3: use in oncology, endocrinology and psychiatry. Expert Opin Pharmacother. 2008, 9 (14): 2487-2496. 10.1517/14656566.9.14.2487.CrossRefPubMed
5.
go back to reference Horwitz KB: The antiprogestin RU38 486: receptor-mediated progestin versus antiprogestin actions screened in estrogen-insensitive T47Dco human breast cancer cells. Endocrinology. 1985, 116 (6): 2236-2245. 10.1210/endo-116-6-2236.CrossRefPubMed Horwitz KB: The antiprogestin RU38 486: receptor-mediated progestin versus antiprogestin actions screened in estrogen-insensitive T47Dco human breast cancer cells. Endocrinology. 1985, 116 (6): 2236-2245. 10.1210/endo-116-6-2236.CrossRefPubMed
6.
go back to reference Lin VC, Aw SE, Ng EH, Tan MG: Demonstration of mixed properties of RU486 in progesterone receptor (PR)-transfected MDA-MB-231 cells: a model for studying the functions of progesterone analogues. Br J Cancer. 2001, 85 (12): 1978-1986. 10.1054/bjoc.2001.2167.CrossRefPubMedPubMedCentral Lin VC, Aw SE, Ng EH, Tan MG: Demonstration of mixed properties of RU486 in progesterone receptor (PR)-transfected MDA-MB-231 cells: a model for studying the functions of progesterone analogues. Br J Cancer. 2001, 85 (12): 1978-1986. 10.1054/bjoc.2001.2167.CrossRefPubMedPubMedCentral
7.
go back to reference Liang Y, Hou M, Kallab AM, Barrett JT, El Etreby F, Schoenlein PV: Induction of antiproliferation and apoptosis in estrogen receptor negative MDA-231 human breast cancer cells by mifepristone and 4-hydroxytamoxifen combination therapy: a role for TGFbeta1. Int J Oncol. 2003, 23 (2): 369-380.PubMed Liang Y, Hou M, Kallab AM, Barrett JT, El Etreby F, Schoenlein PV: Induction of antiproliferation and apoptosis in estrogen receptor negative MDA-231 human breast cancer cells by mifepristone and 4-hydroxytamoxifen combination therapy: a role for TGFbeta1. Int J Oncol. 2003, 23 (2): 369-380.PubMed
8.
go back to reference El Etreby MF, Liang Y, Lewis RW: Induction of apoptosis by mifepristone and tamoxifen in human LNCaP prostate cancer cells in culture. Prostate. 2000, 43 (1): 31-42. 10.1002/(SICI)1097-0045(20000401)43:1<31::AID-PROS5>3.0.CO;2-#.CrossRefPubMed El Etreby MF, Liang Y, Lewis RW: Induction of apoptosis by mifepristone and tamoxifen in human LNCaP prostate cancer cells in culture. Prostate. 2000, 43 (1): 31-42. 10.1002/(SICI)1097-0045(20000401)43:1<31::AID-PROS5>3.0.CO;2-#.CrossRefPubMed
9.
go back to reference Moe BT, Vereide AB, Orbo A, Jaeger R, Sager G: Levonorgestrel, medroxyprogesterone and progesterone cause a concentration-dependent reduction in endometrial cancer (Ishikawa) cell density, and high concentrations of progesterone and mifepristone act in synergy. Anticancer Research. 2009, 29 (4): 1047-1052.PubMed Moe BT, Vereide AB, Orbo A, Jaeger R, Sager G: Levonorgestrel, medroxyprogesterone and progesterone cause a concentration-dependent reduction in endometrial cancer (Ishikawa) cell density, and high concentrations of progesterone and mifepristone act in synergy. Anticancer Research. 2009, 29 (4): 1047-1052.PubMed
10.
go back to reference Moe BG, Vereide AB, Orbo A, Sager G: High concentrations of progesterone and mifepristone mutually reinforce cell cycle retardation and induction of apoptosis. Anticancer Research. 2009, 29 (4): 1053-1058.PubMed Moe BG, Vereide AB, Orbo A, Sager G: High concentrations of progesterone and mifepristone mutually reinforce cell cycle retardation and induction of apoptosis. Anticancer Research. 2009, 29 (4): 1053-1058.PubMed
11.
go back to reference Fjelldal R, Moe BT, Orbo A, Sager G: MCF-7 cell apoptosis and cell cycle arrest: non-genomic effects of progesterone and mifepristone (RU-486). Anticancer Research. 2010, 30 (12): 4835-4840.PubMed Fjelldal R, Moe BT, Orbo A, Sager G: MCF-7 cell apoptosis and cell cycle arrest: non-genomic effects of progesterone and mifepristone (RU-486). Anticancer Research. 2010, 30 (12): 4835-4840.PubMed
12.
go back to reference Lin MF, Kawachi MH, Stallcup MR, Grunberg SM, Lin FF: Growth inhibition of androgen-insensitive human prostate carcinoma cells by a 19-norsteroid derivative agent, mifepristone. Prostate. 1995, 26 (4): 194-204. 10.1002/pros.2990260405.CrossRefPubMed Lin MF, Kawachi MH, Stallcup MR, Grunberg SM, Lin FF: Growth inhibition of androgen-insensitive human prostate carcinoma cells by a 19-norsteroid derivative agent, mifepristone. Prostate. 1995, 26 (4): 194-204. 10.1002/pros.2990260405.CrossRefPubMed
13.
go back to reference Goyeneche AA, Caron RW, Telleria CM: Mifepristone inhibits ovarian cancer cell growth in vitro and in vivo. Clin Cancer Res. 2007, 13 (11): 3370-3379. 10.1158/1078-0432.CCR-07-0164.CrossRefPubMedPubMedCentral Goyeneche AA, Caron RW, Telleria CM: Mifepristone inhibits ovarian cancer cell growth in vitro and in vivo. Clin Cancer Res. 2007, 13 (11): 3370-3379. 10.1158/1078-0432.CCR-07-0164.CrossRefPubMedPubMedCentral
14.
go back to reference Freeburg EM, Goyeneche AA, Seidel EE, Telleria CM: Resistance to cisplatin does not affect sensitivity of human ovarian cancer cell lines to mifepristone cytotoxicity. Cancer Cell Int. 2009, 9: 4-10.1186/1475-2867-9-4.CrossRefPubMedPubMedCentral Freeburg EM, Goyeneche AA, Seidel EE, Telleria CM: Resistance to cisplatin does not affect sensitivity of human ovarian cancer cell lines to mifepristone cytotoxicity. Cancer Cell Int. 2009, 9: 4-10.1186/1475-2867-9-4.CrossRefPubMedPubMedCentral
15.
go back to reference Freeburg EM, Goyeneche AA, Telleria CM: Mifepristone abrogates repopulation of ovarian cancer cells in between courses of cisplatin treatment. Int J Oncol. 2009, 34 (3): 743-755.PubMedPubMedCentral Freeburg EM, Goyeneche AA, Telleria CM: Mifepristone abrogates repopulation of ovarian cancer cells in between courses of cisplatin treatment. Int J Oncol. 2009, 34 (3): 743-755.PubMedPubMedCentral
16.
go back to reference Fauvet R, Dufournet Etienne C, Poncelet C, Bringuier AF, Feldmann G, Darai E: Effects of progesterone and anti-progestin (mifepristone) treatment on proliferation and apoptosis of the human ovarian cancer cell line, OVCAR-3. Oncol Rep. 2006, 15 (4): 743-748.PubMed Fauvet R, Dufournet Etienne C, Poncelet C, Bringuier AF, Feldmann G, Darai E: Effects of progesterone and anti-progestin (mifepristone) treatment on proliferation and apoptosis of the human ovarian cancer cell line, OVCAR-3. Oncol Rep. 2006, 15 (4): 743-748.PubMed
17.
go back to reference Rose FV, Barnea ER: Response of human ovarian carcinoma cell lines to antiprogestin mifepristone. Oncogene. 1996, 12 (5): 999-1003.PubMed Rose FV, Barnea ER: Response of human ovarian carcinoma cell lines to antiprogestin mifepristone. Oncogene. 1996, 12 (5): 999-1003.PubMed
18.
go back to reference Akahira J, Suzuki T, Ito K, Kaneko C, Darnel AD, Moriya T, Okamura K, Yaegashi N, Sasano H: Differential expression of progesterone receptor isoforms A and B in the normal ovary, and in benign, borderline, and malignant ovarian tumors. Jpn J Cancer Res. 2002, 93 (7): 807-815.CrossRefPubMed Akahira J, Suzuki T, Ito K, Kaneko C, Darnel AD, Moriya T, Okamura K, Yaegashi N, Sasano H: Differential expression of progesterone receptor isoforms A and B in the normal ovary, and in benign, borderline, and malignant ovarian tumors. Jpn J Cancer Res. 2002, 93 (7): 807-815.CrossRefPubMed
19.
go back to reference Hamilton TC, Behrens BC, Louie KG, Ozols RF: Induction of progesterone receptor with 17 beta-estradiol in human ovarian cancer. J Clin Endocrinol Metab. 1984, 59 (3): 561-563. 10.1210/jcem-59-3-561.CrossRefPubMed Hamilton TC, Behrens BC, Louie KG, Ozols RF: Induction of progesterone receptor with 17 beta-estradiol in human ovarian cancer. J Clin Endocrinol Metab. 1984, 59 (3): 561-563. 10.1210/jcem-59-3-561.CrossRefPubMed
20.
go back to reference Keith Bechtel M, Bonavida B: Inhibitory effects of 17beta-estradiol and progesterone on ovarian carcinoma cell proliferation: a potential role for inducible nitric oxide synthase. Gynecol Oncol. 2001, 82 (1): 127-138. 10.1006/gyno.2001.6221.CrossRefPubMed Keith Bechtel M, Bonavida B: Inhibitory effects of 17beta-estradiol and progesterone on ovarian carcinoma cell proliferation: a potential role for inducible nitric oxide synthase. Gynecol Oncol. 2001, 82 (1): 127-138. 10.1006/gyno.2001.6221.CrossRefPubMed
21.
go back to reference McDonnel AC, Murdoch WJ: High-dose progesterone inhibition of urokinase secretion and invasive activity by SKOV-3 ovarian carcinoma cells: evidence for a receptor-independent nongenomic effect on the plasma membrane. J Steroid Biochem Mol Biol. 2001, 78 (2): 185-191. 10.1016/S0960-0760(01)00081-4.CrossRefPubMed McDonnel AC, Murdoch WJ: High-dose progesterone inhibition of urokinase secretion and invasive activity by SKOV-3 ovarian carcinoma cells: evidence for a receptor-independent nongenomic effect on the plasma membrane. J Steroid Biochem Mol Biol. 2001, 78 (2): 185-191. 10.1016/S0960-0760(01)00081-4.CrossRefPubMed
22.
go back to reference Charles NJ, Thomas P, Lange CA: Expression of membrane progesterone receptors (mPR/PAQR) in ovarian cancer cells: implications for progesterone-induced signaling events. Horm Canc. 2010, 1 (4): 167-176. 10.1007/s12672-010-0023-9.CrossRef Charles NJ, Thomas P, Lange CA: Expression of membrane progesterone receptors (mPR/PAQR) in ovarian cancer cells: implications for progesterone-induced signaling events. Horm Canc. 2010, 1 (4): 167-176. 10.1007/s12672-010-0023-9.CrossRef
23.
go back to reference Peluso JJ, Gawkowska A, Liu X, Shioda T, Pru JK: Progesterone receptor membrane component-1 regulates the development and Cisplatin sensitivity of human ovarian tumors in athymic nude mice. Endocrinology. 2009, 150 (11): 4846-4854. 10.1210/en.2009-0730.CrossRefPubMed Peluso JJ, Gawkowska A, Liu X, Shioda T, Pru JK: Progesterone receptor membrane component-1 regulates the development and Cisplatin sensitivity of human ovarian tumors in athymic nude mice. Endocrinology. 2009, 150 (11): 4846-4854. 10.1210/en.2009-0730.CrossRefPubMed
24.
go back to reference Vermeulen K, Van Bockstaele DR, Berneman ZN: The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003, 36 (3): 131-149. 10.1046/j.1365-2184.2003.00266.x.CrossRefPubMed Vermeulen K, Van Bockstaele DR, Berneman ZN: The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003, 36 (3): 131-149. 10.1046/j.1365-2184.2003.00266.x.CrossRefPubMed
25.
go back to reference Mahajan DK, London SN: Mifepristone (RU486): a review. Fertil Steril. 1997, 68 (6): 967-976. 10.1016/S0015-0282(97)00189-1.CrossRefPubMed Mahajan DK, London SN: Mifepristone (RU486): a review. Fertil Steril. 1997, 68 (6): 967-976. 10.1016/S0015-0282(97)00189-1.CrossRefPubMed
26.
go back to reference Schneider CC, Gibb RK, Taylor DD, Wan T, Gercel-Taylor C: Inhibition of endometrial cancer cell lines by mifepristone (RU 486). J Soc Gynecol Investig. 1998, 5 (6): 334-338. 10.1016/S1071-5576(98)00037-9.CrossRefPubMed Schneider CC, Gibb RK, Taylor DD, Wan T, Gercel-Taylor C: Inhibition of endometrial cancer cell lines by mifepristone (RU 486). J Soc Gynecol Investig. 1998, 5 (6): 334-338. 10.1016/S1071-5576(98)00037-9.CrossRefPubMed
27.
go back to reference Pinski J, Halmos G, Shirahige Y, Wittliff JL, Schally AV: Inhibition of growth of the human malignant glioma cell line (U87MG) by the steroid hormone antagonist RU486. J Clin Endocrinol Metab. 1993, 77 (5): 1388-1392. 10.1210/jc.77.5.1388.PubMed Pinski J, Halmos G, Shirahige Y, Wittliff JL, Schally AV: Inhibition of growth of the human malignant glioma cell line (U87MG) by the steroid hormone antagonist RU486. J Clin Endocrinol Metab. 1993, 77 (5): 1388-1392. 10.1210/jc.77.5.1388.PubMed
28.
go back to reference Lee WH: Characterization of a newly established malignant meningioma cell line of the human brain: IOMM-Lee. Neurosurgery. 1990, 27 (3): 389-395. 10.1227/00006123-199009000-00008. discussion 396CrossRefPubMed Lee WH: Characterization of a newly established malignant meningioma cell line of the human brain: IOMM-Lee. Neurosurgery. 1990, 27 (3): 389-395. 10.1227/00006123-199009000-00008. discussion 396CrossRefPubMed
29.
30.
go back to reference Grunberg SM, Weiss MH, Russell CA, Spitz IM, Ahmadi J, Sadun A, Sitruk-Ware R: Long-term administration of mifepristone (RU486): clinical tolerance during extended treatment of meningioma. Cancer Invest. 2006, 24 (8): 727-733. 10.1080/07357900601062339.CrossRefPubMed Grunberg SM, Weiss MH, Russell CA, Spitz IM, Ahmadi J, Sadun A, Sitruk-Ware R: Long-term administration of mifepristone (RU486): clinical tolerance during extended treatment of meningioma. Cancer Invest. 2006, 24 (8): 727-733. 10.1080/07357900601062339.CrossRefPubMed
31.
go back to reference Spitz IM, Grunberg SM, Chabbert-Buffet N, Lindenberg T, Gelber H, Sitruk-Ware R: Management of patients receiving long-term treatment with mifepristone. Fertil Steril. 2005, 84 (6): 1719-1726. 10.1016/j.fertnstert.2005.05.056.CrossRefPubMed Spitz IM, Grunberg SM, Chabbert-Buffet N, Lindenberg T, Gelber H, Sitruk-Ware R: Management of patients receiving long-term treatment with mifepristone. Fertil Steril. 2005, 84 (6): 1719-1726. 10.1016/j.fertnstert.2005.05.056.CrossRefPubMed
32.
go back to reference Petz LN, Ziegler YS, Loven MA, Nardulli AM: Estrogen receptor alpha and activating protein-1 mediate estrogen responsiveness of the progesterone receptor gene in MCF-7 breast cancer cells. Endocrinology. 2002, 143 (12): 4583-4591. 10.1210/en.2002-220369.CrossRefPubMed Petz LN, Ziegler YS, Loven MA, Nardulli AM: Estrogen receptor alpha and activating protein-1 mediate estrogen responsiveness of the progesterone receptor gene in MCF-7 breast cancer cells. Endocrinology. 2002, 143 (12): 4583-4591. 10.1210/en.2002-220369.CrossRefPubMed
33.
go back to reference Horwitz KB, Aiginger P, Kuttenn F, McGuire WL: Nuclear estrogen receptor release from antiestrogen suppression: amplified induction of progesterone receptor in MCF-7 human breast cancer cells. Endocrinology. 1981, 108 (5): 1703-1709. 10.1210/endo-108-5-1703.CrossRefPubMed Horwitz KB, Aiginger P, Kuttenn F, McGuire WL: Nuclear estrogen receptor release from antiestrogen suppression: amplified induction of progesterone receptor in MCF-7 human breast cancer cells. Endocrinology. 1981, 108 (5): 1703-1709. 10.1210/endo-108-5-1703.CrossRefPubMed
34.
go back to reference Vienonen A, Syvala H, Miettinen S, Tuohimaa P, Ylikomi T: Expression of progesterone receptor isoforms A and B is differentially regulated by estrogen in different breast cancer cell lines. J Steroid Biochem Mol Biol. 2002, 80 (3): 307-313. 10.1016/S0960-0760(02)00027-4.CrossRefPubMed Vienonen A, Syvala H, Miettinen S, Tuohimaa P, Ylikomi T: Expression of progesterone receptor isoforms A and B is differentially regulated by estrogen in different breast cancer cell lines. J Steroid Biochem Mol Biol. 2002, 80 (3): 307-313. 10.1016/S0960-0760(02)00027-4.CrossRefPubMed
35.
go back to reference Thomas M, Monet JD: Combined effects of RU486 and tamoxifen on the growth and cell cycle phases of the MCF-7 cell line. J Clin Endocrinol Metab. 1992, 75 (3): 865-870. 10.1210/jc.75.3.865.PubMed Thomas M, Monet JD: Combined effects of RU486 and tamoxifen on the growth and cell cycle phases of the MCF-7 cell line. J Clin Endocrinol Metab. 1992, 75 (3): 865-870. 10.1210/jc.75.3.865.PubMed
36.
go back to reference El Etreby MF, Liang Y, Wrenn RW, Schoenlein PV: Additive effect of mifepristone and tamoxifen on apoptotic pathways in MCF-7 human breast cancer cells. Breast Cancer Res Treat. 1998, 51 (2): 149-168. 10.1023/A:1006078032287.CrossRefPubMed El Etreby MF, Liang Y, Wrenn RW, Schoenlein PV: Additive effect of mifepristone and tamoxifen on apoptotic pathways in MCF-7 human breast cancer cells. Breast Cancer Res Treat. 1998, 51 (2): 149-168. 10.1023/A:1006078032287.CrossRefPubMed
37.
go back to reference Gaddy VT, Barrett JT, Delk JN, Kallab AM, Porter AG, Schoenlein PV: Mifepristone induces growth arrest, caspase activation, and apoptosis of estrogen receptor-expressing, antiestrogen-resistant breast cancer cells. Clin Cancer Res. 2004, 10 (15): 5215-5225. 10.1158/1078-0432.CCR-03-0637.CrossRefPubMed Gaddy VT, Barrett JT, Delk JN, Kallab AM, Porter AG, Schoenlein PV: Mifepristone induces growth arrest, caspase activation, and apoptosis of estrogen receptor-expressing, antiestrogen-resistant breast cancer cells. Clin Cancer Res. 2004, 10 (15): 5215-5225. 10.1158/1078-0432.CCR-03-0637.CrossRefPubMed
38.
go back to reference Darro F, Cahen P, Vianna A, Decaestecker C, Nogaret JM, Leblond B, Chaboteaux C, Ramos C, Petein M, Budel V, Schoofs A, Pourrias B, Kiss R: Growth inhibition of human in vitro and mouse in vitro and in vivo mammary tumor models by retinoids in comparison with tamoxifen and the RU-486 anti-progestagen. Breast Cancer Res Treat. 1998, 51 (1): 39-55. 10.1023/A:1006098124087.CrossRefPubMed Darro F, Cahen P, Vianna A, Decaestecker C, Nogaret JM, Leblond B, Chaboteaux C, Ramos C, Petein M, Budel V, Schoofs A, Pourrias B, Kiss R: Growth inhibition of human in vitro and mouse in vitro and in vivo mammary tumor models by retinoids in comparison with tamoxifen and the RU-486 anti-progestagen. Breast Cancer Res Treat. 1998, 51 (1): 39-55. 10.1023/A:1006098124087.CrossRefPubMed
39.
go back to reference El Etreby MF, Liang Y, Johnson MH, Lewis RW: Antitumor activity of mifepristone in the human LNCaP, LNCaP-C4, and LNCaP-C4-2 prostate cancer models in nude mice. Prostate. 2000, 42 (2): 99-106. 10.1002/(SICI)1097-0045(20000201)42:2<99::AID-PROS3>3.0.CO;2-I.CrossRefPubMed El Etreby MF, Liang Y, Johnson MH, Lewis RW: Antitumor activity of mifepristone in the human LNCaP, LNCaP-C4, and LNCaP-C4-2 prostate cancer models in nude mice. Prostate. 2000, 42 (2): 99-106. 10.1002/(SICI)1097-0045(20000201)42:2<99::AID-PROS3>3.0.CO;2-I.CrossRefPubMed
40.
go back to reference Bonkhoff H, Fixemer T, Hunsicker I, Remberger K: Progesterone receptor expression in human prostate cancer: correlation with tumor progression. Prostate. 2001, 48 (4): 285-291. 10.1002/pros.1108.CrossRefPubMed Bonkhoff H, Fixemer T, Hunsicker I, Remberger K: Progesterone receptor expression in human prostate cancer: correlation with tumor progression. Prostate. 2001, 48 (4): 285-291. 10.1002/pros.1108.CrossRefPubMed
41.
go back to reference Sasaki M, Tanaka Y, Perinchery G, Dharia A, Kotcherguina I, Fujimoto S, Dahiya R: Methylation and inactivation of estrogen, progesterone, and androgen receptors in prostate cancer. J Natl Cancer Inst. 2002, 94 (5): 384-390.CrossRefPubMed Sasaki M, Tanaka Y, Perinchery G, Dharia A, Kotcherguina I, Fujimoto S, Dahiya R: Methylation and inactivation of estrogen, progesterone, and androgen receptors in prostate cancer. J Natl Cancer Inst. 2002, 94 (5): 384-390.CrossRefPubMed
42.
go back to reference Agoulnik IU, Krause WC, Bingman WE, Rahman HT, Amrikachi M, Ayala GE, Weigel NL: Repressors of androgen and progesterone receptor action. J Biol Chem. 2003, 278 (33): 31136-31148. 10.1074/jbc.M305153200.CrossRefPubMed Agoulnik IU, Krause WC, Bingman WE, Rahman HT, Amrikachi M, Ayala GE, Weigel NL: Repressors of androgen and progesterone receptor action. J Biol Chem. 2003, 278 (33): 31136-31148. 10.1074/jbc.M305153200.CrossRefPubMed
43.
go back to reference Rogatsky I, Hittelman AB, Pearce D, Garabedian MJ: Distinct glucocorticoid receptor transcriptional regulatory surfaces mediate the cytotoxic and cytostatic effects of glucocorticoids. Mol Cell Biol. 1999, 19 (7): 5036-5049.CrossRefPubMedPubMedCentral Rogatsky I, Hittelman AB, Pearce D, Garabedian MJ: Distinct glucocorticoid receptor transcriptional regulatory surfaces mediate the cytotoxic and cytostatic effects of glucocorticoids. Mol Cell Biol. 1999, 19 (7): 5036-5049.CrossRefPubMedPubMedCentral
44.
go back to reference Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, Mirand EA, Murphy GP: LNCaP model of human prostatic carcinoma. Cancer Res. 1983, 43 (4): 1809-1818.PubMed Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, Mirand EA, Murphy GP: LNCaP model of human prostatic carcinoma. Cancer Res. 1983, 43 (4): 1809-1818.PubMed
45.
go back to reference Brooks SC, Locke ER, Soule HD: Estrogen receptor in a human cell line (MCF-7) from breast carcinoma. J Biol Chem. 1973, 248 (17): 6251-6253.PubMed Brooks SC, Locke ER, Soule HD: Estrogen receptor in a human cell line (MCF-7) from breast carcinoma. J Biol Chem. 1973, 248 (17): 6251-6253.PubMed
46.
go back to reference Goyeneche AA, Seidel EE, Telleria CM: Growth inhibition induced by antiprogestins RU-38486, ORG-31710, and CDB-2914 in ovarian cancer cells involves inhibition of cyclin dependent kinase 2. Invest New Drugs. 2011 Goyeneche AA, Seidel EE, Telleria CM: Growth inhibition induced by antiprogestins RU-38486, ORG-31710, and CDB-2914 in ovarian cancer cells involves inhibition of cyclin dependent kinase 2. Invest New Drugs. 2011
47.
go back to reference Baulieu EE: The antisteroid RU486: its cellular and molecular mode of action. Trends Endocrinol Metab. 1991, 2 (6): 233-239. 10.1016/1043-2760(91)90030-Q.CrossRefPubMed Baulieu EE: The antisteroid RU486: its cellular and molecular mode of action. Trends Endocrinol Metab. 1991, 2 (6): 233-239. 10.1016/1043-2760(91)90030-Q.CrossRefPubMed
48.
go back to reference Zhang S, Jonklaas J, Danielsen M: The glucocorticoid agonist activities of mifepristone (RU486) and progesterone are dependent on glucocorticoid receptor levels but not on EC50 values. Steroids. 2007, 72 (6-7): 600-608. 10.1016/j.steroids.2007.03.012.CrossRefPubMed Zhang S, Jonklaas J, Danielsen M: The glucocorticoid agonist activities of mifepristone (RU486) and progesterone are dependent on glucocorticoid receptor levels but not on EC50 values. Steroids. 2007, 72 (6-7): 600-608. 10.1016/j.steroids.2007.03.012.CrossRefPubMed
49.
go back to reference Oakley RH, Jewell CM, Yudt MR, Bofetiado DM, Cidlowski JA: The dominant negative activity of the human glucocorticoid receptor beta isoform. Specificity and mechanisms of action. J Biol Chem. 1999, 274 (39): 27857-27866. 10.1074/jbc.274.39.27857.CrossRefPubMed Oakley RH, Jewell CM, Yudt MR, Bofetiado DM, Cidlowski JA: The dominant negative activity of the human glucocorticoid receptor beta isoform. Specificity and mechanisms of action. J Biol Chem. 1999, 274 (39): 27857-27866. 10.1074/jbc.274.39.27857.CrossRefPubMed
50.
go back to reference Taniguchi Y, Iwasaki Y, Tsugita M, Nishiyama M, Taguchi T, Okazaki M, Nakayama S, Kambayashi M, Hashimoto K, Terada Y: Glucocorticoid receptor-beta and receptor-gamma exert dominant negative effect on gene repression but not on gene induction. Endocrinology. 2010, 151 (7): 3204-3213. 10.1210/en.2009-1254.CrossRefPubMed Taniguchi Y, Iwasaki Y, Tsugita M, Nishiyama M, Taguchi T, Okazaki M, Nakayama S, Kambayashi M, Hashimoto K, Terada Y: Glucocorticoid receptor-beta and receptor-gamma exert dominant negative effect on gene repression but not on gene induction. Endocrinology. 2010, 151 (7): 3204-3213. 10.1210/en.2009-1254.CrossRefPubMed
51.
go back to reference Yudt MR, Jewell CM, Bienstock RJ, Cidlowski JA: Molecular origins for the dominant negative function of human glucocorticoid receptor beta. Mol Cell Biol. 2003, 23 (12): 4319-4330. 10.1128/MCB.23.12.4319-4330.2003.CrossRefPubMedPubMedCentral Yudt MR, Jewell CM, Bienstock RJ, Cidlowski JA: Molecular origins for the dominant negative function of human glucocorticoid receptor beta. Mol Cell Biol. 2003, 23 (12): 4319-4330. 10.1128/MCB.23.12.4319-4330.2003.CrossRefPubMedPubMedCentral
52.
go back to reference Lewis-Tuffin LJ, Jewell CM, Bienstock RJ, Collins JB, Cidlowski JA: Human glucocorticoid receptor beta binds RU-486 and is transcriptionally active. Mol Cell Biol. 2007, 27 (6): 2266-2282. 10.1128/MCB.01439-06.CrossRefPubMedPubMedCentral Lewis-Tuffin LJ, Jewell CM, Bienstock RJ, Collins JB, Cidlowski JA: Human glucocorticoid receptor beta binds RU-486 and is transcriptionally active. Mol Cell Biol. 2007, 27 (6): 2266-2282. 10.1128/MCB.01439-06.CrossRefPubMedPubMedCentral
53.
go back to reference Kino T, Manoli I, Kelkar S, Wang Y, Su YA, Chrousos GP: Glucocorticoid receptor (GR) beta has intrinsic, GRalpha-independent transcriptional activity. Biochem Biophys Res Commun. 2009, 381 (4): 671-675. 10.1016/j.bbrc.2009.02.110.CrossRefPubMedPubMedCentral Kino T, Manoli I, Kelkar S, Wang Y, Su YA, Chrousos GP: Glucocorticoid receptor (GR) beta has intrinsic, GRalpha-independent transcriptional activity. Biochem Biophys Res Commun. 2009, 381 (4): 671-675. 10.1016/j.bbrc.2009.02.110.CrossRefPubMedPubMedCentral
54.
go back to reference Rohe HJ, Ahmed IS, Twist KE, Craven RJ: PGRMC1 (progesterone receptor membrane component 1): a targetable protein with multiple functions in steroid signaling, P450 activation and drug binding. Pharmacol Ther. 2009, 121 (1): 14-19. 10.1016/j.pharmthera.2008.09.006.CrossRefPubMed Rohe HJ, Ahmed IS, Twist KE, Craven RJ: PGRMC1 (progesterone receptor membrane component 1): a targetable protein with multiple functions in steroid signaling, P450 activation and drug binding. Pharmacol Ther. 2009, 121 (1): 14-19. 10.1016/j.pharmthera.2008.09.006.CrossRefPubMed
55.
go back to reference Gellersen B, Fernandes MS, Brosens JJ: Non-genomic progesterone actions in female reproduction. Hum Reprod Update. 2009, 15 (1): 119-138.CrossRefPubMed Gellersen B, Fernandes MS, Brosens JJ: Non-genomic progesterone actions in female reproduction. Hum Reprod Update. 2009, 15 (1): 119-138.CrossRefPubMed
56.
go back to reference Dressing GE, Goldberg JE, Charles NJ, Schwertfeger KL, Lange CA: Membrane progesterone receptor expression in mammalian tissues: A review of regulation and physiological implications. Steroids. 2011, 76 (1-2): 11-17. 10.1016/j.steroids.2010.09.006.CrossRefPubMed Dressing GE, Goldberg JE, Charles NJ, Schwertfeger KL, Lange CA: Membrane progesterone receptor expression in mammalian tissues: A review of regulation and physiological implications. Steroids. 2011, 76 (1-2): 11-17. 10.1016/j.steroids.2010.09.006.CrossRefPubMed
57.
go back to reference Thomas P, Pang Y, Dong J, Groenen P, Kelder J, de Vlieg J, Zhu Y, Tubbs C: Steroid and G protein binding characteristics of the seatrout and human progestin membrane receptor alpha subtypes and their evolutionary origins. Endocrinology. 2007, 148 (2): 705-718.CrossRefPubMed Thomas P, Pang Y, Dong J, Groenen P, Kelder J, de Vlieg J, Zhu Y, Tubbs C: Steroid and G protein binding characteristics of the seatrout and human progestin membrane receptor alpha subtypes and their evolutionary origins. Endocrinology. 2007, 148 (2): 705-718.CrossRefPubMed
58.
go back to reference Peluso JJ, Liu X, Saunders MM, Claffey KP, Phoenix K: Regulation of ovarian cancer cell viability and sensitivity to cisplatin by progesterone receptor membrane component-1. J Clin Endocrinol Metab. 2008, 93 (5): 1592-1599. 10.1210/jc.2007-2771.CrossRefPubMed Peluso JJ, Liu X, Saunders MM, Claffey KP, Phoenix K: Regulation of ovarian cancer cell viability and sensitivity to cisplatin by progesterone receptor membrane component-1. J Clin Endocrinol Metab. 2008, 93 (5): 1592-1599. 10.1210/jc.2007-2771.CrossRefPubMed
59.
go back to reference Smith JL, Kupchak BR, Garitaonandia I, Hoang LK, Maina AS, Regalla LM, Lyons TJ: Heterologous expression of human mPRalpha, mPRbeta and mPRgamma in yeast confirms their ability to function as membrane progesterone receptors. Steroids. 2008, 73 (11): 1160-1173. 10.1016/j.steroids.2008.05.003.CrossRefPubMedPubMedCentral Smith JL, Kupchak BR, Garitaonandia I, Hoang LK, Maina AS, Regalla LM, Lyons TJ: Heterologous expression of human mPRalpha, mPRbeta and mPRgamma in yeast confirms their ability to function as membrane progesterone receptors. Steroids. 2008, 73 (11): 1160-1173. 10.1016/j.steroids.2008.05.003.CrossRefPubMedPubMedCentral
60.
go back to reference Parthasarathy S, Morales AJ, Murphy AA: Antioxidant: a new role for RU-486 and related compounds. J Clin Invest. 1994, 94 (5): 1990-1995. 10.1172/JCI117551.CrossRefPubMedPubMedCentral Parthasarathy S, Morales AJ, Murphy AA: Antioxidant: a new role for RU-486 and related compounds. J Clin Invest. 1994, 94 (5): 1990-1995. 10.1172/JCI117551.CrossRefPubMedPubMedCentral
61.
go back to reference Murphy AA, Zhou MH, Malkapuram S, Santanam N, Parthasarathy S, Sidell N: RU486-induced growth inhibition of human endometrial cells. Fertil Steril. 2000, 74 (5): 1014-1019. 10.1016/S0015-0282(00)01606-X.CrossRefPubMed Murphy AA, Zhou MH, Malkapuram S, Santanam N, Parthasarathy S, Sidell N: RU486-induced growth inhibition of human endometrial cells. Fertil Steril. 2000, 74 (5): 1014-1019. 10.1016/S0015-0282(00)01606-X.CrossRefPubMed
62.
go back to reference Roberts CP, Parthasarathy S, Gulati R, Horowitz I, Murphy AA: Effect of RU-486 and related compounds on the proliferation of cultured macrophages. Am J Reprod Immunol. 1995, 34 (4): 248-256.CrossRefPubMed Roberts CP, Parthasarathy S, Gulati R, Horowitz I, Murphy AA: Effect of RU-486 and related compounds on the proliferation of cultured macrophages. Am J Reprod Immunol. 1995, 34 (4): 248-256.CrossRefPubMed
63.
go back to reference Liberto M, Cobrinik D: Growth factor-dependent induction of p21(CIP1) by the green tea polyphenol, epigallocatechin gallate. Cancer Letters. 2000, 154 (2): 151-161. 10.1016/S0304-3835(00)00378-5.CrossRefPubMed Liberto M, Cobrinik D: Growth factor-dependent induction of p21(CIP1) by the green tea polyphenol, epigallocatechin gallate. Cancer Letters. 2000, 154 (2): 151-161. 10.1016/S0304-3835(00)00378-5.CrossRefPubMed
64.
go back to reference Liu M, Wikonkal NM, Brash DE: Induction of cyclin-dependent kinase inhibitors and G(1) prolongation by the chemopreventive agent N-acetylcysteine. Carcinogenesis. 1999, 20 (9): 1869-1872. 10.1093/carcin/20.9.1869.CrossRefPubMed Liu M, Wikonkal NM, Brash DE: Induction of cyclin-dependent kinase inhibitors and G(1) prolongation by the chemopreventive agent N-acetylcysteine. Carcinogenesis. 1999, 20 (9): 1869-1872. 10.1093/carcin/20.9.1869.CrossRefPubMed
65.
go back to reference Dioufa N, Kassi E, Papavassiliou AG, Kiaris H: Atypical induction of the unfolded protein response by mifepristone. Endocrine. 2010, 38 (2): 167-173. 10.1007/s12020-010-9362-0.CrossRefPubMed Dioufa N, Kassi E, Papavassiliou AG, Kiaris H: Atypical induction of the unfolded protein response by mifepristone. Endocrine. 2010, 38 (2): 167-173. 10.1007/s12020-010-9362-0.CrossRefPubMed
Metadata
Title
Antiprogestin mifepristone inhibits the growth of cancer cells of reproductive and non-reproductive origin regardless of progesterone receptor expression
Authors
Chelsea R Tieszen
Alicia A Goyeneche
BreeAnn N Brandhagen
Casey T Ortbahn
Carlos M Telleria
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-207

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine