Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

Growth of breast cancer recurrences assessed by consecutive MRI

Authors: Ingrid Millet, Emmanuelle Bouic-Pages, Denis Hoa, David Azria, Patrice Taourel

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

Women with a personal history of breast cancer have a high risk of developing an ipsi- or contralateral recurrence. We aimed to compare the growth rate of primary breast cancer and recurrences in women who had undergone prior breast magnetic resonance imaging (MRI).

Methods

Three hundred and sixty-two women were diagnosed with breast cancer and had undergone breast MRI at the time of diagnosis in our institution (2005 - 2009). Among them, 37 had at least one prior breast MRI with the lesion being visible but not diagnosed as cancer. A linear regression of tumour volume measured on MRI scans and time data was performed using a generalized logistic model to calculate growth rates. The primary objective was to compare the tumour growth rate of patients with either primary breast cancer (no history of breast cancer) or ipsi- or contralateral recurrences of breast cancer.

Results

Twenty women had no history of breast cancer and 17 patients were diagnosed as recurrences (7 and 10 were ipsi- and contralateral, respectively). The tumour growth rate was higher in contralateral recurrences than in ipsilateral recurrences (growth rate [10-3 days-1] 3.56 vs 1.38, p < .001) or primary cancer (3.56 vs 2.09, p = 0.01). Differences in tumour growth were not significant for other patient-, tumour- or treatment-related characteristics.

Conclusions

These findings suggest that contralateral breast cancer presents accelerated growth compared to ipsilateral recurrences or primary breast events.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kim JJ, Tannock IF: Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer. 2005, 5: 516-525. 10.1038/nrc1650.CrossRefPubMed Kim JJ, Tannock IF: Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer. 2005, 5: 516-525. 10.1038/nrc1650.CrossRefPubMed
2.
go back to reference Norton L, Simon R: Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat Rep. 1977, 61: 1307-1317.PubMed Norton L, Simon R: Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat Rep. 1977, 61: 1307-1317.PubMed
3.
go back to reference Davis AJ, Tannock JF: Repopulation of tumour cells between cycles of chemotherapy: a neglected factor. Lancet Oncol. 2000, 1: 86-93. 10.1016/S1470-2045(00)00019-X.CrossRefPubMed Davis AJ, Tannock JF: Repopulation of tumour cells between cycles of chemotherapy: a neglected factor. Lancet Oncol. 2000, 1: 86-93. 10.1016/S1470-2045(00)00019-X.CrossRefPubMed
4.
go back to reference Wasif N, Garreau J, Terando A, Kirsch D, Mund DF, Giuliano AE: MRI versus ultrasonography and mammography for preoperative assessment of breast cancer. Am Surg. 2009, 75: 970-975.PubMed Wasif N, Garreau J, Terando A, Kirsch D, Mund DF, Giuliano AE: MRI versus ultrasonography and mammography for preoperative assessment of breast cancer. Am Surg. 2009, 75: 970-975.PubMed
5.
go back to reference Grimsby GM, Gray R, Dueck A, Carpenter S, Stucky CC, Aspey H, Giurescu ME, Pockaj B: Is there concordance of invasive breast cancer pathologic tumor size with magnetic resonance imaging?. Am J Surg. 2009, 198: 500-504. 10.1016/j.amjsurg.2009.07.012.CrossRefPubMed Grimsby GM, Gray R, Dueck A, Carpenter S, Stucky CC, Aspey H, Giurescu ME, Pockaj B: Is there concordance of invasive breast cancer pathologic tumor size with magnetic resonance imaging?. Am J Surg. 2009, 198: 500-504. 10.1016/j.amjsurg.2009.07.012.CrossRefPubMed
6.
go back to reference Kuhl C: The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology. 2007, 244: 356-378. 10.1148/radiol.2442051620.CrossRefPubMed Kuhl C: The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology. 2007, 244: 356-378. 10.1148/radiol.2442051620.CrossRefPubMed
7.
go back to reference Kuhl CK: Current status of breast MR imaging. Part 2. Clinical applications. Radiology. 2007, 244: 672-691. 10.1148/radiol.2443051661.CrossRefPubMed Kuhl CK: Current status of breast MR imaging. Part 2. Clinical applications. Radiology. 2007, 244: 672-691. 10.1148/radiol.2443051661.CrossRefPubMed
8.
go back to reference Lord SJ, Lei W, Craft P, Cawson JN, Morris I, Walleser S, Griffiths A, Parker S, Houssami N: A systematic review of the effectiveness of magnetic resonance imaging (MRI) as an addition to mammography and ultrasound in screening young women at high risk of breast cancer. Eur J Cancer. 2007, 43: 1905-1917. 10.1016/j.ejca.2007.06.007.CrossRefPubMed Lord SJ, Lei W, Craft P, Cawson JN, Morris I, Walleser S, Griffiths A, Parker S, Houssami N: A systematic review of the effectiveness of magnetic resonance imaging (MRI) as an addition to mammography and ultrasound in screening young women at high risk of breast cancer. Eur J Cancer. 2007, 43: 1905-1917. 10.1016/j.ejca.2007.06.007.CrossRefPubMed
9.
go back to reference Sardanelli F, Giuseppetti GM, Panizza P, Bazzocchi M, Fausto A, Simonetti G, Lattanzio V, Del Maschio A: Sensitivity of MRI versus mammography for detecting foci of multifocal, multicentric breast cancer in Fatty and dense breasts using the whole-breast pathologic examination as a gold standard. AJR Am J Roentgenol. 2004, 183: 1149-1157.CrossRefPubMed Sardanelli F, Giuseppetti GM, Panizza P, Bazzocchi M, Fausto A, Simonetti G, Lattanzio V, Del Maschio A: Sensitivity of MRI versus mammography for detecting foci of multifocal, multicentric breast cancer in Fatty and dense breasts using the whole-breast pathologic examination as a gold standard. AJR Am J Roentgenol. 2004, 183: 1149-1157.CrossRefPubMed
10.
go back to reference Gilbert FJ, Warren RM, Kwan-Lim G, Thompson DJ, Eeles RA, Evans DG, Leach MO: Cancers in BRCA1 and BRCA2 carriers and in women at high risk for breast cancer: MR imaging and mammographic features. Radiology. 2009, 252: 358-368. 10.1148/radiol.2522081032.CrossRefPubMed Gilbert FJ, Warren RM, Kwan-Lim G, Thompson DJ, Eeles RA, Evans DG, Leach MO: Cancers in BRCA1 and BRCA2 carriers and in women at high risk for breast cancer: MR imaging and mammographic features. Radiology. 2009, 252: 358-368. 10.1148/radiol.2522081032.CrossRefPubMed
11.
go back to reference Spratt JA, von Fournier D, Spratt JS, Weber EE: Decelerating growth and human breast cancer. Cancer. 1993, 71: 2013-2019. 10.1002/1097-0142(19930315)71:6<2013::AID-CNCR2820710615>3.0.CO;2-V.CrossRefPubMed Spratt JA, von Fournier D, Spratt JS, Weber EE: Decelerating growth and human breast cancer. Cancer. 1993, 71: 2013-2019. 10.1002/1097-0142(19930315)71:6<2013::AID-CNCR2820710615>3.0.CO;2-V.CrossRefPubMed
12.
go back to reference Spratt JA, von Fournier D, Spratt JS, Weber EE: Mammographic assessment of human breast cancer growth and duration. Cancer. 1993, 71: 2020-2026. 10.1002/1097-0142(19930315)71:6<2020::AID-CNCR2820710616>3.0.CO;2-#.CrossRefPubMed Spratt JA, von Fournier D, Spratt JS, Weber EE: Mammographic assessment of human breast cancer growth and duration. Cancer. 1993, 71: 2020-2026. 10.1002/1097-0142(19930315)71:6<2020::AID-CNCR2820710616>3.0.CO;2-#.CrossRefPubMed
13.
go back to reference Hart D, Shochat E, Agur Z: The growth law of primary breast cancer as inferred from mammography screening trials data. Br J Cancer. 1998, 78: 382-387. 10.1038/bjc.1998.503.CrossRefPubMedPubMedCentral Hart D, Shochat E, Agur Z: The growth law of primary breast cancer as inferred from mammography screening trials data. Br J Cancer. 1998, 78: 382-387. 10.1038/bjc.1998.503.CrossRefPubMedPubMedCentral
14.
go back to reference Norton L: A Gompertzian model of human breast cancer growth. Cancer Res. 1988, 48: 7067-7071.PubMed Norton L: A Gompertzian model of human breast cancer growth. Cancer Res. 1988, 48: 7067-7071.PubMed
15.
go back to reference Weedon-Fekjaer H, Lindqvist BH, Vatten LJ, Aalen OO, Tretli S: Breast cancer tumor growth estimated through mammography screening data. Breast Cancer Res. 2008, 10: R41-10.1186/bcr2092.CrossRefPubMedPubMedCentral Weedon-Fekjaer H, Lindqvist BH, Vatten LJ, Aalen OO, Tretli S: Breast cancer tumor growth estimated through mammography screening data. Breast Cancer Res. 2008, 10: R41-10.1186/bcr2092.CrossRefPubMedPubMedCentral
16.
go back to reference Tilanus-Linthorst MM, Kriege M, Boetes C, Hop WC, Obdeijn IM, Oosterwijk JC, Peterse HL, Zonderland HM, Meijer S, Eggermont AM, et al: Hereditary breast cancer growth rates and its impact on screening policy. Eur J Cancer. 2005, 41: 1610-1617. 10.1016/j.ejca.2005.02.034.CrossRefPubMed Tilanus-Linthorst MM, Kriege M, Boetes C, Hop WC, Obdeijn IM, Oosterwijk JC, Peterse HL, Zonderland HM, Meijer S, Eggermont AM, et al: Hereditary breast cancer growth rates and its impact on screening policy. Eur J Cancer. 2005, 41: 1610-1617. 10.1016/j.ejca.2005.02.034.CrossRefPubMed
17.
go back to reference Tilanus-Linthorst MM, Obdeijn IM, Hop WC, Causer PA, Leach MO, Warner E, Pointon L, Hill K, Klijn JG, Warren RM, Gilbert FJ: BRCA1 mutation and young age predict fast breast cancer growth in the Dutch, United Kingdom, and Canadian magnetic resonance imaging screening trials. Clin Cancer Res. 2007, 13: 7357-7362. 10.1158/1078-0432.CCR-07-0689.CrossRefPubMed Tilanus-Linthorst MM, Obdeijn IM, Hop WC, Causer PA, Leach MO, Warner E, Pointon L, Hill K, Klijn JG, Warren RM, Gilbert FJ: BRCA1 mutation and young age predict fast breast cancer growth in the Dutch, United Kingdom, and Canadian magnetic resonance imaging screening trials. Clin Cancer Res. 2007, 13: 7357-7362. 10.1158/1078-0432.CCR-07-0689.CrossRefPubMed
18.
go back to reference Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans E, Godwin J, Gray R, Hicks C, James S, et al: Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005, 366: 2087-2106.CrossRefPubMed Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans E, Godwin J, Gray R, Hicks C, James S, et al: Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005, 366: 2087-2106.CrossRefPubMed
19.
go back to reference Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005, 365: 1687-1717. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005, 365: 1687-1717.
20.
go back to reference Schmidt-Ullrich RK, Contessa JN, Dent P, Mikkelsen RB, Valerie K, Reardon DB, Bowers G, Lin PS: Molecular mechanisms of radiation-induced accelerated repopulation. Radiat Oncol Investig. 1999, 7: 321-330. 10.1002/(SICI)1520-6823(1999)7:6<321::AID-ROI2>3.0.CO;2-Q.CrossRefPubMed Schmidt-Ullrich RK, Contessa JN, Dent P, Mikkelsen RB, Valerie K, Reardon DB, Bowers G, Lin PS: Molecular mechanisms of radiation-induced accelerated repopulation. Radiat Oncol Investig. 1999, 7: 321-330. 10.1002/(SICI)1520-6823(1999)7:6<321::AID-ROI2>3.0.CO;2-Q.CrossRefPubMed
21.
go back to reference Boice JD, Harvey EB, Blettner M, Stovall M, Flannery JT: Cancer in the contralateral breast after radiotherapy for breast cancer. N Engl J Med. 1992, 326: 781-785. 10.1056/NEJM199203193261201.CrossRefPubMed Boice JD, Harvey EB, Blettner M, Stovall M, Flannery JT: Cancer in the contralateral breast after radiotherapy for breast cancer. N Engl J Med. 1992, 326: 781-785. 10.1056/NEJM199203193261201.CrossRefPubMed
22.
go back to reference Hooning MJ, Aleman BM, Hauptmann M, Baaijens MH, Klijn JG, Noyon R, Stovall M, van Leeuwen FE: Roles of radiotherapy and chemotherapy in the development of contralateral breast cancer. J Clin Oncol. 2008, 26: 5561-5568. 10.1200/JCO.2007.16.0192.CrossRefPubMed Hooning MJ, Aleman BM, Hauptmann M, Baaijens MH, Klijn JG, Noyon R, Stovall M, van Leeuwen FE: Roles of radiotherapy and chemotherapy in the development of contralateral breast cancer. J Clin Oncol. 2008, 26: 5561-5568. 10.1200/JCO.2007.16.0192.CrossRefPubMed
23.
go back to reference Storm HH, Andersson M, Boice JD, Blettner M, Stovall M, Mouridsen HT, Dombernowsky P, Rose C, Jacobsen A, Pedersen M: Adjuvant radiotherapy and risk of contralateral breast cancer. J Natl Cancer Inst. 1992, 84: 1245-1250. 10.1093/jnci/84.16.1245.CrossRefPubMed Storm HH, Andersson M, Boice JD, Blettner M, Stovall M, Mouridsen HT, Dombernowsky P, Rose C, Jacobsen A, Pedersen M: Adjuvant radiotherapy and risk of contralateral breast cancer. J Natl Cancer Inst. 1992, 84: 1245-1250. 10.1093/jnci/84.16.1245.CrossRefPubMed
24.
go back to reference Yadav BS, Sharma SC, Patel FD, Ghoshal S, Kapoor RK: Second primary in the contralateral breast after treatment of breast cancer. Radiother Oncol. 2008, 86: 171-176. 10.1016/j.radonc.2007.10.002.CrossRefPubMed Yadav BS, Sharma SC, Patel FD, Ghoshal S, Kapoor RK: Second primary in the contralateral breast after treatment of breast cancer. Radiother Oncol. 2008, 86: 171-176. 10.1016/j.radonc.2007.10.002.CrossRefPubMed
25.
go back to reference Fraass BA, Roberson PL, Lichter AS: Dose to the contralateral breast due to primary breast irradiation. Int J Radiat Oncol Biol Phys. 1985, 11: 485-497. 10.1016/0360-3016(85)90179-8.CrossRefPubMed Fraass BA, Roberson PL, Lichter AS: Dose to the contralateral breast due to primary breast irradiation. Int J Radiat Oncol Biol Phys. 1985, 11: 485-497. 10.1016/0360-3016(85)90179-8.CrossRefPubMed
26.
go back to reference Kelly CA, Wang XY, Chu JC, Hartsell WF: Dose to contralateral breast: a comparison of four primary breast irradiation techniques. Int J Radiat Oncol Biol Phys. 1996, 34: 727-732. 10.1016/0360-3016(95)02051-9.CrossRefPubMed Kelly CA, Wang XY, Chu JC, Hartsell WF: Dose to contralateral breast: a comparison of four primary breast irradiation techniques. Int J Radiat Oncol Biol Phys. 1996, 34: 727-732. 10.1016/0360-3016(95)02051-9.CrossRefPubMed
27.
go back to reference Chougule A: Radiation dose to contralateral breast during treatment of breast malignancy by radiotherapy. J Cancer Res Ther. 2007, 3: 8-11. 10.4103/0973-1482.31964.CrossRefPubMed Chougule A: Radiation dose to contralateral breast during treatment of breast malignancy by radiotherapy. J Cancer Res Ther. 2007, 3: 8-11. 10.4103/0973-1482.31964.CrossRefPubMed
28.
go back to reference Barcellos-Hoff MH, Ravani SA: Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 2000, 60: 1254-1260.PubMed Barcellos-Hoff MH, Ravani SA: Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 2000, 60: 1254-1260.PubMed
30.
go back to reference Szlosarek PW, Balkwill FR: Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol. 2003, 4: 565-573. 10.1016/S1470-2045(03)01196-3.CrossRefPubMed Szlosarek PW, Balkwill FR: Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol. 2003, 4: 565-573. 10.1016/S1470-2045(03)01196-3.CrossRefPubMed
31.
go back to reference Weichselbaum RR, Kufe DW, Hellman S, Rasmussen HS, King CR, Fischer PH, Mauceri HJ: Radiation-induced tumour necrosis factor-alpha expression: clinical application of transcriptional and physical targeting of gene therapy. Lancet Oncol. 2002, 3: 665-671. 10.1016/S1470-2045(02)00900-2.CrossRefPubMed Weichselbaum RR, Kufe DW, Hellman S, Rasmussen HS, King CR, Fischer PH, Mauceri HJ: Radiation-induced tumour necrosis factor-alpha expression: clinical application of transcriptional and physical targeting of gene therapy. Lancet Oncol. 2002, 3: 665-671. 10.1016/S1470-2045(02)00900-2.CrossRefPubMed
Metadata
Title
Growth of breast cancer recurrences assessed by consecutive MRI
Authors
Ingrid Millet
Emmanuelle Bouic-Pages
Denis Hoa
David Azria
Patrice Taourel
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-155

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine