Skip to main content
Top
Published in: BMC Cancer 1/2011

Open Access 01-12-2011 | Research article

Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells

Authors: Guo-fang Zeng, Shao-xi Cai, Guang-Jer Wu

Published in: BMC Cancer | Issue 1/2011

Login to get access

Abstract

Background

Conflicting research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM) in the Ig-like gene super-family, as both a tumor promoter and a tumor suppressor in the development of breast cancer. To resolve this, we have re-investigated the role of this CAM in the progression of human breast cancer cells.

Methods

Three breast cancer cell lines were used for the tests: one luminal-like breast cancer cell line, MCF7, which did not express any METCAM/MUC18, and two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which expressed moderate levels of the protein.
MCF7 cells were transfected with the human METCAM/MUC18 cDNA to obtain G418-resistant clones which expressed the protein and were used for testing effects of human METCAM/MUC18 expression on in vitro motility and invasiveness, and in vitro and in vivo tumorigenesis. Both MDA-MB-231 and MDA-MB-468 cells already expressed METCAM/MUC18. They were directly used for in vitro tests in the presence and absence of an anti-METCAM/MUC18 antibody.

Results

In MCF7 cells, enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, anchorage-independent colony formation (in vitro tumorigenesis), and in vivo tumorigenesis. In both MDA-MB-231 and MDA-MB-468 cells, the anti-METCAM/MUC18 antibody inhibited both motility and invasiveness. Though both MDA-MB-231 and MDA-MB-468 cells established a disorganized growth in 3D basement membrane culture assay, the introduction of the anti-METCAM/MUC18 antibody completely destroyed their growth in the 3D culture.

Conclusion

These findings support the notion that human METCAM/MUC18 expression promotes the progression of human breast cancer cells by increasing their motility, invasiveness and tumorigenesis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lehmann JM, Reithmuller G, Johnson JP: MUC18, a marker of tumor progression in human melanoma. Proc Natl Acad Sci USA. 1989, 86: 9891-9895. 10.1073/pnas.86.24.9891.CrossRefPubMedPubMedCentral Lehmann JM, Reithmuller G, Johnson JP: MUC18, a marker of tumor progression in human melanoma. Proc Natl Acad Sci USA. 1989, 86: 9891-9895. 10.1073/pnas.86.24.9891.CrossRefPubMedPubMedCentral
2.
go back to reference Wu GJ, Wu MWH, Wang SW, et al: Isolation and characterization of the major form of human MUC18 cDNA gene and correlation of MUC18 over-expression in prostate cancer cells and tissues with malignant progression. Gene. 2001, 279: 17-31. 10.1016/S0378-1119(01)00736-3.CrossRefPubMed Wu GJ, Wu MWH, Wang SW, et al: Isolation and characterization of the major form of human MUC18 cDNA gene and correlation of MUC18 over-expression in prostate cancer cells and tissues with malignant progression. Gene. 2001, 279: 17-31. 10.1016/S0378-1119(01)00736-3.CrossRefPubMed
3.
go back to reference Wu GJ: METCAM/MUC18 expression and cancer metastasis. Current Genomics. 2005, 6: 333-349. 10.2174/1389202054750211.CrossRef Wu GJ: METCAM/MUC18 expression and cancer metastasis. Current Genomics. 2005, 6: 333-349. 10.2174/1389202054750211.CrossRef
4.
go back to reference Cavallaro U, Christofori G: Cell adhesion and signaling by cadherins and Ig-CAMs in cancer. Nature Reviews/Cancer. 2005, 4: 118-132. 10.1038/nrc1276. Cavallaro U, Christofori G: Cell adhesion and signaling by cadherins and Ig-CAMs in cancer. Nature Reviews/Cancer. 2005, 4: 118-132. 10.1038/nrc1276.
6.
go back to reference Xie S, Luca M, Huang S, et al: Expression of MCAM/MCU18 by human melanoma cells leads to increased tumor growth and metastasis. Cancer Res. 1997, 57: 2295-2303.PubMed Xie S, Luca M, Huang S, et al: Expression of MCAM/MCU18 by human melanoma cells leads to increased tumor growth and metastasis. Cancer Res. 1997, 57: 2295-2303.PubMed
7.
go back to reference Schlagbauer-Wadl H, Jansen B, Muller M, et al: Influence of MUC18/MCAM/CD146 expression on human melanoma growth and metastasis in SCID mice. Int J Cancer. 1999, 81: 951-955. 10.1002/(SICI)1097-0215(19990611)81:6<951::AID-IJC18>3.0.CO;2-V.CrossRefPubMed Schlagbauer-Wadl H, Jansen B, Muller M, et al: Influence of MUC18/MCAM/CD146 expression on human melanoma growth and metastasis in SCID mice. Int J Cancer. 1999, 81: 951-955. 10.1002/(SICI)1097-0215(19990611)81:6<951::AID-IJC18>3.0.CO;2-V.CrossRefPubMed
8.
go back to reference Wu GJ, Fu P, Wang SW, et al: Enforced expression of MCAM/MUC18 increases in vitro motility and invasiveness and in vivo metastasis of two mouse melanoma K1735 sublines in a syngeneic mouse model. Mol Cancer Res. 2008, 6: 1666-1677. 10.1158/1541-7786.MCR-07-2200.CrossRefPubMed Wu GJ, Fu P, Wang SW, et al: Enforced expression of MCAM/MUC18 increases in vitro motility and invasiveness and in vivo metastasis of two mouse melanoma K1735 sublines in a syngeneic mouse model. Mol Cancer Res. 2008, 6: 1666-1677. 10.1158/1541-7786.MCR-07-2200.CrossRefPubMed
9.
go back to reference Wu GJ, Peng Q, Fu P, et al: Ectopical expression of human MUC18 increases metastasis of human prostate cancer LNCaP cells. Gene. 2004, 327: 201-213. 10.1016/j.gene.2003.11.018.CrossRefPubMed Wu GJ, Peng Q, Fu P, et al: Ectopical expression of human MUC18 increases metastasis of human prostate cancer LNCaP cells. Gene. 2004, 327: 201-213. 10.1016/j.gene.2003.11.018.CrossRefPubMed
10.
go back to reference Wu GJ: Chapter 7 The role of MUC18 in prostate carcinoma. Immunohistochemistry and in situ hybridization of human carcinoma. Volume 2. Molecular pathology, lung carcinoma, breast carcinoma, and prostate carcinoma. Edited by: Hayat MA. 2004, Elsevier Science/Academic Press, 347-358. Wu GJ: Chapter 7 The role of MUC18 in prostate carcinoma. Immunohistochemistry and in situ hybridization of human carcinoma. Volume 2. Molecular pathology, lung carcinoma, breast carcinoma, and prostate carcinoma. Edited by: Hayat MA. 2004, Elsevier Science/Academic Press, 347-358.
11.
go back to reference Shih IM, Hsu MY, Palazzo JP, et al: The cell-cell adhesion receptor MEL-CAM acts as a tumor suppressor in breast carcinoma. Am J Pathol. 1997, 151: 745-751.PubMedPubMedCentral Shih IM, Hsu MY, Palazzo JP, et al: The cell-cell adhesion receptor MEL-CAM acts as a tumor suppressor in breast carcinoma. Am J Pathol. 1997, 151: 745-751.PubMedPubMedCentral
12.
go back to reference Ouhtit A, Gaur RL, Elmageed A, et al: Towards understanding the mode of action of the multifaceted cell adhesion receptor CD146. Bioch Bioph Acta. 2009, 1795: 130-136. Ouhtit A, Gaur RL, Elmageed A, et al: Towards understanding the mode of action of the multifaceted cell adhesion receptor CD146. Bioch Bioph Acta. 2009, 1795: 130-136.
13.
go back to reference Garcia S, Dales JP, Charafe-Jauffret E, et al: Poor prognosis in breast carcinomas correlates with increased expression of targetable CD146 and c-Met and with proteomic basal-like phenotype. Human Pathol. 2007, 38: 830-841. 10.1016/j.humpath.2006.11.015.CrossRef Garcia S, Dales JP, Charafe-Jauffret E, et al: Poor prognosis in breast carcinomas correlates with increased expression of targetable CD146 and c-Met and with proteomic basal-like phenotype. Human Pathol. 2007, 38: 830-841. 10.1016/j.humpath.2006.11.015.CrossRef
14.
go back to reference Zabouo G, Imbert AM, Jacquemier J, et al: CD146 expression is associated with a poor prognosis in human breast tumors and with enhanced motility in breast cancer cell lines. Breast Cancer Research. 2009, 11: R1-10.1186/bcr2215.CrossRefPubMedPubMedCentral Zabouo G, Imbert AM, Jacquemier J, et al: CD146 expression is associated with a poor prognosis in human breast tumors and with enhanced motility in breast cancer cell lines. Breast Cancer Research. 2009, 11: R1-10.1186/bcr2215.CrossRefPubMedPubMedCentral
15.
go back to reference Yan X, Lin Y, Yang D, et al: A novel anti-CD146 monoclonal antibody, AA98, inhibits angiogenesis and tumor growth. Blood. 2003, 102: 184-191. 10.1182/blood-2002-04-1004.CrossRefPubMed Yan X, Lin Y, Yang D, et al: A novel anti-CD146 monoclonal antibody, AA98, inhibits angiogenesis and tumor growth. Blood. 2003, 102: 184-191. 10.1182/blood-2002-04-1004.CrossRefPubMed
16.
go back to reference Charafe-Jauffret E, Ginestier C, Monville F, et al: Gene expression profiling of breast cell lines indentifies potential new basal markers. Oncogene. 2006, 25: 2273-2284. 10.1038/sj.onc.1209254.CrossRefPubMed Charafe-Jauffret E, Ginestier C, Monville F, et al: Gene expression profiling of breast cell lines indentifies potential new basal markers. Oncogene. 2006, 25: 2273-2284. 10.1038/sj.onc.1209254.CrossRefPubMed
17.
go back to reference Neve RM, Chin K, Fridlyand J, et al: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006, 10: 515-527. 10.1016/j.ccr.2006.10.008.CrossRefPubMedPubMedCentral Neve RM, Chin K, Fridlyand J, et al: A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006, 10: 515-527. 10.1016/j.ccr.2006.10.008.CrossRefPubMedPubMedCentral
18.
go back to reference Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, (editors): Section 10 Analysis of proteins. Current Protocols in Molecular Biology. 1987, New York: Green Publishing Associates and Wiley-Interscience Press, 10.8: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, (editors): Section 10 Analysis of proteins. Current Protocols in Molecular Biology. 1987, New York: Green Publishing Associates and Wiley-Interscience Press, 10.8:
19.
go back to reference Passaniti A, Isaacs JT, Haney JA, et al: Stimulation of human prostatic carcinoma tumor growth in athymic mice and control of migration in culture by extracellular matrix. Int J Cancer. 1992, 51: 318-324. 10.1002/ijc.2910510224.CrossRefPubMed Passaniti A, Isaacs JT, Haney JA, et al: Stimulation of human prostatic carcinoma tumor growth in athymic mice and control of migration in culture by extracellular matrix. Int J Cancer. 1992, 51: 318-324. 10.1002/ijc.2910510224.CrossRefPubMed
20.
go back to reference Albini A, Iwamoto Y, Kleinman HK, et al: A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 1987, 47: 3239-3245.PubMed Albini A, Iwamoto Y, Kleinman HK, et al: A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 1987, 47: 3239-3245.PubMed
21.
go back to reference Leone A, Flatow U, King CR, et al: Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm-23 transfected melanoma cells. Cell. 1991, 65: 25-35. 10.1016/0092-8674(91)90404-M.CrossRefPubMed Leone A, Flatow U, King CR, et al: Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm-23 transfected melanoma cells. Cell. 1991, 65: 25-35. 10.1016/0092-8674(91)90404-M.CrossRefPubMed
22.
go back to reference Lee GY, Kenny PA, Lee EH, Bissell MJ: Three-dimensional culture models of normal and malignant breast epithelial cells. Nature Methods. 2007, 4 (4): 359-365. 10.1038/nmeth1015.CrossRefPubMedPubMedCentral Lee GY, Kenny PA, Lee EH, Bissell MJ: Three-dimensional culture models of normal and malignant breast epithelial cells. Nature Methods. 2007, 4 (4): 359-365. 10.1038/nmeth1015.CrossRefPubMedPubMedCentral
23.
go back to reference Yang H, Wang SW, Liu Z, et al: Isolation and characterization of murine MUC18 cDNA gene, and correlation of MUC18 expression in murine melanoma cell lines with metastatic ability. Gene. 2001, 265: 133-145. 10.1016/S0378-1119(01)00349-3.CrossRefPubMed Yang H, Wang SW, Liu Z, et al: Isolation and characterization of murine MUC18 cDNA gene, and correlation of MUC18 expression in murine melanoma cell lines with metastatic ability. Gene. 2001, 265: 133-145. 10.1016/S0378-1119(01)00349-3.CrossRefPubMed
24.
go back to reference Noel A, De Pauw-Gillet MC, Purnell G, Nusgens B, Lapiere CM, Foidart JM: Enhancement of tumorigenicity of human breast adenocarcinoma cells in nude mice by Matrigel and fibroblasts. Br J Cancer. 1993, 68: 909-915. 10.1038/bjc.1993.453.CrossRefPubMedPubMedCentral Noel A, De Pauw-Gillet MC, Purnell G, Nusgens B, Lapiere CM, Foidart JM: Enhancement of tumorigenicity of human breast adenocarcinoma cells in nude mice by Matrigel and fibroblasts. Br J Cancer. 1993, 68: 909-915. 10.1038/bjc.1993.453.CrossRefPubMedPubMedCentral
25.
go back to reference Benton G, George J, Kleinman HK, Arnaoutova IP: Advancing science and technology via 3D culture on basement membrane matrix. J Cell Physiol. 2009, 221: 18-25. 10.1002/jcp.21832.CrossRefPubMed Benton G, George J, Kleinman HK, Arnaoutova IP: Advancing science and technology via 3D culture on basement membrane matrix. J Cell Physiol. 2009, 221: 18-25. 10.1002/jcp.21832.CrossRefPubMed
26.
go back to reference Wu GJ: METCAM promotes in vitro motility, invasiveness and colony formation, and in vivo tumorigenesis of human breast cancer cells. The proceedings of the 101st Annual Meeting of American Association for the Cancer Research, 17-21 April 2010; Washington DC. 2010, 51: Abstract #481 Wu GJ: METCAM promotes in vitro motility, invasiveness and colony formation, and in vivo tumorigenesis of human breast cancer cells. The proceedings of the 101st Annual Meeting of American Association for the Cancer Research, 17-21 April 2010; Washington DC. 2010, 51: Abstract #481
27.
go back to reference Zeng G, Liu Y, Wu GJ: Resolving the conflicting results of the role of METCAM/MUC18 in the progression of human breast cancer cells. 2011 Zeng G, Liu Y, Wu GJ: Resolving the conflicting results of the role of METCAM/MUC18 in the progression of human breast cancer cells. 2011
28.
go back to reference Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100: 57-70. 10.1016/S0092-8674(00)81683-9.CrossRefPubMed Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100: 57-70. 10.1016/S0092-8674(00)81683-9.CrossRefPubMed
29.
go back to reference Datta SR, Brunet A, Greenberg ME: Cellular survival: a play in three AKTs. Genes & Development. 1999, 13: 2905-2927.CrossRef Datta SR, Brunet A, Greenberg ME: Cellular survival: a play in three AKTs. Genes & Development. 1999, 13: 2905-2927.CrossRef
30.
go back to reference Anfosso F, Bardin N, Vivier E, et al: Outside-in signaling pathway linked to CD146 engagement in human endothelial cells. J Biol Chem. 2001, 146: 1564-1569. 10.1074/jbc.M007065200.CrossRef Anfosso F, Bardin N, Vivier E, et al: Outside-in signaling pathway linked to CD146 engagement in human endothelial cells. J Biol Chem. 2001, 146: 1564-1569. 10.1074/jbc.M007065200.CrossRef
31.
go back to reference Li G, Kalabis J, Xu X, et al: Reciprocal regulation of MELCAM and AKT in human melanoma. Oncogene. 2003, 22: 6891-6899. 10.1038/sj.onc.1206819.CrossRefPubMed Li G, Kalabis J, Xu X, et al: Reciprocal regulation of MELCAM and AKT in human melanoma. Oncogene. 2003, 22: 6891-6899. 10.1038/sj.onc.1206819.CrossRefPubMed
32.
go back to reference Wu GJ, Wu MWH, Liu Y: Enforced expression of METCAM/MUC18 increases tumorigenesis of human prostate cancer LNCaP cells. J Urology. 2011, 185: 1504-1512. 10.1016/j.juro.2010.11.052.CrossRef Wu GJ, Wu MWH, Liu Y: Enforced expression of METCAM/MUC18 increases tumorigenesis of human prostate cancer LNCaP cells. J Urology. 2011, 185: 1504-1512. 10.1016/j.juro.2010.11.052.CrossRef
33.
go back to reference Melnikova VO, Debroff AS, Zigler M, Villares GJ, Braeuer R, Wang H, Huang L, Bar-Eli M: CREB inhibits AP-2α expression to regulate the malignant phenotype of melanoma. PLoS One. 2010, 5: e12452-10.1371/journal.pone.0012452.CrossRefPubMedPubMedCentral Melnikova VO, Debroff AS, Zigler M, Villares GJ, Braeuer R, Wang H, Huang L, Bar-Eli M: CREB inhibits AP-2α expression to regulate the malignant phenotype of melanoma. PLoS One. 2010, 5: e12452-10.1371/journal.pone.0012452.CrossRefPubMedPubMedCentral
34.
go back to reference Melnikva VO, Balasubramanian K, Villares GJ, Debroff AS, Zigler M, Wang H, Petersson F, Price JE, Schroit A, Prieto VG, Hung MC, Bar-Eli M: Crosstalk between protease-activated receptor1 and platelet-activating factor receptor regulates melanoma cell adhesion molecule (MCAM/MUC18) expression and melanoma metastasis. J Biol Chem. 2009, 284 (42): 28845-28855. 10.1074/jbc.M109.042150.CrossRef Melnikva VO, Balasubramanian K, Villares GJ, Debroff AS, Zigler M, Wang H, Petersson F, Price JE, Schroit A, Prieto VG, Hung MC, Bar-Eli M: Crosstalk between protease-activated receptor1 and platelet-activating factor receptor regulates melanoma cell adhesion molecule (MCAM/MUC18) expression and melanoma metastasis. J Biol Chem. 2009, 284 (42): 28845-28855. 10.1074/jbc.M109.042150.CrossRef
35.
go back to reference Wu GJ, Son EL: Soluble METCAM/MUC18 blocks angiogenesis during tumor formation of human prostate cancer cells. The proceedings of the 97th Annual Meeting of American Association for the Cancer Research, 1-5 April 2006; Washington DC. 2006, 46: #252Wu Wu GJ, Son EL: Soluble METCAM/MUC18 blocks angiogenesis during tumor formation of human prostate cancer cells. The proceedings of the 97th Annual Meeting of American Association for the Cancer Research, 1-5 April 2006; Washington DC. 2006, 46: #252Wu
36.
go back to reference Leslie MC, Zhao YJ, Lachman LB, Hwu P, Wu GJ, Bar-Eli M: Immunization against MUC18/MCAM, a novel antigen that drives melanoma invasion and metastasis. Gene Therapy. 2007, 14: 316-323. 10.1038/sj.gt.3302864.CrossRefPubMed Leslie MC, Zhao YJ, Lachman LB, Hwu P, Wu GJ, Bar-Eli M: Immunization against MUC18/MCAM, a novel antigen that drives melanoma invasion and metastasis. Gene Therapy. 2007, 14: 316-323. 10.1038/sj.gt.3302864.CrossRefPubMed
Metadata
Title
Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells
Authors
Guo-fang Zeng
Shao-xi Cai
Guang-Jer Wu
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2011
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-113

Other articles of this Issue 1/2011

BMC Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine