Skip to main content
Top
Published in: BMC Cancer 1/2010

Open Access 01-12-2010 | Research article

Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by Methyl-CpG binding proteins and histone modifications

Authors: Imke Müller, Frank Wischnewski, Klaus Pantel, Heidi Schwarzenbach

Published in: BMC Cancer | Issue 1/2010

Login to get access

Abstract

Background

The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs) and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation.

Methods

In DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies.

Results

Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR) caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3) at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR.

Conclusions

This study is one of the first to reveal the histone code and MBD profile at the promoters of CD44, Cyclin D2, GLIPR1 and PTEN in different tumour cells and associated changes after stimulation with methylation inhibitor 5-aza-CdR.
Appendix
Available only for authorised users
Literature
1.
go back to reference Klose RJ, Bird AP: Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006, 31 (2): 89-97. 10.1016/j.tibs.2005.12.008.CrossRefPubMed Klose RJ, Bird AP: Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006, 31 (2): 89-97. 10.1016/j.tibs.2005.12.008.CrossRefPubMed
2.
go back to reference Esteller M, Herman JG: Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol. 2002, 196 (1): 1-7. 10.1002/path.1024.CrossRefPubMed Esteller M, Herman JG: Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol. 2002, 196 (1): 1-7. 10.1002/path.1024.CrossRefPubMed
3.
go back to reference Hendrich B, Tweedie S: The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet. 2003, 19 (5): 269-277. 10.1016/S0168-9525(03)00080-5.CrossRefPubMed Hendrich B, Tweedie S: The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet. 2003, 19 (5): 269-277. 10.1016/S0168-9525(03)00080-5.CrossRefPubMed
4.
5.
go back to reference Kondo E, Gu Z, Horii A, Fukushige S: The thymine DNA glycosylase MBD4 represses transcription and is associated with methylated p16(INK4a) and hMLH1 genes. Mol Cell Biol. 2005, 25 (11): 4388-4396. 10.1128/MCB.25.11.4388-4396.2005.CrossRefPubMedPubMedCentral Kondo E, Gu Z, Horii A, Fukushige S: The thymine DNA glycosylase MBD4 represses transcription and is associated with methylated p16(INK4a) and hMLH1 genes. Mol Cell Biol. 2005, 25 (11): 4388-4396. 10.1128/MCB.25.11.4388-4396.2005.CrossRefPubMedPubMedCentral
6.
go back to reference Jorgensen HF, Ben-Porath I, Bird AP: Mbd1 is recruited to both methylated and nonmethylated CpGs via distinct DNA binding domains. Mol Cell Biol. 2004, 24 (8): 3387-3395. 10.1128/MCB.24.8.3387-3395.2004.CrossRefPubMedPubMedCentral Jorgensen HF, Ben-Porath I, Bird AP: Mbd1 is recruited to both methylated and nonmethylated CpGs via distinct DNA binding domains. Mol Cell Biol. 2004, 24 (8): 3387-3395. 10.1128/MCB.24.8.3387-3395.2004.CrossRefPubMedPubMedCentral
7.
go back to reference Wischnewski F, Friese O, Pantel K, Schwarzenbach H: Methyl-CpG binding domain proteins and their involvement in the regulation of the MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 gene promoters. Mol Cancer Res. 2007, 5 (7): 749-759. 10.1158/1541-7786.MCR-06-0364.CrossRefPubMed Wischnewski F, Friese O, Pantel K, Schwarzenbach H: Methyl-CpG binding domain proteins and their involvement in the regulation of the MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 gene promoters. Mol Cancer Res. 2007, 5 (7): 749-759. 10.1158/1541-7786.MCR-06-0364.CrossRefPubMed
8.
go back to reference Yu F, Zingler N, Schumann G, Stratling WH: Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription. Nucleic Acids Res. 2001, 29 (21): 4493-4501. 10.1093/nar/29.21.4493.CrossRefPubMedPubMedCentral Yu F, Zingler N, Schumann G, Stratling WH: Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription. Nucleic Acids Res. 2001, 29 (21): 4493-4501. 10.1093/nar/29.21.4493.CrossRefPubMedPubMedCentral
9.
go back to reference Fujita H, Fujii R, Aratani S, Amano T, Fukamizu A, Nakajima T: Antithetic effects of MBD2a on gene regulation. Mol Cell Biol. 2003, 23 (8): 2645-2657. 10.1128/MCB.23.8.2645-2657.2003.CrossRefPubMedPubMedCentral Fujita H, Fujii R, Aratani S, Amano T, Fukamizu A, Nakajima T: Antithetic effects of MBD2a on gene regulation. Mol Cell Biol. 2003, 23 (8): 2645-2657. 10.1128/MCB.23.8.2645-2657.2003.CrossRefPubMedPubMedCentral
10.
go back to reference Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, Tempst P, Reinberg D, Bird A: MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet. 1999, 23 (1): 58-61. 10.1038/12659.CrossRefPubMed Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, Tempst P, Reinberg D, Bird A: MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet. 1999, 23 (1): 58-61. 10.1038/12659.CrossRefPubMed
11.
go back to reference Zheng YG, Wu J, Chen Z, Goodman M: Chemical regulation of epigenetic modifications: Opportunities for new cancer therapy. Med Res Rev. 2008, 28 (5): 645-87. 10.1002/med.20120.CrossRefPubMed Zheng YG, Wu J, Chen Z, Goodman M: Chemical regulation of epigenetic modifications: Opportunities for new cancer therapy. Med Res Rev. 2008, 28 (5): 645-87. 10.1002/med.20120.CrossRefPubMed
12.
go back to reference Pantel K, Brakenhoff RH: Dissecting the metastatic cascade. Nat Rev Cancer. 2004, 4 (6): 448-456. 10.1038/nrc1370.CrossRefPubMed Pantel K, Brakenhoff RH: Dissecting the metastatic cascade. Nat Rev Cancer. 2004, 4 (6): 448-456. 10.1038/nrc1370.CrossRefPubMed
13.
go back to reference Isacke CM, Yarwood H: The hyaluronan receptor, CD44. Int J Biochem Cell Biol. 2002, 34 (7): 718-721. 10.1016/S1357-2725(01)00166-2.CrossRefPubMed Isacke CM, Yarwood H: The hyaluronan receptor, CD44. Int J Biochem Cell Biol. 2002, 34 (7): 718-721. 10.1016/S1357-2725(01)00166-2.CrossRefPubMed
14.
go back to reference Peng ST, Su CH, Kuo CC, Shaw CF, Wang HS: CD44 crosslinking-mediated matrix metalloproteinase-9 relocation in breast tumor cells leads to enhanced metastasis. Int J Oncol. 2007, 31 (5): 1119-1126.PubMed Peng ST, Su CH, Kuo CC, Shaw CF, Wang HS: CD44 crosslinking-mediated matrix metalloproteinase-9 relocation in breast tumor cells leads to enhanced metastasis. Int J Oncol. 2007, 31 (5): 1119-1126.PubMed
15.
go back to reference Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003, 100 (7): 3983-3988. 10.1073/pnas.0530291100.CrossRefPubMedPubMedCentral Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003, 100 (7): 3983-3988. 10.1073/pnas.0530291100.CrossRefPubMedPubMedCentral
16.
go back to reference Gotte M, Yip GW: Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res. 2006, 66 (21): 10233-10237. 10.1158/0008-5472.CAN-06-1464.CrossRefPubMed Gotte M, Yip GW: Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res. 2006, 66 (21): 10233-10237. 10.1158/0008-5472.CAN-06-1464.CrossRefPubMed
17.
go back to reference Kito H, Suzuki H, Ichikawa T, Sekita N, Kamiya N, Akakura K, Igarashi T, Nakayama T, Watanabe M, Harigaya K, et al: Hypermethylation of the CD44 gene is associated with progression and metastasis of human prostate cancer. Prostate. 2001, 49 (2): 110-115. 10.1002/pros.1124.CrossRefPubMed Kito H, Suzuki H, Ichikawa T, Sekita N, Kamiya N, Akakura K, Igarashi T, Nakayama T, Watanabe M, Harigaya K, et al: Hypermethylation of the CD44 gene is associated with progression and metastasis of human prostate cancer. Prostate. 2001, 49 (2): 110-115. 10.1002/pros.1124.CrossRefPubMed
18.
go back to reference Verkaik NS, van Steenbrugge GJ, van Weerden WM, Bussemakers MJ, van der Kwast TH: Silencing of CD44 expression in prostate cancer by hypermethylation of the CD44 promoter region. Lab Invest. 2000, 80 (8): 1291-1298. 10.1038/labinvest.3780137.CrossRefPubMed Verkaik NS, van Steenbrugge GJ, van Weerden WM, Bussemakers MJ, van der Kwast TH: Silencing of CD44 expression in prostate cancer by hypermethylation of the CD44 promoter region. Lab Invest. 2000, 80 (8): 1291-1298. 10.1038/labinvest.3780137.CrossRefPubMed
19.
go back to reference Sharma G, Mirza S, Prasad CP, Srivastava A, Gupta SD, Ralhan R: Promoter hypermethylation of p16INK4A, p14ARF, CyclinD2 and Slit2 in serum and tumor DNA from breast cancer patients. Life Sci. 2007, 80 (20): 1873-1881. 10.1016/j.lfs.2007.02.026.CrossRefPubMed Sharma G, Mirza S, Prasad CP, Srivastava A, Gupta SD, Ralhan R: Promoter hypermethylation of p16INK4A, p14ARF, CyclinD2 and Slit2 in serum and tumor DNA from breast cancer patients. Life Sci. 2007, 80 (20): 1873-1881. 10.1016/j.lfs.2007.02.026.CrossRefPubMed
20.
go back to reference Henrique R, Costa VL, Cerveira N, Carvalho AL, Hoque MO, Ribeiro FR, Oliveira J, Teixeira MR, Sidransky D, Jeronimo C: Hypermethylation of Cyclin D2 is associated with loss of mRNA expression and tumor development in prostate cancer. J Mol Med. 2006, 84 (11): 911-918. 10.1007/s00109-006-0099-4.CrossRefPubMed Henrique R, Costa VL, Cerveira N, Carvalho AL, Hoque MO, Ribeiro FR, Oliveira J, Teixeira MR, Sidransky D, Jeronimo C: Hypermethylation of Cyclin D2 is associated with loss of mRNA expression and tumor development in prostate cancer. J Mol Med. 2006, 84 (11): 911-918. 10.1007/s00109-006-0099-4.CrossRefPubMed
21.
go back to reference Rich T, Chen P, Furman F, Huynh N, Israel MA: RTVP-1, a novel human gene with sequence similarity to genes of diverse species, is expressed in tumor cell lines of glial but not neuronal origin. Gene. 1996, 180 (1-2): 125-130. 10.1016/S0378-1119(96)00431-3.CrossRefPubMed Rich T, Chen P, Furman F, Huynh N, Israel MA: RTVP-1, a novel human gene with sequence similarity to genes of diverse species, is expressed in tumor cell lines of glial but not neuronal origin. Gene. 1996, 180 (1-2): 125-130. 10.1016/S0378-1119(96)00431-3.CrossRefPubMed
22.
go back to reference Rosenzweig T, Ziv-Av A, Xiang C, Lu W, Cazacu S, Taler D, Miller CG, Reich R, Shoshan Y, Anikster Y, et al: Related to testes-specific, vespid, and pathogenesis protein-1 (RTVP-1) is overexpressed in gliomas and regulates the growth, survival, and invasion of glioma cells. Cancer Res. 2006, 66 (8): 4139-4148. 10.1158/0008-5472.CAN-05-2851.CrossRefPubMed Rosenzweig T, Ziv-Av A, Xiang C, Lu W, Cazacu S, Taler D, Miller CG, Reich R, Shoshan Y, Anikster Y, et al: Related to testes-specific, vespid, and pathogenesis protein-1 (RTVP-1) is overexpressed in gliomas and regulates the growth, survival, and invasion of glioma cells. Cancer Res. 2006, 66 (8): 4139-4148. 10.1158/0008-5472.CAN-05-2851.CrossRefPubMed
23.
go back to reference Ren LL, Yang G, Timme TL, Goltsov A, Ren C, Ji X, Addai J, Luo H, Ittmann MM, Thompson TC: RTVP-1, a tumor suppressor inactivated by methylation in prostate cancer. Cancer Res. 2004, 64 (3): 969-976. 10.1158/0008-5472.CAN-03-2592.CrossRefPubMed Ren LL, Yang G, Timme TL, Goltsov A, Ren C, Ji X, Addai J, Luo H, Ittmann MM, Thompson TC: RTVP-1, a tumor suppressor inactivated by methylation in prostate cancer. Cancer Res. 2004, 64 (3): 969-976. 10.1158/0008-5472.CAN-03-2592.CrossRefPubMed
24.
go back to reference Blanco-Aparicio C, Renner O, Leal JF, Carnero A: PTEN, more than the AKT pathway. Carcinogenesis. 2007, 28 (7): 1379-1386. 10.1093/carcin/bgm052.CrossRefPubMed Blanco-Aparicio C, Renner O, Leal JF, Carnero A: PTEN, more than the AKT pathway. Carcinogenesis. 2007, 28 (7): 1379-1386. 10.1093/carcin/bgm052.CrossRefPubMed
25.
go back to reference Dillon RL, White DE, Muller WJ: The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer. Oncogene. 2007, 26 (9): 1338-1345. 10.1038/sj.onc.1210202.CrossRefPubMed Dillon RL, White DE, Muller WJ: The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer. Oncogene. 2007, 26 (9): 1338-1345. 10.1038/sj.onc.1210202.CrossRefPubMed
26.
go back to reference Majumder PK, Sellers WR: Akt-regulated pathways in prostate cancer. Oncogene. 2005, 24 (50): 7465-7474. 10.1038/sj.onc.1209096.CrossRefPubMed Majumder PK, Sellers WR: Akt-regulated pathways in prostate cancer. Oncogene. 2005, 24 (50): 7465-7474. 10.1038/sj.onc.1209096.CrossRefPubMed
27.
go back to reference Sawa H, Murakami H, Ohshima Y, Sugino T, Nakajyo T, Kisanuki T, Tamura Y, Satone A, Ide W, Hashimoto I, et al: Histone deacetylase inhibitors such as sodium butyrate and trichostatin A induce apoptosis through an increase of the bcl-2-related protein Bad. Brain Tumor Pathol. 2001, 18 (2): 109-114. 10.1007/BF02479423.CrossRefPubMed Sawa H, Murakami H, Ohshima Y, Sugino T, Nakajyo T, Kisanuki T, Tamura Y, Satone A, Ide W, Hashimoto I, et al: Histone deacetylase inhibitors such as sodium butyrate and trichostatin A induce apoptosis through an increase of the bcl-2-related protein Bad. Brain Tumor Pathol. 2001, 18 (2): 109-114. 10.1007/BF02479423.CrossRefPubMed
28.
go back to reference Garcia-Manero G: Demethylating agents in myeloid malignancies. Curr Opin Oncol. 2008, 20 (6): 705-710. 10.1097/CCO.0b013e328313699c.CrossRefPubMed Garcia-Manero G: Demethylating agents in myeloid malignancies. Curr Opin Oncol. 2008, 20 (6): 705-710. 10.1097/CCO.0b013e328313699c.CrossRefPubMed
29.
go back to reference Lopez-Serra L, Ballestar E, Fraga MF, Alaminos M, Setien F, Esteller M: A profile of methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG islands of tumor suppressor genes in human cancer. Cancer Res. 2006, 66 (17): 8342-8346. 10.1158/0008-5472.CAN-06-1932.CrossRefPubMed Lopez-Serra L, Ballestar E, Fraga MF, Alaminos M, Setien F, Esteller M: A profile of methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG islands of tumor suppressor genes in human cancer. Cancer Res. 2006, 66 (17): 8342-8346. 10.1158/0008-5472.CAN-06-1932.CrossRefPubMed
30.
go back to reference Ballestar E, Paz MF, Valle L, Wei S, Fraga MF, Espada J, Cigudosa JC, Huang TH, Esteller M: Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. Embo J. 2003, 22 (23): 6335-6345. 10.1093/emboj/cdg604.CrossRefPubMedPubMedCentral Ballestar E, Paz MF, Valle L, Wei S, Fraga MF, Espada J, Cigudosa JC, Huang TH, Esteller M: Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. Embo J. 2003, 22 (23): 6335-6345. 10.1093/emboj/cdg604.CrossRefPubMedPubMedCentral
31.
go back to reference Dahl JA, Collas P: Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells. 2007, 25 (4): 1037-1046. 10.1634/stemcells.2006-0430.CrossRefPubMed Dahl JA, Collas P: Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells. 2007, 25 (4): 1037-1046. 10.1634/stemcells.2006-0430.CrossRefPubMed
32.
go back to reference Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell. 2007, 129 (4): 823-837. 10.1016/j.cell.2007.05.009.CrossRefPubMed Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell. 2007, 129 (4): 823-837. 10.1016/j.cell.2007.05.009.CrossRefPubMed
33.
go back to reference Squazzo SL, O'Geen H, Komashko VM, Krig SR, Jin VX, Jang SW, Margueron R, Reinberg D, Green R, Farnham PJ: Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res. 2006, 16 (7): 890-900. 10.1101/gr.5306606.CrossRefPubMedPubMedCentral Squazzo SL, O'Geen H, Komashko VM, Krig SR, Jin VX, Jang SW, Margueron R, Reinberg D, Green R, Farnham PJ: Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res. 2006, 16 (7): 890-900. 10.1101/gr.5306606.CrossRefPubMedPubMedCentral
34.
go back to reference Nguyen CT, Gonzales FA, Jones PA: Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res. 2001, 29 (22): 4598-4606. 10.1093/nar/29.22.4598.CrossRefPubMedPubMedCentral Nguyen CT, Gonzales FA, Jones PA: Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res. 2001, 29 (22): 4598-4606. 10.1093/nar/29.22.4598.CrossRefPubMedPubMedCentral
35.
go back to reference Strahl BD, Allis CD: The language of covalent histone modifications. Nature. 2000, 403 (6765): 41-45. 10.1038/47412.CrossRefPubMed Strahl BD, Allis CD: The language of covalent histone modifications. Nature. 2000, 403 (6765): 41-45. 10.1038/47412.CrossRefPubMed
36.
go back to reference El-Osta A, Kantharidis P, Zalcberg JR, Wolffe AP: Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation. Mol Cell Biol. 2002, 22 (6): 1844-1857. 10.1128/MCB.22.6.1844-1857.2002.CrossRefPubMedPubMedCentral El-Osta A, Kantharidis P, Zalcberg JR, Wolffe AP: Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation. Mol Cell Biol. 2002, 22 (6): 1844-1857. 10.1128/MCB.22.6.1844-1857.2002.CrossRefPubMedPubMedCentral
37.
go back to reference Radhakrishnan P, Basma H, Klinkebiel D, Christman J, Cheng PW: Cell type-specific activation of the cytomegalovirus promoter by dimethylsulfoxide and 5-Aza-2'-deoxycytidine. Int J Biochem Cell Biol. 2008, 40 (9): 1944-55. 10.1016/j.biocel.2008.02.014.CrossRefPubMedPubMedCentral Radhakrishnan P, Basma H, Klinkebiel D, Christman J, Cheng PW: Cell type-specific activation of the cytomegalovirus promoter by dimethylsulfoxide and 5-Aza-2'-deoxycytidine. Int J Biochem Cell Biol. 2008, 40 (9): 1944-55. 10.1016/j.biocel.2008.02.014.CrossRefPubMedPubMedCentral
38.
go back to reference Pryzbylkowski P, Obajimi O, Keen JC: Trichostatin A and 5 Aza-2' deoxycytidine decrease estrogen receptor mRNA stability in ER positive MCF7 cells through modulation of HuR. Breast Cancer Res Treat. 2008, 111 (1): 15-25. 10.1007/s10549-007-9751-0.CrossRefPubMed Pryzbylkowski P, Obajimi O, Keen JC: Trichostatin A and 5 Aza-2' deoxycytidine decrease estrogen receptor mRNA stability in ER positive MCF7 cells through modulation of HuR. Breast Cancer Res Treat. 2008, 111 (1): 15-25. 10.1007/s10549-007-9751-0.CrossRefPubMed
39.
go back to reference Krishnan M, Singh AB, Smith JJ, Sharma A, Chen X, Eschrich S, Yeatman TJ, Beauchamp RD, Dhawan P: HDAC inhibitors regulate claudin-1 expression in colon cancer cells through modulation of mRNA stability. Oncogene. 29 (2): 305-312. 10.1038/onc.2009.324. Krishnan M, Singh AB, Smith JJ, Sharma A, Chen X, Eschrich S, Yeatman TJ, Beauchamp RD, Dhawan P: HDAC inhibitors regulate claudin-1 expression in colon cancer cells through modulation of mRNA stability. Oncogene. 29 (2): 305-312. 10.1038/onc.2009.324.
40.
go back to reference Hirsch CL, Bonham K: Histone deacetylase inhibitors regulate p21WAF1 gene expression at the post-transcriptional level in HepG2 cells. FEBS Lett. 2004, 570 (1-3): 37-40. 10.1016/j.febslet.2004.06.018.CrossRefPubMed Hirsch CL, Bonham K: Histone deacetylase inhibitors regulate p21WAF1 gene expression at the post-transcriptional level in HepG2 cells. FEBS Lett. 2004, 570 (1-3): 37-40. 10.1016/j.febslet.2004.06.018.CrossRefPubMed
Metadata
Title
Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by Methyl-CpG binding proteins and histone modifications
Authors
Imke Müller
Frank Wischnewski
Klaus Pantel
Heidi Schwarzenbach
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2010
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-10-297

Other articles of this Issue 1/2010

BMC Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine