Skip to main content
Top
Published in: BMC Cancer 1/2010

Open Access 01-12-2010 | Research article

Interference with Activator Protein-2 transcription factors leads to induction of apoptosis and an increase in chemo- and radiation-sensitivity in breast cancer cells

Authors: Verena Thewes, Francesca Orso, Richard Jäger, Dawid Eckert, Sabine Schäfer, Gregor Kirfel, Stephan Garbe, Daniela Taverna, Hubert Schorle

Published in: BMC Cancer | Issue 1/2010

Login to get access

Abstract

Background

Activator Protein-2 (AP-2) transcription factors are critically involved in a variety of fundamental cellular processes such as proliferation, differentiation and apoptosis and have also been implicated in carcinogenesis. Expression of the family members AP-2α and AP-2γ is particularly well documented in malignancies of the female breast. Despite increasing evaluation of single AP-2 isoforms in mammary tumors the functional role of concerted expression of multiple AP-2 isoforms in breast cancer remains to be elucidated. AP-2 proteins can form homo- or heterodimers, and there is growing evidence that the net effect whether a cell will proliferate, undergo apoptosis or differentiate is partly dependent on the balance between different AP-2 isoforms.

Methods

We simultaneously interfered with all AP-2 isoforms expressed in ErbB-2-positive murine N202.1A breast cancer cells by conditionally over-expressing a dominant-negative AP-2 mutant.

Results

We show that interference with AP-2 protein function lead to reduced cell number, induced apoptosis and increased chemo- and radiation-sensitivity. Analysis of global gene expression changes upon interference with AP-2 proteins identified 139 modulated genes (90 up-regulated, 49 down-regulated) compared with control cells. Gene Ontology (GO) investigations for these genes revealed Cell Death and Cell Adhesion and Migration as the main functional categories including 25 and 12 genes, respectively. By using information obtained from Ingenuity Pathway Analysis Systems we were able to present proven or potential connections between AP-2 regulated genes involved in cell death and response to chemo- and radiation therapy, (i.e. Ctgf, Nrp1, Tnfaip3, Gsta3) and AP-2 and other main apoptosis players and to create a unique network.

Conclusions

Expression of AP-2 transcription factors in breast cancer cells supports proliferation and contributes to chemo- and radiation-resistance of tumor cells by impairing the ability to induce apoptosis. Therefore, interference with AP-2 function could increase the sensitivity of tumor cells towards therapeutic intervention.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Bosher JM, Totty NF, Hsuan JJ, Williams T, Hurst HC: A family of AP-2 proteins regulates c-erbB-2 expression in mammary carcinoma. Oncogene. 1996, 13 (8): 1701-1707.PubMed Bosher JM, Totty NF, Hsuan JJ, Williams T, Hurst HC: A family of AP-2 proteins regulates c-erbB-2 expression in mammary carcinoma. Oncogene. 1996, 13 (8): 1701-1707.PubMed
3.
go back to reference Pellikainen JM, Kosma VM: Activator protein-2 in carcinogenesis with a special reference to breast cancer--a mini review. Int J Cancer. 2007, 120 (10): 2061-2067. 10.1002/ijc.22648.CrossRefPubMed Pellikainen JM, Kosma VM: Activator protein-2 in carcinogenesis with a special reference to breast cancer--a mini review. Int J Cancer. 2007, 120 (10): 2061-2067. 10.1002/ijc.22648.CrossRefPubMed
4.
go back to reference Friedrichs N, Jager R, Paggen E, Rudlowski C, Merkelbach-Bruse S, Schorle H, Buettner R: Distinct spatial expression patterns of AP-2alpha and AP-2gamma in non-neoplastic human breast and breast cancer. Mod Pathol. 2005, 18 (3): 431-438. 10.1038/modpathol.3800292.CrossRefPubMed Friedrichs N, Jager R, Paggen E, Rudlowski C, Merkelbach-Bruse S, Schorle H, Buettner R: Distinct spatial expression patterns of AP-2alpha and AP-2gamma in non-neoplastic human breast and breast cancer. Mod Pathol. 2005, 18 (3): 431-438. 10.1038/modpathol.3800292.CrossRefPubMed
5.
go back to reference Friedrichs N, Steiner S, Buettner R, Knoepfle G: Immunohistochemical expression patterns of AP2alpha and AP2gamma in the developing fetal human breast. Histopathology. 2007, 51 (6): 814-823. 10.1111/j.1365-2559.2007.02887.x.CrossRefPubMed Friedrichs N, Steiner S, Buettner R, Knoepfle G: Immunohistochemical expression patterns of AP2alpha and AP2gamma in the developing fetal human breast. Histopathology. 2007, 51 (6): 814-823. 10.1111/j.1365-2559.2007.02887.x.CrossRefPubMed
6.
go back to reference Hilger-Eversheim K, Moser M, Schorle H, Buettner R: Regulatory roles of AP-2 transcription factors in vertebrate development, apoptosis and cell-cycle control. Gene. 2000, 260 (1-2): 1-12. 10.1016/S0378-1119(00)00454-6.CrossRefPubMed Hilger-Eversheim K, Moser M, Schorle H, Buettner R: Regulatory roles of AP-2 transcription factors in vertebrate development, apoptosis and cell-cycle control. Gene. 2000, 260 (1-2): 1-12. 10.1016/S0378-1119(00)00454-6.CrossRefPubMed
7.
go back to reference Wajapeyee N, Britto R, Ravishankar HM, Somasundaram K: Apoptosis induction by activator protein 2alpha involves transcriptional repression of Bcl-2. J Biol Chem. 2006, 281 (24): 16207-16219. 10.1074/jbc.M600539200.CrossRefPubMed Wajapeyee N, Britto R, Ravishankar HM, Somasundaram K: Apoptosis induction by activator protein 2alpha involves transcriptional repression of Bcl-2. J Biol Chem. 2006, 281 (24): 16207-16219. 10.1074/jbc.M600539200.CrossRefPubMed
8.
go back to reference Wajapeyee N, Raut CG, Somasundaram K: Activator protein 2alpha status determines the chemosensitivity of cancer cells: implications in cancer chemotherapy. Cancer Res. 2005, 65 (19): 8628-8634. 10.1158/0008-5472.CAN-05-1059.CrossRefPubMed Wajapeyee N, Raut CG, Somasundaram K: Activator protein 2alpha status determines the chemosensitivity of cancer cells: implications in cancer chemotherapy. Cancer Res. 2005, 65 (19): 8628-8634. 10.1158/0008-5472.CAN-05-1059.CrossRefPubMed
9.
go back to reference Zeng YX, Somasundaram K, el-Deiry WS: AP2 inhibits cancer cell growth and activates p21WAF1/CIP1 expression. Nat Genet. 1997, 15 (1): 78-82. 10.1038/ng0197-78.CrossRefPubMed Zeng YX, Somasundaram K, el-Deiry WS: AP2 inhibits cancer cell growth and activates p21WAF1/CIP1 expression. Nat Genet. 1997, 15 (1): 78-82. 10.1038/ng0197-78.CrossRefPubMed
10.
go back to reference Gee JM, Robertson JF, Ellis IO, Nicholson RI, Hurst HC: Immunohistochemical analysis reveals a tumour suppressor-like role for the transcription factor AP-2 in invasive breast cancer. J Pathol. 1999, 189 (4): 514-520. 10.1002/(SICI)1096-9896(199912)189:4<514::AID-PATH463>3.0.CO;2-9.CrossRefPubMed Gee JM, Robertson JF, Ellis IO, Nicholson RI, Hurst HC: Immunohistochemical analysis reveals a tumour suppressor-like role for the transcription factor AP-2 in invasive breast cancer. J Pathol. 1999, 189 (4): 514-520. 10.1002/(SICI)1096-9896(199912)189:4<514::AID-PATH463>3.0.CO;2-9.CrossRefPubMed
11.
go back to reference Piao Z, Lee KS, Kim H, Perucho M, Malkhosyan S: Identification of novel deletion regions on chromosome arms 2q and 6p in breast carcinomas by amplotype analysis. Genes Chromosomes Cancer. 2001, 30 (2): 113-122. 10.1002/1098-2264(2000)9999:9999<::AID-GCC1069>3.0.CO;2-6.CrossRefPubMed Piao Z, Lee KS, Kim H, Perucho M, Malkhosyan S: Identification of novel deletion regions on chromosome arms 2q and 6p in breast carcinomas by amplotype analysis. Genes Chromosomes Cancer. 2001, 30 (2): 113-122. 10.1002/1098-2264(2000)9999:9999<::AID-GCC1069>3.0.CO;2-6.CrossRefPubMed
12.
go back to reference Zhang J, Brewer S, Huang J, Williams T: Overexpression of transcription factor AP-2alpha suppresses mammary gland growth and morphogenesis. Dev Biol. 2003, 256 (1): 127-145. 10.1016/S0012-1606(02)00119-7.CrossRefPubMed Zhang J, Brewer S, Huang J, Williams T: Overexpression of transcription factor AP-2alpha suppresses mammary gland growth and morphogenesis. Dev Biol. 2003, 256 (1): 127-145. 10.1016/S0012-1606(02)00119-7.CrossRefPubMed
13.
go back to reference McPherson LA, Loktev AV, Weigel RJ: Tumor suppressor activity of AP2alpha mediated through a direct interaction with p53. J Biol Chem. 2002, 277 (47): 45028-45033. 10.1074/jbc.M208924200.CrossRefPubMed McPherson LA, Loktev AV, Weigel RJ: Tumor suppressor activity of AP2alpha mediated through a direct interaction with p53. J Biol Chem. 2002, 277 (47): 45028-45033. 10.1074/jbc.M208924200.CrossRefPubMed
14.
go back to reference Pellikainen MJ, Pekola TT, Ropponen KM, Kataja VV, Kellokoski JK, Eskelinen MJ, Kosma VM: p21WAF1 expression in invasive breast cancer and its association with p53, AP-2, cell proliferation, and prognosis. J Clin Pathol. 2003, 56 (3): 214-220. 10.1136/jcp.56.3.214.CrossRefPubMedPubMedCentral Pellikainen MJ, Pekola TT, Ropponen KM, Kataja VV, Kellokoski JK, Eskelinen MJ, Kosma VM: p21WAF1 expression in invasive breast cancer and its association with p53, AP-2, cell proliferation, and prognosis. J Clin Pathol. 2003, 56 (3): 214-220. 10.1136/jcp.56.3.214.CrossRefPubMedPubMedCentral
15.
go back to reference Kallioniemi A, Kallioniemi OP, Piper J, Tanner M, Stokke T, Chen L, Smith HS, Pinkel D, Gray JW, Waldman FM: Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci USA. 1994, 91 (6): 2156-2160. 10.1073/pnas.91.6.2156.CrossRefPubMedPubMedCentral Kallioniemi A, Kallioniemi OP, Piper J, Tanner M, Stokke T, Chen L, Smith HS, Pinkel D, Gray JW, Waldman FM: Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci USA. 1994, 91 (6): 2156-2160. 10.1073/pnas.91.6.2156.CrossRefPubMedPubMedCentral
16.
go back to reference Tanner MM, Tirkkonen M, Kallioniemi A, Collins C, Stokke T, Karhu R, Kowbel D, Shadravan F, Hintz M, Kuo WL, et al: Increased copy number at 20q13 in breast cancer: defining the critical region and exclusion of candidate genes. Cancer Res. 1994, 54 (16): 4257-4260.PubMed Tanner MM, Tirkkonen M, Kallioniemi A, Collins C, Stokke T, Karhu R, Kowbel D, Shadravan F, Hintz M, Kuo WL, et al: Increased copy number at 20q13 in breast cancer: defining the critical region and exclusion of candidate genes. Cancer Res. 1994, 54 (16): 4257-4260.PubMed
17.
go back to reference Gee JM, Eloranta JJ, Ibbitt JC, Robertson JF, Ellis IO, Williams T, Nicholson RI, Hurst HC: Overexpression of TFAP2C in invasive breast cancer correlates with a poorer response to anti-hormone therapy and reduced patient survival. J Pathol. 2009, 217 (1): 32-41. 10.1002/path.2430.CrossRefPubMed Gee JM, Eloranta JJ, Ibbitt JC, Robertson JF, Ellis IO, Williams T, Nicholson RI, Hurst HC: Overexpression of TFAP2C in invasive breast cancer correlates with a poorer response to anti-hormone therapy and reduced patient survival. J Pathol. 2009, 217 (1): 32-41. 10.1002/path.2430.CrossRefPubMed
18.
go back to reference Guler G, Iliopoulos D, Guler N, Himmetoglu C, Hayran M, Huebner K: Wwox and Ap2gamma expression levels predict tamoxifen response. Clin Cancer Res. 2007, 13 (20): 6115-6121. 10.1158/1078-0432.CCR-07-1282.CrossRefPubMed Guler G, Iliopoulos D, Guler N, Himmetoglu C, Hayran M, Huebner K: Wwox and Ap2gamma expression levels predict tamoxifen response. Clin Cancer Res. 2007, 13 (20): 6115-6121. 10.1158/1078-0432.CCR-07-1282.CrossRefPubMed
19.
go back to reference Williamson JA, Bosher JM, Skinner A, Sheer D, Williams T, Hurst HC: Chromosomal mapping of the human and mouse homologues of two new members of the AP-2 family of transcription factors. Genomics. 1996, 35 (1): 262-264. 10.1006/geno.1996.0351.CrossRefPubMed Williamson JA, Bosher JM, Skinner A, Sheer D, Williams T, Hurst HC: Chromosomal mapping of the human and mouse homologues of two new members of the AP-2 family of transcription factors. Genomics. 1996, 35 (1): 262-264. 10.1006/geno.1996.0351.CrossRefPubMed
20.
go back to reference Jager R, Werling U, Rimpf S, Jacob A, Schorle H: Transcription factor AP-2gamma stimulates proliferation and apoptosis and impairs differentiation in a transgenic model. Mol Cancer Res. 2003, 1 (12): 921-929.PubMed Jager R, Werling U, Rimpf S, Jacob A, Schorle H: Transcription factor AP-2gamma stimulates proliferation and apoptosis and impairs differentiation in a transgenic model. Mol Cancer Res. 2003, 1 (12): 921-929.PubMed
21.
go back to reference Jager R, Friedrichs N, Heim I, Buttner R, Schorle H: Dual role of AP-2gamma in ErbB-2-induced mammary tumorigenesis. Breast Cancer Res Treat. 2005, 90 (3): 273-280. 10.1007/s10549-004-4815-x.CrossRefPubMed Jager R, Friedrichs N, Heim I, Buttner R, Schorle H: Dual role of AP-2gamma in ErbB-2-induced mammary tumorigenesis. Breast Cancer Res Treat. 2005, 90 (3): 273-280. 10.1007/s10549-004-4815-x.CrossRefPubMed
22.
go back to reference Richardson BD, Cheng YH, Langland RA, Handwerger S: Differential expression of AP-2gamma and AP-2alpha during human trophoblast differentiation. Life Sci. 2001, 69 (18): 2157-2165. 10.1016/S0024-3205(01)01299-1.CrossRefPubMed Richardson BD, Cheng YH, Langland RA, Handwerger S: Differential expression of AP-2gamma and AP-2alpha during human trophoblast differentiation. Life Sci. 2001, 69 (18): 2157-2165. 10.1016/S0024-3205(01)01299-1.CrossRefPubMed
23.
go back to reference Bookout AL, Mangelsdorf DJ: Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nucl Recept Signal. 2003, 1: e012-10.1621/nrs.01012.CrossRefPubMedPubMedCentral Bookout AL, Mangelsdorf DJ: Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nucl Recept Signal. 2003, 1: e012-10.1621/nrs.01012.CrossRefPubMedPubMedCentral
24.
go back to reference Chudin E, Kruglyak S, Baker SC, Oeser S, Barker D, McDaniel TK: A model of technical variation of microarray signals. J Comput Biol. 2006, 13 (4): 996-1003. 10.1089/cmb.2006.13.996.CrossRefPubMed Chudin E, Kruglyak S, Baker SC, Oeser S, Barker D, McDaniel TK: A model of technical variation of microarray signals. J Comput Biol. 2006, 13 (4): 996-1003. 10.1089/cmb.2006.13.996.CrossRefPubMed
25.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005, 102 (43): 15545-15550. 10.1073/pnas.0506580102.CrossRefPubMedPubMedCentral Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005, 102 (43): 15545-15550. 10.1073/pnas.0506580102.CrossRefPubMedPubMedCentral
26.
go back to reference Nanni P, Pupa SM, Nicoletti G, De Giovanni C, Landuzzi L, Rossi I, Astolfi A, Ricci C, De Vecchi R, Invernizzi AM, et al: p185(neu) protein is required for tumor and anchorage-independent growth, not for cell proliferation of transgenic mammary carcinoma. Int J Cancer. 2000, 87 (2): 186-194. 10.1002/1097-0215(20000715)87:2<186::AID-IJC5>3.0.CO;2-1.CrossRefPubMed Nanni P, Pupa SM, Nicoletti G, De Giovanni C, Landuzzi L, Rossi I, Astolfi A, Ricci C, De Vecchi R, Invernizzi AM, et al: p185(neu) protein is required for tumor and anchorage-independent growth, not for cell proliferation of transgenic mammary carcinoma. Int J Cancer. 2000, 87 (2): 186-194. 10.1002/1097-0215(20000715)87:2<186::AID-IJC5>3.0.CO;2-1.CrossRefPubMed
27.
go back to reference Williams T, Tjian R: Characterization of a dimerization motif in AP-2 and its function in heterologous DNA-binding proteins. Science. 1991, 251 (4997): 1067-1071. 10.1126/science.1998122.CrossRefPubMed Williams T, Tjian R: Characterization of a dimerization motif in AP-2 and its function in heterologous DNA-binding proteins. Science. 1991, 251 (4997): 1067-1071. 10.1126/science.1998122.CrossRefPubMed
28.
go back to reference Zhu CH, Domann FE: Dominant negative interference of transcription factor AP-2 causes inhibition of ErbB-3 expression and suppresses malignant cell growth. Breast Cancer Res Treat. 2002, 71 (1): 47-57. 10.1023/A:1013378113916.CrossRefPubMed Zhu CH, Domann FE: Dominant negative interference of transcription factor AP-2 causes inhibition of ErbB-3 expression and suppresses malignant cell growth. Breast Cancer Res Treat. 2002, 71 (1): 47-57. 10.1023/A:1013378113916.CrossRefPubMed
29.
go back to reference Hayes JD, Pulford DJ: The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995, 30 (6): 445-600. 10.3109/10409239509083491.CrossRefPubMed Hayes JD, Pulford DJ: The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995, 30 (6): 445-600. 10.3109/10409239509083491.CrossRefPubMed
30.
go back to reference Petraccia L, Onori P, Sferra R, Lucchetta MC, Liberati G, Grassi M, Gaudio E: [MDR (multidrug resistance) in hepatocarcinoma clinical-therapeutic implications]. Clin Ter. 2003, 154 (5): 325-335.PubMed Petraccia L, Onori P, Sferra R, Lucchetta MC, Liberati G, Grassi M, Gaudio E: [MDR (multidrug resistance) in hepatocarcinoma clinical-therapeutic implications]. Clin Ter. 2003, 154 (5): 325-335.PubMed
31.
go back to reference Hishikawa K, Nakaki T, Fujii T: Connective tissue growth factor induces apoptosis via caspase 3 in cultured human aortic smooth muscle cells. Eur J Pharmacol. 2000, 392 (1-2): 19-22. 10.1016/S0014-2999(00)00115-1.CrossRefPubMed Hishikawa K, Nakaki T, Fujii T: Connective tissue growth factor induces apoptosis via caspase 3 in cultured human aortic smooth muscle cells. Eur J Pharmacol. 2000, 392 (1-2): 19-22. 10.1016/S0014-2999(00)00115-1.CrossRefPubMed
32.
go back to reference Hishikawa K, Oemar BS, Tanner FC, Nakaki T, Fujii T, Luscher TF: Overexpression of connective tissue growth factor gene induces apoptosis in human aortic smooth muscle cells. Circulation. 1999, 100 (20): 2108-2112.CrossRefPubMed Hishikawa K, Oemar BS, Tanner FC, Nakaki T, Fujii T, Luscher TF: Overexpression of connective tissue growth factor gene induces apoptosis in human aortic smooth muscle cells. Circulation. 1999, 100 (20): 2108-2112.CrossRefPubMed
33.
go back to reference Szeto CC, Chow KM, Lai KB, Szeto CY, Kwan BC, Li PK: Connective tissue growth factor is responsible for transforming growth factor-beta-induced peritoneal mesothelial cell apoptosis. Nephron Exp Nephrol. 2006, 103 (4): e166-174. 10.1159/000092907.CrossRefPubMed Szeto CC, Chow KM, Lai KB, Szeto CY, Kwan BC, Li PK: Connective tissue growth factor is responsible for transforming growth factor-beta-induced peritoneal mesothelial cell apoptosis. Nephron Exp Nephrol. 2006, 103 (4): e166-174. 10.1159/000092907.CrossRefPubMed
34.
go back to reference Jiang WG, Watkins G, Fodstad O, Douglas-Jones A, Mokbel K, Mansel RE: Differential expression of the CCN family members Cyr61, CTGF and Nov in human breast cancer. Endocr Relat Cancer. 2004, 11 (4): 781-791. 10.1677/erc.1.00825.CrossRefPubMed Jiang WG, Watkins G, Fodstad O, Douglas-Jones A, Mokbel K, Mansel RE: Differential expression of the CCN family members Cyr61, CTGF and Nov in human breast cancer. Endocr Relat Cancer. 2004, 11 (4): 781-791. 10.1677/erc.1.00825.CrossRefPubMed
35.
go back to reference Castro-Rivera E, Ran S, Brekken RA, Minna JD: Semaphorin 3B inhibits the phosphatidylinositol 3-kinase/Akt pathway through neuropilin-1 in lung and breast cancer cells. Cancer Res. 2008, 68 (20): 8295-8303. 10.1158/0008-5472.CAN-07-6601.CrossRefPubMedPubMedCentral Castro-Rivera E, Ran S, Brekken RA, Minna JD: Semaphorin 3B inhibits the phosphatidylinositol 3-kinase/Akt pathway through neuropilin-1 in lung and breast cancer cells. Cancer Res. 2008, 68 (20): 8295-8303. 10.1158/0008-5472.CAN-07-6601.CrossRefPubMedPubMedCentral
36.
go back to reference Castro-Rivera E, Ran S, Thorpe P, Minna JD: Semaphorin 3B (SEMA3B) induces apoptosis in lung and breast cancer, whereas VEGF165 antagonizes this effect. Proc Natl Acad Sci USA. 2004, 101 (31): 11432-11437. 10.1073/pnas.0403969101.CrossRefPubMedPubMedCentral Castro-Rivera E, Ran S, Thorpe P, Minna JD: Semaphorin 3B (SEMA3B) induces apoptosis in lung and breast cancer, whereas VEGF165 antagonizes this effect. Proc Natl Acad Sci USA. 2004, 101 (31): 11432-11437. 10.1073/pnas.0403969101.CrossRefPubMedPubMedCentral
37.
go back to reference Chien W, Yin D, Gui D, Mori A, Frank JM, Said J, Kusuanco D, Marchevsky A, McKenna R, Koeffler HP: Suppression of cell proliferation and signaling transduction by connective tissue growth factor in non-small cell lung cancer cells. Mol Cancer Res. 2006, 4 (8): 591-598. 10.1158/1541-7786.MCR-06-0029.CrossRefPubMed Chien W, Yin D, Gui D, Mori A, Frank JM, Said J, Kusuanco D, Marchevsky A, McKenna R, Koeffler HP: Suppression of cell proliferation and signaling transduction by connective tissue growth factor in non-small cell lung cancer cells. Mol Cancer Res. 2006, 4 (8): 591-598. 10.1158/1541-7786.MCR-06-0029.CrossRefPubMed
Metadata
Title
Interference with Activator Protein-2 transcription factors leads to induction of apoptosis and an increase in chemo- and radiation-sensitivity in breast cancer cells
Authors
Verena Thewes
Francesca Orso
Richard Jäger
Dawid Eckert
Sabine Schäfer
Gregor Kirfel
Stephan Garbe
Daniela Taverna
Hubert Schorle
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2010
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-10-192

Other articles of this Issue 1/2010

BMC Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine