Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

Mitochondrial targeted catalase suppresses invasive breast cancer in mice

Authors: Jorming Goh, Linda Enns, Soroosh Fatemie, Heather Hopkins, John Morton, Christina Pettan-Brewer, Warren Ladiges

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

Treatment of invasive breast cancer has an alarmingly high rate of failure because effective targets have not been identified. One potential target is mitochondrial generated reactive oxygen species (ROS) because ROS production has been associated with changes in substrate metabolism and lower concentration of anti-oxidant enzymes in tumor and stromal cells and increased metastatic potential.

Methods

Transgenic mice expressing a human catalase gene (mCAT) were crossed with MMTV-PyMT transgenic mice that develop metastatic breast cancer. All mice (33 mCAT positive and 23 mCAT negative) were terminated at 110 days of age, when tumors were well advanced. Tumors were histologically assessed for invasiveness, proliferation and metastatic foci in the lungs. ROS levels and activation status of p38 MAPK were determined.

Results

PyMT mice expressing mCAT had a 12.5 per cent incidence of high histological grade primary tumor invasiveness compared to a 62.5 per cent incidence in PyMT mice without mCAT. The histological grade correlated with incidence of metastasis with 56 per cent of PyMT mice positive for mCAT showing evidence of pulmonary metastasis compared to 85.4 per cent of PyMT mice negative for mCAT with pulmonary metastasis (p ≤ 0.05). PyMT tumor cells expressing mCAT had lower ROS levels and were more resistant to hydrogen peroxide-induced oxidative stress than wild type tumor cells, suggesting that mCAT has the potential of quenching intracellular ROS and subsequent invasive behavior. The metastatic tumor burden in PyMT mice expressing mCAT was 0.1 mm2/cm2 of lung tissue compared with 1.3 mm2/cm2 of lung tissue in PyMT mice expressing the wild type allele (p ≤ 0.01), indicating that mCAT could play a role in mitigating metastatic tumor progression at a distant organ site. Expression of mCAT in the lungs increased resistance to hydrogen peroxide-induced oxidative stress that was associated with decreased activation of p38MAPK suggesting ROS signaling is dependent on p38MAPK for at least some of its downstream effects.

Conclusion

Targeting catalase within mitochondria of tumor cells and tumor stromal cells suppresses ROS-driven tumor progression and metastasis. Therefore, increasing the antioxidant capacity of the mitochondrial compartment could be a rational therapeutic approach for invasive breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ: Cancer statistics, 2006. CA Cancer J Clin. 2006, 56: 106-130. 10.3322/canjclin.56.2.106.CrossRefPubMed Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ: Cancer statistics, 2006. CA Cancer J Clin. 2006, 56: 106-130. 10.3322/canjclin.56.2.106.CrossRefPubMed
2.
go back to reference Bai RK, Leal SM, Covarrubias D, Liu A, Wong LJ: Mitochondrial genetic background modifies breast cancer risk. Cancer Res. 2007, 67: 4687-4694. 10.1158/0008-5472.CAN-06-3554.CrossRefPubMed Bai RK, Leal SM, Covarrubias D, Liu A, Wong LJ: Mitochondrial genetic background modifies breast cancer risk. Cancer Res. 2007, 67: 4687-4694. 10.1158/0008-5472.CAN-06-3554.CrossRefPubMed
3.
4.
go back to reference Nemoto S, Takeda K, Yu ZX, Ferrans VJ, Finkel T: Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol. 2000, 20: 7311-8. 10.1128/MCB.20.19.7311-7318.2000.CrossRefPubMedPubMedCentral Nemoto S, Takeda K, Yu ZX, Ferrans VJ, Finkel T: Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol. 2000, 20: 7311-8. 10.1128/MCB.20.19.7311-7318.2000.CrossRefPubMedPubMedCentral
5.
go back to reference Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J: Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004, 266: 37-56.CrossRefPubMed Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J: Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004, 266: 37-56.CrossRefPubMed
6.
go back to reference Pelicano H, Lu W, Zhou Y, Zhang W, Chen Z, Hu Y, Huang P: Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism. Cancer Res. 2009, 69: 2375-2383. 10.1158/0008-5472.CAN-08-3359.CrossRefPubMedPubMedCentral Pelicano H, Lu W, Zhou Y, Zhang W, Chen Z, Hu Y, Huang P: Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism. Cancer Res. 2009, 69: 2375-2383. 10.1158/0008-5472.CAN-08-3359.CrossRefPubMedPubMedCentral
7.
go back to reference Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, Wahl GM: c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell. 2002, 9: 1031-1044. 10.1016/S1097-2765(02)00520-8.CrossRefPubMed Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, Wahl GM: c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell. 2002, 9: 1031-1044. 10.1016/S1097-2765(02)00520-8.CrossRefPubMed
8.
go back to reference Gogvadze V, Orrenius S, Zhivotsky B: Mitochondria in cancer cells: what is so special about them?. Trends Cell Biol. 2008, 18: 165-173. 10.1016/j.tcb.2008.01.006.CrossRefPubMed Gogvadze V, Orrenius S, Zhivotsky B: Mitochondria in cancer cells: what is so special about them?. Trends Cell Biol. 2008, 18: 165-173. 10.1016/j.tcb.2008.01.006.CrossRefPubMed
9.
go back to reference Oberley TD, Oberley LW: Antioxidant enzyme levels in cancer. Histol Histopathol. 1997, 12: 525-535.PubMed Oberley TD, Oberley LW: Antioxidant enzyme levels in cancer. Histol Histopathol. 1997, 12: 525-535.PubMed
10.
go back to reference Gupta A, Butts B, Kwei KA, Dvorakova K, Stratton SP, Briehl MM, Bowden GT: Attenuation of catalase activity in the malignant phenotype plays a functional role in an in vitro model for tumor progression. Cancer Lett. 2001, 173: 115-125. 10.1016/S0304-3835(01)00656-5.CrossRefPubMed Gupta A, Butts B, Kwei KA, Dvorakova K, Stratton SP, Briehl MM, Bowden GT: Attenuation of catalase activity in the malignant phenotype plays a functional role in an in vitro model for tumor progression. Cancer Lett. 2001, 173: 115-125. 10.1016/S0304-3835(01)00656-5.CrossRefPubMed
11.
go back to reference Szatrowski TP, Nathan CF: Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991, 51: 794-798.PubMed Szatrowski TP, Nathan CF: Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991, 51: 794-798.PubMed
12.
go back to reference Nishikawa M: Reactive oxygen species in tumor metastasis. Cancer Lett. 2008, 266: 53-59. 10.1016/j.canlet.2008.02.031.CrossRefPubMed Nishikawa M: Reactive oxygen species in tumor metastasis. Cancer Lett. 2008, 266: 53-59. 10.1016/j.canlet.2008.02.031.CrossRefPubMed
13.
go back to reference Dong LF, Jameson VJ, Tilly D, Cerny J, Mahdavian E, Marín-Hernández A, Hernández-Esquivel L, Rodríguez-Enríquez S, Stursa J, Witting PK, Stantic B, Rohlena J, Truksa J, Kluckova K, Dyason JC, Ledvina M, Salvatore BA, Moreno-Sánchez R, Coster MJ, Ralph SJ, Smith RA, Neuzil J: Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J Biol Chem. 2011, 286 (5): 3717-28. 10.1074/jbc.M110.186643.CrossRefPubMed Dong LF, Jameson VJ, Tilly D, Cerny J, Mahdavian E, Marín-Hernández A, Hernández-Esquivel L, Rodríguez-Enríquez S, Stursa J, Witting PK, Stantic B, Rohlena J, Truksa J, Kluckova K, Dyason JC, Ledvina M, Salvatore BA, Moreno-Sánchez R, Coster MJ, Ralph SJ, Smith RA, Neuzil J: Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J Biol Chem. 2011, 286 (5): 3717-28. 10.1074/jbc.M110.186643.CrossRefPubMed
14.
go back to reference Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, Whitaker-Menezes D, Daumer KM, Lin Z, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Knudsen ES, Sotgia F, Lisanti MP: Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle. 2010, 9 (16): 3256-76. 10.4161/cc.9.16.12553.CrossRefPubMedPubMedCentral Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, Whitaker-Menezes D, Daumer KM, Lin Z, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Knudsen ES, Sotgia F, Lisanti MP: Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle. 2010, 9 (16): 3256-76. 10.4161/cc.9.16.12553.CrossRefPubMedPubMedCentral
15.
go back to reference Murphy MP, Smith RA: Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007, 47: 629-656. 10.1146/annurev.pharmtox.47.120505.105110.CrossRefPubMed Murphy MP, Smith RA: Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007, 47: 629-656. 10.1146/annurev.pharmtox.47.120505.105110.CrossRefPubMed
16.
go back to reference Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS: Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005, 308: 1909-1911. 10.1126/science.1106653.CrossRefPubMed Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS: Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005, 308: 1909-1911. 10.1126/science.1106653.CrossRefPubMed
17.
go back to reference Treuting PM, Linford NJ, Knoblaugh SE, Emond MJ, Morton JF, Martin GM, Rabinovitch PS, Ladiges WC: Reduction of age-associated pathology in old mice by overexpression of catalase in mitochondria. J Gerontol A Biol Sci Med Sci. 2008, 63: 813-822.CrossRefPubMed Treuting PM, Linford NJ, Knoblaugh SE, Emond MJ, Morton JF, Martin GM, Rabinovitch PS, Ladiges WC: Reduction of age-associated pathology in old mice by overexpression of catalase in mitochondria. J Gerontol A Biol Sci Med Sci. 2008, 63: 813-822.CrossRefPubMed
18.
go back to reference Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, Pollard JW: Progression to malignancy in the Polyoma Middle T Oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol. 2003, 163: 2113-2126. 10.1016/S0002-9440(10)63568-7.CrossRefPubMedPubMedCentral Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, Pollard JW: Progression to malignancy in the Polyoma Middle T Oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol. 2003, 163: 2113-2126. 10.1016/S0002-9440(10)63568-7.CrossRefPubMedPubMedCentral
19.
go back to reference Ursini-Siegel J, Schade B, Cardiff RD, Muller WJ: Insights from transgenic mouse models of ERBB2-induced breast cancer. Nat Rev Cancer. 2007, 7 (5): 389-97. 10.1038/nrc2127.CrossRefPubMed Ursini-Siegel J, Schade B, Cardiff RD, Muller WJ: Insights from transgenic mouse models of ERBB2-induced breast cancer. Nat Rev Cancer. 2007, 7 (5): 389-97. 10.1038/nrc2127.CrossRefPubMed
20.
go back to reference Davie SA, Maglione JE, Manner CK, Young D, Cardiff RD, MacLeod CL, Ellies LG: inducible nitric oxide synthase deficient mice. Transgenic Res. 2007, 16 (2): 193-201. 10.1007/s11248-006-9056-9.CrossRefPubMedPubMedCentral Davie SA, Maglione JE, Manner CK, Young D, Cardiff RD, MacLeod CL, Ellies LG: inducible nitric oxide synthase deficient mice. Transgenic Res. 2007, 16 (2): 193-201. 10.1007/s11248-006-9056-9.CrossRefPubMedPubMedCentral
21.
go back to reference Vaupel P, Mayer A: Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007, 26: 225-239. 10.1007/s10555-007-9055-1.CrossRefPubMed Vaupel P, Mayer A: Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007, 26: 225-239. 10.1007/s10555-007-9055-1.CrossRefPubMed
22.
go back to reference Guzy RD, Schumacker PT: Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol. 2006, 91: 807-819. 10.1113/expphysiol.2006.033506.CrossRefPubMed Guzy RD, Schumacker PT: Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol. 2006, 91: 807-819. 10.1113/expphysiol.2006.033506.CrossRefPubMed
23.
go back to reference Fruehauf JP, Meyskens FL: Reactive oxygen species: a breath of life or death?. Clin Cancer Res. 2007, 13: 789-793. 10.1158/1078-0432.CCR-06-2082.CrossRefPubMed Fruehauf JP, Meyskens FL: Reactive oxygen species: a breath of life or death?. Clin Cancer Res. 2007, 13: 789-793. 10.1158/1078-0432.CCR-06-2082.CrossRefPubMed
24.
go back to reference Liu SL, Lin X, Shi DY, Cheng J, Wu CQ, Zhang YD: Reactive oxygen species stimulated human hepatoma cell proliferatioin via cross-talk between PI3-K/PKB and JNK signaling pathways. Arch Biochem Biophys. 2002, 406: 173-182. 10.1016/S0003-9861(02)00430-7.CrossRefPubMed Liu SL, Lin X, Shi DY, Cheng J, Wu CQ, Zhang YD: Reactive oxygen species stimulated human hepatoma cell proliferatioin via cross-talk between PI3-K/PKB and JNK signaling pathways. Arch Biochem Biophys. 2002, 406: 173-182. 10.1016/S0003-9861(02)00430-7.CrossRefPubMed
25.
go back to reference Behrend L, Henderson G, Zwacka RM: Reactive oxygen species in oncogenic transformation. Biochem Soc Trans. 2003, 31: 1441-1444. 10.1042/BST0311441.CrossRefPubMed Behrend L, Henderson G, Zwacka RM: Reactive oxygen species in oncogenic transformation. Biochem Soc Trans. 2003, 31: 1441-1444. 10.1042/BST0311441.CrossRefPubMed
26.
go back to reference Lewis CE, Hughes R: Microenvironmental factors regulating macrophage function in breast tumours: hypoxia and angiopoietin-2. Breast Cancer Res. 2007, 9: 209-10.1186/bcr1679.CrossRefPubMedPubMedCentral Lewis CE, Hughes R: Microenvironmental factors regulating macrophage function in breast tumours: hypoxia and angiopoietin-2. Breast Cancer Res. 2007, 9: 209-10.1186/bcr1679.CrossRefPubMedPubMedCentral
28.
go back to reference Mantovani A, Schioppa T, Porta C, Allavena P, Sica A: Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 2006, 25: 315-322. 10.1007/s10555-006-9001-7.CrossRefPubMed Mantovani A, Schioppa T, Porta C, Allavena P, Sica A: Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 2006, 25: 315-322. 10.1007/s10555-006-9001-7.CrossRefPubMed
29.
go back to reference Fujimoto H, Sangai T, Ishii G, Ikehara A, Nagashima T, Miyazaki M, Ochiai A: Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer. 2009, 125: 1276-1284. 10.1002/ijc.24378.CrossRefPubMed Fujimoto H, Sangai T, Ishii G, Ikehara A, Nagashima T, Miyazaki M, Ochiai A: Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer. 2009, 125: 1276-1284. 10.1002/ijc.24378.CrossRefPubMed
30.
go back to reference Hyoudou K, Nishikawa M, Kobayashi Y, Ikemura M, Yamashita F, Hashida M: SOD derivatives prevent metastatic tumor growth aggravated by tumor removal. Clin Exp Metastasis. 2008, 25: 531-536. 10.1007/s10585-008-9165-3.CrossRefPubMed Hyoudou K, Nishikawa M, Kobayashi Y, Ikemura M, Yamashita F, Hashida M: SOD derivatives prevent metastatic tumor growth aggravated by tumor removal. Clin Exp Metastasis. 2008, 25: 531-536. 10.1007/s10585-008-9165-3.CrossRefPubMed
31.
go back to reference Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J: ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 2008, 320: 661-664. 10.1126/science.1156906.CrossRefPubMed Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J: ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 2008, 320: 661-664. 10.1126/science.1156906.CrossRefPubMed
32.
go back to reference Nishikawa M, Hashida M: Inhibition of tumour metastasis by targeted delivery of antioxidant enzymes. Exp Op Drug Del. 2006, 3: 355-369. 10.1517/17425247.3.3.355.CrossRef Nishikawa M, Hashida M: Inhibition of tumour metastasis by targeted delivery of antioxidant enzymes. Exp Op Drug Del. 2006, 3: 355-369. 10.1517/17425247.3.3.355.CrossRef
33.
go back to reference Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, Forni G, Eils R, Fehm T, Riethmüller G, Klein CA: Systemic spread is an early step in breast cancer. Cell. 2008, 13: 58-68. Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, Forni G, Eils R, Fehm T, Riethmüller G, Klein CA: Systemic spread is an early step in breast cancer. Cell. 2008, 13: 58-68.
34.
go back to reference Salh B, Marotta A, Wagey R, Sayed M, Pelech S: Dysregulation of phosphatidylinositol 3-kinase and downstream effectors in human breast cancer. Int J Cancer. 2002, 98: 148-154. 10.1002/ijc.10147.CrossRefPubMed Salh B, Marotta A, Wagey R, Sayed M, Pelech S: Dysregulation of phosphatidylinositol 3-kinase and downstream effectors in human breast cancer. Int J Cancer. 2002, 98: 148-154. 10.1002/ijc.10147.CrossRefPubMed
35.
go back to reference Wu W: The signaling mechanism of ROS in tumor progression. Cancer Metas Rev. 2006, 25: 695-705.CrossRef Wu W: The signaling mechanism of ROS in tumor progression. Cancer Metas Rev. 2006, 25: 695-705.CrossRef
36.
go back to reference Matsuo Y, Amano S, Furuya M, Namiki K, Sakurai K, Nishiyama M, Sudo T, Tatsumi K, Kuriyama T, Kimura S, Kasuya Y: Involvement of p38α Mitogen-activated Protein Kinase in lung metastasis of tumor cells. J Biol Chem. 2006, 48: 36767-36775.CrossRef Matsuo Y, Amano S, Furuya M, Namiki K, Sakurai K, Nishiyama M, Sudo T, Tatsumi K, Kuriyama T, Kimura S, Kasuya Y: Involvement of p38α Mitogen-activated Protein Kinase in lung metastasis of tumor cells. J Biol Chem. 2006, 48: 36767-36775.CrossRef
37.
go back to reference Ladiges W, Wanagat J, Preston B, Loeb L, Rabinovitch P: A mitochondrial view of aging, reactive oxygen species and metastatic cancer. Aging Cell. 2010, 9 (4): 462-5. 10.1111/j.1474-9726.2010.00579.x.CrossRefPubMed Ladiges W, Wanagat J, Preston B, Loeb L, Rabinovitch P: A mitochondrial view of aging, reactive oxygen species and metastatic cancer. Aging Cell. 2010, 9 (4): 462-5. 10.1111/j.1474-9726.2010.00579.x.CrossRefPubMed
Metadata
Title
Mitochondrial targeted catalase suppresses invasive breast cancer in mice
Authors
Jorming Goh
Linda Enns
Soroosh Fatemie
Heather Hopkins
John Morton
Christina Pettan-Brewer
Warren Ladiges
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-191

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine