Skip to main content
Top
Published in: BMC Neurology 1/2011

Open Access 01-12-2011 | Research article

Effects of light deprivation on visual evoked potentials in migraine without aura

Authors: Gianluca Coppola, Julien Crémers, Pascale Gérard, Francesco Pierelli, Jean Schoenen

Published in: BMC Neurology | Issue 1/2011

Login to get access

Abstract

Background

The mechanisms underlying the interictal habituation deficit of cortical visual evoked potentials (VEP) in migraine are not well understood. Abnormal long-term functional plasticity of the visual cortex may play a role and it can be assessed experimentally by light deprivation (LD).

Methods

We have compared the effects of LD on VEP in migraine patients without aura between attacks (MO, n = 17) and in healthy volunteers (HV, n = 17). Six sequential blocks of 100 averaged VEP at 3.1 Hz were recorded before and after 1 hour of LD. We measured VEP P100 amplitude of the 1st block of 100 sweeps and its change over 5 sequential blocks of 100 responses.

Results

In HV, the consequence of LD was a reduction of 1st block VEP amplitude and of the normal habituation pattern. By contrast, in MO patients, the interictal habituation deficit was not significantly modified, although 1st block VEP amplitude, already lower than in HV before LD, further decreased after LD.

Conclusions

Light deprivation is thought to decrease both excitatory and subsequent inhibitory processes in visual cortex, which is in line with our findings in healthy volunteers. The VEP results in migraine patients suggest that early excitation was adequately suppressed, but not the inhibitory mechanisms occurring during long term stimulation and habituation. Accordingly, deficient intracortical inhibition is unlikely to be a primary factor in migraine pathophysiology and the habituation deficit.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schoenen J, Wang W, Albert A, Delwaide P: Potentiation instead of habituation characterizes visual evoked potentials in migraine patients between attacks. Eur J Neurol. 1995, 2: 115-122. 10.1111/j.1468-1331.1995.tb00103.x.CrossRefPubMed Schoenen J, Wang W, Albert A, Delwaide P: Potentiation instead of habituation characterizes visual evoked potentials in migraine patients between attacks. Eur J Neurol. 1995, 2: 115-122. 10.1111/j.1468-1331.1995.tb00103.x.CrossRefPubMed
2.
go back to reference Schoenen J: Deficient habituation of evoked cortical potentials in migraine: a link between brain biology, behavior and trigeminovascular activation?. Biomed Pharmacother. 1996, 50 (2): 71-78. 10.1016/0753-3322(96)84716-0.CrossRefPubMed Schoenen J: Deficient habituation of evoked cortical potentials in migraine: a link between brain biology, behavior and trigeminovascular activation?. Biomed Pharmacother. 1996, 50 (2): 71-78. 10.1016/0753-3322(96)84716-0.CrossRefPubMed
3.
go back to reference Coppola G, Pierelli F, Schoenen J: Habituation and migraine. Neurobiol Learn Mem. 2009, 92 (2): 249-259. 10.1016/j.nlm.2008.07.006.CrossRefPubMed Coppola G, Pierelli F, Schoenen J: Habituation and migraine. Neurobiol Learn Mem. 2009, 92 (2): 249-259. 10.1016/j.nlm.2008.07.006.CrossRefPubMed
4.
go back to reference Mulleners WM, Chronicle EP, Palmer JE, Koehler PJ, Vredeveld JW: Visual cortex excitability in migraine with and without aura. Headache. 2001, 41 (6): 565-572. 10.1046/j.1526-4610.2001.041006565.x.CrossRefPubMed Mulleners WM, Chronicle EP, Palmer JE, Koehler PJ, Vredeveld JW: Visual cortex excitability in migraine with and without aura. Headache. 2001, 41 (6): 565-572. 10.1046/j.1526-4610.2001.041006565.x.CrossRefPubMed
5.
go back to reference Brighina F, Palermo A, Fierro B: Cortical inhibition and habituation to evoked potentials: relevance for pathophysiology of migraine. J Headache Pain. 2009, 10 (2): 77-84. 10.1007/s10194-008-0095-x.CrossRefPubMedPubMedCentral Brighina F, Palermo A, Fierro B: Cortical inhibition and habituation to evoked potentials: relevance for pathophysiology of migraine. J Headache Pain. 2009, 10 (2): 77-84. 10.1007/s10194-008-0095-x.CrossRefPubMedPubMedCentral
6.
go back to reference Thompson RF, Spencer WA: Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev. 1966, 73 (1): 16-43.CrossRefPubMed Thompson RF, Spencer WA: Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev. 1966, 73 (1): 16-43.CrossRefPubMed
7.
go back to reference Rankin CH, Abrams T, Barry RJ, Bhatnagar S, Clayton DF, Colombo J, Coppola G, Geyer MA, Glanzman DL, Marsland S, McSweeney FK, Wilson DA, Wu CF, Thompson RF: Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol Learn Mem. 2009, 92 (2): 135-138. 10.1016/j.nlm.2008.09.012.CrossRefPubMed Rankin CH, Abrams T, Barry RJ, Bhatnagar S, Clayton DF, Colombo J, Coppola G, Geyer MA, Glanzman DL, Marsland S, McSweeney FK, Wilson DA, Wu CF, Thompson RF: Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol Learn Mem. 2009, 92 (2): 135-138. 10.1016/j.nlm.2008.09.012.CrossRefPubMed
8.
go back to reference Coppola G, Currà A, Serrao M, Di Lorenzo C, Gorini M, Porretta E, Alibardi A, Parisi V, Pierelli F: Lack of cold pressor test-induced effect on visual-evoked potentials in migraine. J Headache Pain. 2010, 11 (2): 115-121. 10.1007/s10194-009-0177-4.CrossRefPubMed Coppola G, Currà A, Serrao M, Di Lorenzo C, Gorini M, Porretta E, Alibardi A, Parisi V, Pierelli F: Lack of cold pressor test-induced effect on visual-evoked potentials in migraine. J Headache Pain. 2010, 11 (2): 115-121. 10.1007/s10194-009-0177-4.CrossRefPubMed
9.
go back to reference Smith GB, Heynen AJ, Bear MF: Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex. Philos Trans R Soc Lond B Biol Sci. 2009, 364 (1515): 357-367. 10.1098/rstb.2008.0198.CrossRefPubMed Smith GB, Heynen AJ, Bear MF: Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex. Philos Trans R Soc Lond B Biol Sci. 2009, 364 (1515): 357-367. 10.1098/rstb.2008.0198.CrossRefPubMed
10.
go back to reference Rittenhouse CD, Shouval HZ, Paradiso MA, Bear MF: Monocular deprivation induces homosynaptic long-term depression in visual cortex. Nature. 1999, 397 (6717): 347-350. 10.1038/16922.CrossRefPubMed Rittenhouse CD, Shouval HZ, Paradiso MA, Bear MF: Monocular deprivation induces homosynaptic long-term depression in visual cortex. Nature. 1999, 397 (6717): 347-350. 10.1038/16922.CrossRefPubMed
11.
go back to reference Tian N, Copenhagen DR: Visual deprivation alters development of synaptic function in inner retina after eye opening. Neuron. 2001, 32 (3): 439-449. 10.1016/S0896-6273(01)00470-6.CrossRefPubMed Tian N, Copenhagen DR: Visual deprivation alters development of synaptic function in inner retina after eye opening. Neuron. 2001, 32 (3): 439-449. 10.1016/S0896-6273(01)00470-6.CrossRefPubMed
12.
go back to reference Giovannelli A, Di Marco S, Maccarone R, Bisti S: Long-term dark rearing induces permanent reorganization in retinal circuitry. Biochem Biophys Res Commun. 2008, 365 (2): 349-354. 10.1016/j.bbrc.2007.10.204.CrossRefPubMed Giovannelli A, Di Marco S, Maccarone R, Bisti S: Long-term dark rearing induces permanent reorganization in retinal circuitry. Biochem Biophys Res Commun. 2008, 365 (2): 349-354. 10.1016/j.bbrc.2007.10.204.CrossRefPubMed
13.
go back to reference Duffy KR, Slusar JE: Monocular deprivation provokes alteration of the neuronal cytoskeleton in developing cat lateral geniculate nucleus. Vis Neurosci. 2009, 26 (3): 319-328. 10.1017/S0952523809090130.CrossRefPubMed Duffy KR, Slusar JE: Monocular deprivation provokes alteration of the neuronal cytoskeleton in developing cat lateral geniculate nucleus. Vis Neurosci. 2009, 26 (3): 319-328. 10.1017/S0952523809090130.CrossRefPubMed
14.
go back to reference Gonzalez MMC, Aston-Jones G: Light deprivation damages monoamine neurons and produces a depressive behavioral phenotype in rats. Proc Natl Acad Sci USA. 2008, 105 (12): 4898-4903. 10.1073/pnas.0703615105.CrossRefPubMedPubMedCentral Gonzalez MMC, Aston-Jones G: Light deprivation damages monoamine neurons and produces a depressive behavioral phenotype in rats. Proc Natl Acad Sci USA. 2008, 105 (12): 4898-4903. 10.1073/pnas.0703615105.CrossRefPubMedPubMedCentral
15.
go back to reference Zubek JP, Welch G: Electroencephalographic changes after prolonged sensory and perceptual deprivation. Science. 1963, 139: 1209-1210. 10.1126/science.139.3560.1209.CrossRefPubMed Zubek JP, Welch G: Electroencephalographic changes after prolonged sensory and perceptual deprivation. Science. 1963, 139: 1209-1210. 10.1126/science.139.3560.1209.CrossRefPubMed
16.
go back to reference Marjerrison G, Keogh RP: Electroencephalographic changes during brief periods of perceptual deprivation. Percept Mot Skills. 1967, 24 (2): 611-615.CrossRefPubMed Marjerrison G, Keogh RP: Electroencephalographic changes during brief periods of perceptual deprivation. Percept Mot Skills. 1967, 24 (2): 611-615.CrossRefPubMed
17.
go back to reference Snyder A, Shapley R: Deficits in the visual evoked potentials of cats as a result of visual deprivation. Exp Brain Res. 1979, 37 (1): 73-86. 10.1007/BF01474255.CrossRefPubMed Snyder A, Shapley R: Deficits in the visual evoked potentials of cats as a result of visual deprivation. Exp Brain Res. 1979, 37 (1): 73-86. 10.1007/BF01474255.CrossRefPubMed
18.
go back to reference Postnikova NN, Nachkebiia AI, Lordkipanidze SO: [Evoked potentials in cortical and subcortical structures of the visual system to photic and acoustic stimuli under conditions of early light deprivation]. Zh Vyssh Nerv Deiat Im I P Pavlova. 1977, 27 (1): 169-176.PubMed Postnikova NN, Nachkebiia AI, Lordkipanidze SO: [Evoked potentials in cortical and subcortical structures of the visual system to photic and acoustic stimuli under conditions of early light deprivation]. Zh Vyssh Nerv Deiat Im I P Pavlova. 1977, 27 (1): 169-176.PubMed
19.
go back to reference Zislina NN: [Effect of early deprivation of visual evoked potentials of rabbit cerebral cortex under conditions of dark and light adaptation]. Zh Vyssh Nerv Deiat Im I P Pavlova. 1977, 27 (1): 161-168.PubMed Zislina NN: [Effect of early deprivation of visual evoked potentials of rabbit cerebral cortex under conditions of dark and light adaptation]. Zh Vyssh Nerv Deiat Im I P Pavlova. 1977, 27 (1): 161-168.PubMed
20.
go back to reference Glass JD, Crowder JV, Kennerdell JS, Merikangas JR: Visually evoked potentials from occipital and precentral cortex in visually deprived humans. Electroencephalogr Clin Neurophysiol. 1977, 43 (2): 207-217. 10.1016/0013-4694(77)90128-6.CrossRefPubMed Glass JD, Crowder JV, Kennerdell JS, Merikangas JR: Visually evoked potentials from occipital and precentral cortex in visually deprived humans. Electroencephalogr Clin Neurophysiol. 1977, 43 (2): 207-217. 10.1016/0013-4694(77)90128-6.CrossRefPubMed
21.
go back to reference Grigor'eva LP, Zislina NN, Tolstova VA: [Plasticity of the visual system and learning]. Fiziol Cheloveka. 1996, 22 (1): 55-62.PubMed Grigor'eva LP, Zislina NN, Tolstova VA: [Plasticity of the visual system and learning]. Fiziol Cheloveka. 1996, 22 (1): 55-62.PubMed
22.
go back to reference Boroojerdi B, Bushara KO, Corwell B, Immisch I, Battaglia F, Muellbacher W, Cohen LG: Enhanced excitability of the human visual cortex induced by short-term light deprivation. Cereb Cortex. 2000, 10 (5): 529-534. 10.1093/cercor/10.5.529.CrossRefPubMed Boroojerdi B, Bushara KO, Corwell B, Immisch I, Battaglia F, Muellbacher W, Cohen LG: Enhanced excitability of the human visual cortex induced by short-term light deprivation. Cereb Cortex. 2000, 10 (5): 529-534. 10.1093/cercor/10.5.529.CrossRefPubMed
23.
go back to reference Fierro B, Brighina F, Vitello G, Piazza A, Scalia S, Giglia G, Daniele O, Pascual-Leone A: Modulatory effects of low- and high-frequency repetitive transcranial magnetic stimulation on visual cortex of healthy subjects undergoing light deprivation. J Physiol. 2005, 565 (Pt 2): 659-665.CrossRefPubMedPubMedCentral Fierro B, Brighina F, Vitello G, Piazza A, Scalia S, Giglia G, Daniele O, Pascual-Leone A: Modulatory effects of low- and high-frequency repetitive transcranial magnetic stimulation on visual cortex of healthy subjects undergoing light deprivation. J Physiol. 2005, 565 (Pt 2): 659-665.CrossRefPubMedPubMedCentral
24.
go back to reference Marjerrison G, Keogh RP: The neurophysiology of schizophrenia. Field dependency and electroencephalogram (EEG) responses to perceptual deprivation. J Nerv Ment Dis. 1971, 152 (6): 390-395. 10.1097/00005053-197106000-00002.CrossRefPubMed Marjerrison G, Keogh RP: The neurophysiology of schizophrenia. Field dependency and electroencephalogram (EEG) responses to perceptual deprivation. J Nerv Ment Dis. 1971, 152 (6): 390-395. 10.1097/00005053-197106000-00002.CrossRefPubMed
25.
go back to reference Koch SP, Koendgen S, Bourayou R, Steinbrink J, Obrig H: Individual alpha-frequency correlates with amplitude of visual evoked potential and hemodynamic response. Neuroimage. 2008, 41 (2): 233-242. 10.1016/j.neuroimage.2008.02.018.CrossRefPubMed Koch SP, Koendgen S, Bourayou R, Steinbrink J, Obrig H: Individual alpha-frequency correlates with amplitude of visual evoked potential and hemodynamic response. Neuroimage. 2008, 41 (2): 233-242. 10.1016/j.neuroimage.2008.02.018.CrossRefPubMed
26.
go back to reference Hughes SW, Crunelli V: Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist. 2005, 11 (4): 357-372. 10.1177/1073858405277450.CrossRefPubMed Hughes SW, Crunelli V: Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist. 2005, 11 (4): 357-372. 10.1177/1073858405277450.CrossRefPubMed
27.
go back to reference Steriade M, Llinás RR: The functional states of the thalamus and the associated neuronal interplay. Physiol Rev. 1988, 68 (3): 649-742.PubMed Steriade M, Llinás RR: The functional states of the thalamus and the associated neuronal interplay. Physiol Rev. 1988, 68 (3): 649-742.PubMed
28.
go back to reference Lopes da Silva F: Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol. 1991, 79 (2): 81-93. 10.1016/0013-4694(91)90044-5.CrossRefPubMed Lopes da Silva F: Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol. 1991, 79 (2): 81-93. 10.1016/0013-4694(91)90044-5.CrossRefPubMed
29.
go back to reference Bremer F, Stoupel N: [Facilitation and inhibition of evoked cortical potentials during cerebral arousal]. Arch Int Physiol Biochim. 1959, 67 (2): 240-275. 10.3109/13813455909074432.PubMed Bremer F, Stoupel N: [Facilitation and inhibition of evoked cortical potentials during cerebral arousal]. Arch Int Physiol Biochim. 1959, 67 (2): 240-275. 10.3109/13813455909074432.PubMed
30.
go back to reference Armengol V, Lifschitz W, Palestini M: Inhibitory influences on primary and secondary cortical photic potentials originating in the lower brain stem. J Physiol. 1961, 159: 451-460.CrossRefPubMedPubMedCentral Armengol V, Lifschitz W, Palestini M: Inhibitory influences on primary and secondary cortical photic potentials originating in the lower brain stem. J Physiol. 1961, 159: 451-460.CrossRefPubMedPubMedCentral
31.
go back to reference Fuster JM, Docter RF: Variations of optic evoked potentials as a function of reticular activity in rabbits with chronically implanted electrodes. J Neurophysiol. 1962, 25: 324-336.PubMed Fuster JM, Docter RF: Variations of optic evoked potentials as a function of reticular activity in rabbits with chronically implanted electrodes. J Neurophysiol. 1962, 25: 324-336.PubMed
32.
go back to reference Yashiro K, Corlew R, Philpot BD: Visual deprivation modifies both presynaptic glutamate release and the composition of perisynaptic/extrasynaptic NMDA receptors in adult visual cortex. J Neurosci. 2005, 25 (50): 11684-11692. 10.1523/JNEUROSCI.4362-05.2005.CrossRefPubMed Yashiro K, Corlew R, Philpot BD: Visual deprivation modifies both presynaptic glutamate release and the composition of perisynaptic/extrasynaptic NMDA receptors in adult visual cortex. J Neurosci. 2005, 25 (50): 11684-11692. 10.1523/JNEUROSCI.4362-05.2005.CrossRefPubMed
33.
go back to reference Goel A, Lee HK: Persistence of experience-induced homeostatic synaptic plasticity through adulthood in superficial layers of mouse visual cortex. J Neurosci. 2007, 27 (25): 6692-6700. 10.1523/JNEUROSCI.5038-06.2007.CrossRefPubMedPubMedCentral Goel A, Lee HK: Persistence of experience-induced homeostatic synaptic plasticity through adulthood in superficial layers of mouse visual cortex. J Neurosci. 2007, 27 (25): 6692-6700. 10.1523/JNEUROSCI.5038-06.2007.CrossRefPubMedPubMedCentral
34.
go back to reference Kirkwood A, Rioult MC, Bear MF: Experience-dependent modification of synaptic plasticity in visual cortex. Nature. 1996, 381 (6582): 526-528. 10.1038/381526a0.CrossRefPubMed Kirkwood A, Rioult MC, Bear MF: Experience-dependent modification of synaptic plasticity in visual cortex. Nature. 1996, 381 (6582): 526-528. 10.1038/381526a0.CrossRefPubMed
35.
go back to reference Kreczko A, Goel A, Song L, Lee HK: Visual deprivation decreases somatic GAD65 puncta number on layer 2/3 pyramidal neurons in mouse visual cortex. Neural Plast. 2009, 2009: 415135-PubMedPubMedCentral Kreczko A, Goel A, Song L, Lee HK: Visual deprivation decreases somatic GAD65 puncta number on layer 2/3 pyramidal neurons in mouse visual cortex. Neural Plast. 2009, 2009: 415135-PubMedPubMedCentral
36.
go back to reference Boroojerdi B, Battaglia F, Muellbacher W, Cohen LG: Mechanisms underlying rapid experience-dependent plasticity in the human visual cortex. Proc Natl Acad Sci USA. 2001, 98 (25): 14698-14701. 10.1073/pnas.251357198.CrossRefPubMedPubMedCentral Boroojerdi B, Battaglia F, Muellbacher W, Cohen LG: Mechanisms underlying rapid experience-dependent plasticity in the human visual cortex. Proc Natl Acad Sci USA. 2001, 98 (25): 14698-14701. 10.1073/pnas.251357198.CrossRefPubMedPubMedCentral
37.
go back to reference Coppola G, Ambrosini A, Di Clemente L, Magis D, Fumal A, Gérard P, Pierelli F, Schoenen J: Interictal abnormalities of gamma band activity in visual evoked responses in migraine: an indication of thalamocortical dysrhythmia?. Cephalalgia. 2007, 27 (12): 1360-1367. 10.1111/j.1468-2982.2007.01466.x.CrossRefPubMed Coppola G, Ambrosini A, Di Clemente L, Magis D, Fumal A, Gérard P, Pierelli F, Schoenen J: Interictal abnormalities of gamma band activity in visual evoked responses in migraine: an indication of thalamocortical dysrhythmia?. Cephalalgia. 2007, 27 (12): 1360-1367. 10.1111/j.1468-2982.2007.01466.x.CrossRefPubMed
38.
go back to reference Coppola G, Vandenheede M, Di Clemente L, Ambrosini A, Fumal A, De Pasqua V, Schoenen J: Somatosensory evoked high-frequency oscillations reflecting thalamo-cortical activity are decreased in migraine patients between attacks. Brain. 2005, 128 (Pt 1): 98-103.PubMed Coppola G, Vandenheede M, Di Clemente L, Ambrosini A, Fumal A, De Pasqua V, Schoenen J: Somatosensory evoked high-frequency oscillations reflecting thalamo-cortical activity are decreased in migraine patients between attacks. Brain. 2005, 128 (Pt 1): 98-103.PubMed
39.
40.
go back to reference Llinás RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP: Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA. 1999, 96 (26): 15222-15227. 10.1073/pnas.96.26.15222.CrossRefPubMedPubMedCentral Llinás RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP: Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA. 1999, 96 (26): 15222-15227. 10.1073/pnas.96.26.15222.CrossRefPubMedPubMedCentral
41.
go back to reference Walton KD, Dubois M, Llinás RR: Abnormal thalamocortical activity in patients with Complex Regional Pain Syndrome (CRPS) Type I. Pain. 2010 Walton KD, Dubois M, Llinás RR: Abnormal thalamocortical activity in patients with Complex Regional Pain Syndrome (CRPS) Type I. Pain. 2010
42.
go back to reference Bear MF, Cooper LN, Ebner FF: A physiological basis for a theory of synapse modification. Science. 1987, 237 (4810): 42-48. 10.1126/science.3037696.CrossRefPubMed Bear MF, Cooper LN, Ebner FF: A physiological basis for a theory of synapse modification. Science. 1987, 237 (4810): 42-48. 10.1126/science.3037696.CrossRefPubMed
43.
go back to reference Bienenstock E, Cooper L, Munro P: Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982, 2 (1): 32-48.PubMed Bienenstock E, Cooper L, Munro P: Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982, 2 (1): 32-48.PubMed
44.
go back to reference Montero V: Amblyopia decreases activation of the corticogeniculate pathway and visual thalamic reticularis in attentive rats: a 'focal attention' hypothesis. Neuroscience. 1999, 91 (3): 805-817. 10.1016/S0306-4522(98)00632-0.CrossRefPubMed Montero V: Amblyopia decreases activation of the corticogeniculate pathway and visual thalamic reticularis in attentive rats: a 'focal attention' hypothesis. Neuroscience. 1999, 91 (3): 805-817. 10.1016/S0306-4522(98)00632-0.CrossRefPubMed
Metadata
Title
Effects of light deprivation on visual evoked potentials in migraine without aura
Authors
Gianluca Coppola
Julien Crémers
Pascale Gérard
Francesco Pierelli
Jean Schoenen
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2011
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/1471-2377-11-91

Other articles of this Issue 1/2011

BMC Neurology 1/2011 Go to the issue