Skip to main content
Top
Published in: BMC Cancer 1/2010

Open Access 01-12-2010 | Research article

Stable alterations of CD44 isoform expression in prostate cancer cells decrease invasion and growth and alter ligand binding and chemosensitivity

Authors: Kui Yang, Yaqiong Tang, Gabriel K Habermehl, Kenneth A Iczkowski

Published in: BMC Cancer | Issue 1/2010

Login to get access

Abstract

Background

Dysregulated CD44 expression characterizes most human cancers, including prostate cancer (PCa). PCa loses expression of CD44 standard (CD44s) that is present in benign epithelium, and overexpresses the novel splice variant isoform, CD44v7-10.

Methods

Using retroviral gene delivery to PC-3M PCa cells, we expressed luciferase-only, enforced CD44s re-expression as a fusion protein with luciferase at its C-terminus or as a protein separate from luciferase, or knocked down CD44v7-10 by RNAi. Invasion, migration, proliferation, soft agar colony formation, adhesion, Docetaxel sensitivity, and xenograft growth assays were carried out. Expression responses of merlin, a CD44 binding partner, and growth-permissive phospho-merlin, were assessed by western blot.

Results

Compared to luciferase-only PC-3M cells, all three treatments reduced invasion and migration. Growth and soft agar colony formation were reduced only by re-expression of CD44s as a separate or fusion protein but not CD44v7-10 RNAi. Hyaluronan and osteopontin binding were greatly strengthened by CD44s expression as a separate protein, but not a fusion protein. CD44v7-10 RNAi in PC-3M cells caused marked sensitization to Docetaxel; the two CD44s re-expression approaches caused minimal sensitization. In limited numbers of mouse subcutaneous xenografts, all three alterations produced only nonsignificant trends toward slower growth compared with luciferase-only controls. The expression of CD44s as a separate protein, but not a fusion protein, caused emergence of a strongly-expressed, hypophosphorylated species of phospho-merlin.

Conclusion

Stable re-expression of CD44s reduces PCa growth and invasion in vitro, and possibly in vivo, suggesting CD44 alterations have potential as gene therapy. When the C-terminus of CD44s is fused to another protein, most phenotypic effects are lessened, particularly hyaluronan adhesion. Finally, CD44v7-10, although it was not functionally significant for growth, may be a target for chemosensitization.
Appendix
Available only for authorised users
Literature
1.
go back to reference Iczkowski KA, Pantazis CG, Collins J: The loss of expression of CD44 standard and variant isoforms is related to prostatic carcinoma development and tumor progression. J Urol Pathol. 1997, 6: 119-129. Iczkowski KA, Pantazis CG, Collins J: The loss of expression of CD44 standard and variant isoforms is related to prostatic carcinoma development and tumor progression. J Urol Pathol. 1997, 6: 119-129.
2.
go back to reference Iczkowski KA, Bai S, Pantazis CG: Prostate cancer overexpresses CD44 variants 7-9 at the messenger RNA and protein level. Anticancer Res. 2003, 23: 3129-3140.PubMed Iczkowski KA, Bai S, Pantazis CG: Prostate cancer overexpresses CD44 variants 7-9 at the messenger RNA and protein level. Anticancer Res. 2003, 23: 3129-3140.PubMed
3.
go back to reference Omara-Opyene AL, Qiu J, Shah GV, Iczkowski KA: Prostate cancer invasion is influenced more by expression of a CD44 isoform including variant 9 than by Muc18. Lab Invest. 2004, 84: 894-907. 10.1038/labinvest.3700112.CrossRefPubMed Omara-Opyene AL, Qiu J, Shah GV, Iczkowski KA: Prostate cancer invasion is influenced more by expression of a CD44 isoform including variant 9 than by Muc18. Lab Invest. 2004, 84: 894-907. 10.1038/labinvest.3700112.CrossRefPubMed
4.
go back to reference Iczkowski KA, Omara-Opyene AL, Shah GV: The predominant CD44 splice variant in prostate cancer binds fibronectin, and calcitonin stimulates its expression. Anticancer Res. 2006, 26: 2863-2872.PubMed Iczkowski KA, Omara-Opyene AL, Shah GV: The predominant CD44 splice variant in prostate cancer binds fibronectin, and calcitonin stimulates its expression. Anticancer Res. 2006, 26: 2863-2872.PubMed
5.
go back to reference Vis AN, van Rhijn BW, Noordzij MA, Schröder FH, Kwast van der TH: Value of tissue markers p27(kip1), MIB-1, and CD44s for the pre-operative prediction of tumour features in screen-detected prostate cancer. J Pathol. 2002, 197: 148-154. 10.1002/path.1084.CrossRefPubMed Vis AN, van Rhijn BW, Noordzij MA, Schröder FH, Kwast van der TH: Value of tissue markers p27(kip1), MIB-1, and CD44s for the pre-operative prediction of tumour features in screen-detected prostate cancer. J Pathol. 2002, 197: 148-154. 10.1002/path.1084.CrossRefPubMed
6.
go back to reference Vis AN, Noordzij MA, Fitoz K, Wildhagen MF, Schröder FH, Kwast van der TH: Prognostic value of cell cycle proteins p27(kip1) and MIB-1, and the cell adhesion protein CD44s in surgically treated patients with prostate cancer. J Urol. 2000, 164: 2156-2161. 10.1016/S0022-5347(05)66989-3.CrossRefPubMed Vis AN, Noordzij MA, Fitoz K, Wildhagen MF, Schröder FH, Kwast van der TH: Prognostic value of cell cycle proteins p27(kip1) and MIB-1, and the cell adhesion protein CD44s in surgically treated patients with prostate cancer. J Urol. 2000, 164: 2156-2161. 10.1016/S0022-5347(05)66989-3.CrossRefPubMed
7.
go back to reference Harrison GM, Davies G, Martin TA, Mason MD, Jiang WG: The influence of CD44v3-v10 on adhesion, invasion and MMP-14 expression in prostate cancer cells. Oncol Rep. 2006, 15: 199-206.PubMed Harrison GM, Davies G, Martin TA, Mason MD, Jiang WG: The influence of CD44v3-v10 on adhesion, invasion and MMP-14 expression in prostate cancer cells. Oncol Rep. 2006, 15: 199-206.PubMed
8.
go back to reference Iczkowski KA, Omara-Opyene AL, Kulkarni TR, Pansara M, Shah GV: Paracrine calcitonin in prostate cancer is linked to CD44 variant expression and invasion. Anticancer Res. 2005, 25: 2075-2083.PubMed Iczkowski KA, Omara-Opyene AL, Kulkarni TR, Pansara M, Shah GV: Paracrine calcitonin in prostate cancer is linked to CD44 variant expression and invasion. Anticancer Res. 2005, 25: 2075-2083.PubMed
9.
go back to reference Miyake H, Hara I, Okamoto I, Gohji K, Yamanaka K, Arakawa S, Saya H, Kamidono S: Interaction between CD44 and hyaluronic acid regulates human prostate cancer development. J Urol. 1998, 160: 1562-1566. 10.1016/S0022-5347(01)62613-2.CrossRefPubMed Miyake H, Hara I, Okamoto I, Gohji K, Yamanaka K, Arakawa S, Saya H, Kamidono S: Interaction between CD44 and hyaluronic acid regulates human prostate cancer development. J Urol. 1998, 160: 1562-1566. 10.1016/S0022-5347(01)62613-2.CrossRefPubMed
10.
go back to reference Brummelkamp TR, Bernards R, Agami R: Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell. 2002, 2: 243-247. 10.1016/S1535-6108(02)00122-8.CrossRefPubMed Brummelkamp TR, Bernards R, Agami R: Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell. 2002, 2: 243-247. 10.1016/S1535-6108(02)00122-8.CrossRefPubMed
11.
go back to reference Morrison H, Sherman LS, Legg J, Banine F, Isacke C, Haipek CA, Gutmann DH, Ponta H, Herrlich P: The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev. 2001, 15: 968-980. 10.1101/gad.189601.CrossRefPubMedPubMedCentral Morrison H, Sherman LS, Legg J, Banine F, Isacke C, Haipek CA, Gutmann DH, Ponta H, Herrlich P: The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev. 2001, 15: 968-980. 10.1101/gad.189601.CrossRefPubMedPubMedCentral
12.
go back to reference Horiguchi A, Zheng R, Shen R, Nanus DM: Inactivation of the NF2 tumor suppressor protein merlin in DU145 prostate cancer cells. Prostate. 2008, 68: 975-994. 10.1002/pros.20760.CrossRefPubMed Horiguchi A, Zheng R, Shen R, Nanus DM: Inactivation of the NF2 tumor suppressor protein merlin in DU145 prostate cancer cells. Prostate. 2008, 68: 975-994. 10.1002/pros.20760.CrossRefPubMed
13.
go back to reference Chan WH, Wu HJ, Shiao N-H: Apoptotic signaling in methylglyoxal-treated human osteoblasts involves oxidative stress, c-Jun N-terminal kinase, caspase-3, and p21-activated kinase 2. J Cell Biochem. 2007, 100: 1056-1069. 10.1002/jcb.21114.CrossRefPubMed Chan WH, Wu HJ, Shiao N-H: Apoptotic signaling in methylglyoxal-treated human osteoblasts involves oxidative stress, c-Jun N-terminal kinase, caspase-3, and p21-activated kinase 2. J Cell Biochem. 2007, 100: 1056-1069. 10.1002/jcb.21114.CrossRefPubMed
14.
go back to reference Robbins EW, Travanty EA, Yang K, Iczkowski KA: MAP kinase pathways and calcitonin influence CD44 alternate isoform expression in prostate cancer cells. BioMed Central Cancer. 2008, 8: 260-PubMedPubMedCentral Robbins EW, Travanty EA, Yang K, Iczkowski KA: MAP kinase pathways and calcitonin influence CD44 alternate isoform expression in prostate cancer cells. BioMed Central Cancer. 2008, 8: 260-PubMedPubMedCentral
15.
go back to reference Harada N, Mizoi T, Kinouchi M, Hoshi K, Ishii S, Shiiba K, Sasaki I, Matsuno S: Introduction of antisense CD44s cDNA downregulates expression of overall CD44 isoforms and inhibits tumor growth and metastasis in highly metastatic colon carcinoma cells. Int J Cancer. 2001, 91: 67-75. 10.1002/1097-0215(20010101)91:1<67::AID-IJC1011>3.0.CO;2-D.CrossRefPubMed Harada N, Mizoi T, Kinouchi M, Hoshi K, Ishii S, Shiiba K, Sasaki I, Matsuno S: Introduction of antisense CD44s cDNA downregulates expression of overall CD44 isoforms and inhibits tumor growth and metastasis in highly metastatic colon carcinoma cells. Int J Cancer. 2001, 91: 67-75. 10.1002/1097-0215(20010101)91:1<67::AID-IJC1011>3.0.CO;2-D.CrossRefPubMed
16.
go back to reference Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227: 680-685. 10.1038/227680a0.CrossRefPubMed Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227: 680-685. 10.1038/227680a0.CrossRefPubMed
17.
go back to reference Orian-Rousseau V, Chen L, Sleeman JP, Herrlich P, Ponta H: CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev. 2002, 16: 3074-3086. 10.1101/gad.242602.CrossRefPubMedPubMedCentral Orian-Rousseau V, Chen L, Sleeman JP, Herrlich P, Ponta H: CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev. 2002, 16: 3074-3086. 10.1101/gad.242602.CrossRefPubMedPubMedCentral
18.
go back to reference Simon RA, di Sant'Agnese PA, Huang LS, Xu H, Yao JL, Yang Q, Liang S, Liu J, Yu R, Cheng L, Oh WK, Palapattu GS, Wei J, Huang J: CD44 expression is a feature of prostatic small cell carcinoma and distinguishes it from its mimickers. Hum Pathol. 2009, 40: 252-258. 10.1016/j.humpath.2008.07.014.CrossRefPubMed Simon RA, di Sant'Agnese PA, Huang LS, Xu H, Yao JL, Yang Q, Liang S, Liu J, Yu R, Cheng L, Oh WK, Palapattu GS, Wei J, Huang J: CD44 expression is a feature of prostatic small cell carcinoma and distinguishes it from its mimickers. Hum Pathol. 2009, 40: 252-258. 10.1016/j.humpath.2008.07.014.CrossRefPubMed
19.
go back to reference Palapattu GS, Wu C, Silvers CR, Martin HB, Williams K, Salamone L, Bushnell T, Huang LS, Yang Q, Huang J: Selective expression of CD44, a putative prostate cancer stem cell marker, in neuroendocrine tumor cells of human prostate cancer. Prostate. 2009, 69: 787-798. 10.1002/pros.20928.CrossRefPubMed Palapattu GS, Wu C, Silvers CR, Martin HB, Williams K, Salamone L, Bushnell T, Huang LS, Yang Q, Huang J: Selective expression of CD44, a putative prostate cancer stem cell marker, in neuroendocrine tumor cells of human prostate cancer. Prostate. 2009, 69: 787-798. 10.1002/pros.20928.CrossRefPubMed
20.
go back to reference Gao AC, Lou W, Sleeman JP, Isaacs JT: Metastasis suppression by the standard CD44 isoform does not require the binding of prostate cancer cells to hyaluronate. Cancer Res. 1998, 58: 2350-2352.PubMed Gao AC, Lou W, Sleeman JP, Isaacs JT: Metastasis suppression by the standard CD44 isoform does not require the binding of prostate cancer cells to hyaluronate. Cancer Res. 1998, 58: 2350-2352.PubMed
21.
go back to reference Lokeshwar VB, Bourguignon LY: The lymphoma transmembrane glycoprotein GP85 (CD44) is a novel guanine nucleotide-binding protein which regulates GP85 (CD44)-ankyrin interaction. J Biol Chem. 1992, 267: 22073-22078.PubMed Lokeshwar VB, Bourguignon LY: The lymphoma transmembrane glycoprotein GP85 (CD44) is a novel guanine nucleotide-binding protein which regulates GP85 (CD44)-ankyrin interaction. J Biol Chem. 1992, 267: 22073-22078.PubMed
22.
go back to reference Jiang H, Peterson RS, Wang W, Bartnik E, Knudson CB, Knudson W: A requirement for the CD44 cytoplasmic domain for hyaluronan binding, pericellular matrix assembly, and receptor-mediated endocytosis in COS-7 cells. J Biol Chem. 2002, 277: 10531-10538. 10.1074/jbc.M108654200.CrossRefPubMed Jiang H, Peterson RS, Wang W, Bartnik E, Knudson CB, Knudson W: A requirement for the CD44 cytoplasmic domain for hyaluronan binding, pericellular matrix assembly, and receptor-mediated endocytosis in COS-7 cells. J Biol Chem. 2002, 277: 10531-10538. 10.1074/jbc.M108654200.CrossRefPubMed
23.
go back to reference Lesley J, Kincade PW, Hyman R: The role of the CD44 cytoplasmic and transmembrane domains in constitutive and inducible hyaluronan binding. Eur J Immunol. 2000, 30: 245-253. 10.1002/1521-4141(200001)30:1<245::AID-IMMU245>3.0.CO;2-X.CrossRefPubMed Lesley J, Kincade PW, Hyman R: The role of the CD44 cytoplasmic and transmembrane domains in constitutive and inducible hyaluronan binding. Eur J Immunol. 2000, 30: 245-253. 10.1002/1521-4141(200001)30:1<245::AID-IMMU245>3.0.CO;2-X.CrossRefPubMed
24.
go back to reference Mielgo A, van Driel M, Bloem A, Landmann L, Günthert U: A novel antiapoptotic mechanism based on interference of Fas signaling by CD44 variant isoforms. Cell Death Differ. 2006, 13: 465-477. 10.1038/sj.cdd.4401763.CrossRefPubMed Mielgo A, van Driel M, Bloem A, Landmann L, Günthert U: A novel antiapoptotic mechanism based on interference of Fas signaling by CD44 variant isoforms. Cell Death Differ. 2006, 13: 465-477. 10.1038/sj.cdd.4401763.CrossRefPubMed
25.
go back to reference Klingbeil P, Marhaba R, Jung T, Kirmse R, Ludwig T, Zöller M: CD44 variant isoforms promote metastasis formation by a tumor cell-matrix cross-talk that supports adhesion and apoptosis resistance. Mol Cancer Res. 2009, 7: 168-179. 10.1158/1541-7786.MCR-08-0207.CrossRefPubMed Klingbeil P, Marhaba R, Jung T, Kirmse R, Ludwig T, Zöller M: CD44 variant isoforms promote metastasis formation by a tumor cell-matrix cross-talk that supports adhesion and apoptosis resistance. Mol Cancer Res. 2009, 7: 168-179. 10.1158/1541-7786.MCR-08-0207.CrossRefPubMed
26.
go back to reference Liu W, Wei W, Winer D, Bamberger AM, Bamberger C, Wagener C, Ezzat S, Asa SL: CEACAM1 impedes thyroid cancer growth but promotes invasiveness: a putative mechanism for early metastases. Oncogene. 2007, 26: 2747-2758. 10.1038/sj.onc.1210077.CrossRefPubMed Liu W, Wei W, Winer D, Bamberger AM, Bamberger C, Wagener C, Ezzat S, Asa SL: CEACAM1 impedes thyroid cancer growth but promotes invasiveness: a putative mechanism for early metastases. Oncogene. 2007, 26: 2747-2758. 10.1038/sj.onc.1210077.CrossRefPubMed
27.
go back to reference Jantscheff P, Esser N, Graeser R, Ziroli V, Kluth J, Unger C, Massing U: Liposomal gemcitabine (GemLip)-efficient drug against hormone-refractory DU145 and PC-3 prostate cancer xenografts. Prostate. 2009, 69: 1151-1163. 10.1002/pros.20964.CrossRefPubMed Jantscheff P, Esser N, Graeser R, Ziroli V, Kluth J, Unger C, Massing U: Liposomal gemcitabine (GemLip)-efficient drug against hormone-refractory DU145 and PC-3 prostate cancer xenografts. Prostate. 2009, 69: 1151-1163. 10.1002/pros.20964.CrossRefPubMed
28.
go back to reference Bai Y, Liu Y, Wang H, Xu Y, Stamenkovic I, Yu Q: Inhibition of the hyaluronan-CD44 interaction by merlin contributes to the tumor-suppressive activity of merlin. Oncogene. 2007, 26: 836-850. 10.1038/sj.onc.1209849.CrossRefPubMed Bai Y, Liu Y, Wang H, Xu Y, Stamenkovic I, Yu Q: Inhibition of the hyaluronan-CD44 interaction by merlin contributes to the tumor-suppressive activity of merlin. Oncogene. 2007, 26: 836-850. 10.1038/sj.onc.1209849.CrossRefPubMed
29.
go back to reference Katagiri YU, Sleeman J, Fujii H, Herrlich P, Hotta H, Tanaka K, Chikuma S, Yagita H, Okumura K, Murakami M, Saiki I, Chambers AF, Uede T: CD44 variants but not CD44s cooperate with β1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycine-aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Res. 1999, 59: 219-226.PubMed Katagiri YU, Sleeman J, Fujii H, Herrlich P, Hotta H, Tanaka K, Chikuma S, Yagita H, Okumura K, Murakami M, Saiki I, Chambers AF, Uede T: CD44 variants but not CD44s cooperate with β1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycine-aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Res. 1999, 59: 219-226.PubMed
Metadata
Title
Stable alterations of CD44 isoform expression in prostate cancer cells decrease invasion and growth and alter ligand binding and chemosensitivity
Authors
Kui Yang
Yaqiong Tang
Gabriel K Habermehl
Kenneth A Iczkowski
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2010
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-10-16

Other articles of this Issue 1/2010

BMC Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine