Skip to main content
Top
Published in: BMC Neurology 1/2011

Open Access 01-12-2011 | Debate

What is the potential of oligodendrocyte progenitor cells to successfully treat human spinal cord injury?

Authors: Robert A Watson, Trevor M Yeung

Published in: BMC Neurology | Issue 1/2011

Login to get access

Abstract

Background

Spinal cord injury is a serious and debilitating condition, affecting millions of people worldwide. Long seen as a permanent injury, recent advances in stem cell research have brought closer the possibility of repairing the spinal cord. One such approach involves injecting oligodendrocyte progenitor cells, derived from human embryonic stem cells, into the injured spinal cord in the hope that they will initiate repair. A phase I clinical trial of this therapy was started in mid 2010 and is currently underway.

Discussion

The theory underlying this approach is that these myelinating progenitors will phenotypically replace myelin lost during injury whilst helping to promote a repair environment in the lesion. However, the importance of demyelination in the pathogenesis of human spinal cord injury is a contentious issue and a body of literature suggests that it is only a minor factor in the overall injury process.

Summary

This review examines the validity of the theory underpinning the on-going clinical trial as well as analysing published data from animal models and finally discussing issues surrounding safety and purity in order to assess the potential of this approach to successfully treat acute human spinal cord injury.
Appendix
Available only for authorised users
Literature
8.
go back to reference Marshall E: Gene therapy: Second child in French trial is found to have leukemia. Science. 2003, 299: 320-320. 10.1126/science.299.5605.320.CrossRefPubMed Marshall E: Gene therapy: Second child in French trial is found to have leukemia. Science. 2003, 299: 320-320. 10.1126/science.299.5605.320.CrossRefPubMed
9.
go back to reference Sekhon LHS, Fehlings MG: Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine. 2001, 26: S2-S12. 10.1097/00007632-200112151-00002.CrossRefPubMed Sekhon LHS, Fehlings MG: Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine. 2001, 26: S2-S12. 10.1097/00007632-200112151-00002.CrossRefPubMed
10.
go back to reference Bauchet L, Lonjon N, Perrin FE, Gilbert C, Privat A, Fattal C: Strategies for spinal cord repair after injury: a review of the literature and information. Ann Phys Rehabil Med. 2009, 52: 330-351.CrossRefPubMed Bauchet L, Lonjon N, Perrin FE, Gilbert C, Privat A, Fattal C: Strategies for spinal cord repair after injury: a review of the literature and information. Ann Phys Rehabil Med. 2009, 52: 330-351.CrossRefPubMed
12.
go back to reference Potter PJ: Disordered control of the urinary bladder after human spinal cord injury: what are the problems?. Autonomic Dysfunction after Spinal Cord Injury. 2006, Amsterdam: Elsevier Science, 152: 51-57.CrossRef Potter PJ: Disordered control of the urinary bladder after human spinal cord injury: what are the problems?. Autonomic Dysfunction after Spinal Cord Injury. 2006, Amsterdam: Elsevier Science, 152: 51-57.CrossRef
13.
go back to reference Ravenscroft A, Ahmed YS, Burnside IG: Chronic pain after SCI. A patient survey. Spinal Cord. 2000, 38: 611-614. 10.1038/sj.sc.3101073.CrossRefPubMed Ravenscroft A, Ahmed YS, Burnside IG: Chronic pain after SCI. A patient survey. Spinal Cord. 2000, 38: 611-614. 10.1038/sj.sc.3101073.CrossRefPubMed
14.
go back to reference Kennedy P, Rogers BA: Anxiety and depression after spinal cord injury: A longitudinal analysis. Archives of Physical Medicine and Rehabilitation. 2000, 81: 932-937. 10.1053/apmr.2000.5580.CrossRefPubMed Kennedy P, Rogers BA: Anxiety and depression after spinal cord injury: A longitudinal analysis. Archives of Physical Medicine and Rehabilitation. 2000, 81: 932-937. 10.1053/apmr.2000.5580.CrossRefPubMed
15.
go back to reference Kennedy P, Evans MJ: Evaluation of post traumatic distress in the first 6 months following SCI. Spinal Cord. 2001, 39: 381-386. 10.1038/sj.sc.3101172.CrossRefPubMed Kennedy P, Evans MJ: Evaluation of post traumatic distress in the first 6 months following SCI. Spinal Cord. 2001, 39: 381-386. 10.1038/sj.sc.3101172.CrossRefPubMed
16.
go back to reference Noreau L, Fougeyrollas P: Long-term consequences of spinal cord injury on social participation: the occurrence of handicap situations. Disabil Rehabil. 2000, 22: 170-180. 10.1080/096382800296863.CrossRefPubMed Noreau L, Fougeyrollas P: Long-term consequences of spinal cord injury on social participation: the occurrence of handicap situations. Disabil Rehabil. 2000, 22: 170-180. 10.1080/096382800296863.CrossRefPubMed
17.
go back to reference McDonald JW, Sadowsky C: Spinal-cord injury. Lancet. 2002, 359: 417-425. 10.1016/S0140-6736(02)07603-1.CrossRefPubMed McDonald JW, Sadowsky C: Spinal-cord injury. Lancet. 2002, 359: 417-425. 10.1016/S0140-6736(02)07603-1.CrossRefPubMed
18.
go back to reference Tator CH: Update on the pathophysiology and pathology of acute spinal-cord injury. Brain Pathology. 1995, 5: 407-413. 10.1111/j.1750-3639.1995.tb00619.x.CrossRefPubMed Tator CH: Update on the pathophysiology and pathology of acute spinal-cord injury. Brain Pathology. 1995, 5: 407-413. 10.1111/j.1750-3639.1995.tb00619.x.CrossRefPubMed
19.
go back to reference Rowland JW, Hawryluk GWJ, Kwon B, Fehlings MG: Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurgical Focus. 2008, 25: Rowland JW, Hawryluk GWJ, Kwon B, Fehlings MG: Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurgical Focus. 2008, 25:
20.
go back to reference Kakulas BA: A review of the neuropathology of human spinal cord injury with emphasis on special features. J Spinal Cord Med. 1999, 22: 119-124.CrossRefPubMed Kakulas BA: A review of the neuropathology of human spinal cord injury with emphasis on special features. J Spinal Cord Med. 1999, 22: 119-124.CrossRefPubMed
21.
go back to reference Kakulas BA: Neuropathology: the foundation for new treatments in spinal cord injury. Spinal Cord. 2004, 42: 549-563. 10.1038/sj.sc.3101670.CrossRefPubMed Kakulas BA: Neuropathology: the foundation for new treatments in spinal cord injury. Spinal Cord. 2004, 42: 549-563. 10.1038/sj.sc.3101670.CrossRefPubMed
22.
go back to reference Norenberg MD, Smith J, Marcillo A: The pathology of human spinal cord injury: Defining the problems. Journal of Neurotrauma. 2004, 21: 429-440. 10.1089/089771504323004575.CrossRefPubMed Norenberg MD, Smith J, Marcillo A: The pathology of human spinal cord injury: Defining the problems. Journal of Neurotrauma. 2004, 21: 429-440. 10.1089/089771504323004575.CrossRefPubMed
23.
go back to reference Emery E, Aldana P, Bunge MB, Puckett W, Srinivasan A, Keane RW, Bethea J, Levi ADO: Apoptosis after traumatic human spinal cord injury. Journal of Neurosurgery. 1998, 89: 911-920. 10.3171/jns.1998.89.6.0911.CrossRefPubMed Emery E, Aldana P, Bunge MB, Puckett W, Srinivasan A, Keane RW, Bethea J, Levi ADO: Apoptosis after traumatic human spinal cord injury. Journal of Neurosurgery. 1998, 89: 911-920. 10.3171/jns.1998.89.6.0911.CrossRefPubMed
24.
go back to reference Beattie MS, Farooqui AA, Bresnahan JC: Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma. 2000, 17: 915-925. 10.1089/neu.2000.17.915.CrossRefPubMed Beattie MS, Farooqui AA, Bresnahan JC: Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma. 2000, 17: 915-925. 10.1089/neu.2000.17.915.CrossRefPubMed
26.
go back to reference Faulkner J, Keirstead HS: Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury. Transplant Immunology. 2005, 15: 131-142. 10.1016/j.trim.2005.09.007.CrossRefPubMed Faulkner J, Keirstead HS: Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury. Transplant Immunology. 2005, 15: 131-142. 10.1016/j.trim.2005.09.007.CrossRefPubMed
27.
go back to reference Coutts M, Keirstead HS: Stem cells for the treatment of spinal cord injury. Experimental Neurology. 2008, 209: 368-377. 10.1016/j.expneurol.2007.09.002.CrossRefPubMed Coutts M, Keirstead HS: Stem cells for the treatment of spinal cord injury. Experimental Neurology. 2008, 209: 368-377. 10.1016/j.expneurol.2007.09.002.CrossRefPubMed
28.
go back to reference Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM: Embryonic stem cell lines derived from human blastocysts. Science. 1998, 282: 1145-1147.CrossRefPubMed Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM: Embryonic stem cell lines derived from human blastocysts. Science. 1998, 282: 1145-1147.CrossRefPubMed
29.
go back to reference Rossi SL, Keirstead HS: Stem cells and spinal cord regeneration. Current Opinion in Biotechnology. 2009, 20: 552-562. 10.1016/j.copbio.2009.09.008.CrossRefPubMed Rossi SL, Keirstead HS: Stem cells and spinal cord regeneration. Current Opinion in Biotechnology. 2009, 20: 552-562. 10.1016/j.copbio.2009.09.008.CrossRefPubMed
30.
go back to reference Kan EM, Ling EA, Lu J: Stem cell therapy for spinal cord injury. Curr Med Chem. 2010, 17: 4492-4510. 10.2174/092986710794182971.CrossRefPubMed Kan EM, Ling EA, Lu J: Stem cell therapy for spinal cord injury. Curr Med Chem. 2010, 17: 4492-4510. 10.2174/092986710794182971.CrossRefPubMed
31.
go back to reference Mackay-Sim A, St John JA: Olfactory ensheathing cells from the nose: clinical application in human spinal cord injuries. Exp Neurol. 2011, 229: 174-180. 10.1016/j.expneurol.2010.08.025.CrossRefPubMed Mackay-Sim A, St John JA: Olfactory ensheathing cells from the nose: clinical application in human spinal cord injuries. Exp Neurol. 2011, 229: 174-180. 10.1016/j.expneurol.2010.08.025.CrossRefPubMed
32.
go back to reference Uccelli A, Benvenuto F, Laroni A, Giunti D: Neuroprotective features of mesenchymal stem cells. Best Pract Res Clin Haematol. 2011, 24: 59-64. 10.1016/j.beha.2011.01.004.CrossRefPubMed Uccelli A, Benvenuto F, Laroni A, Giunti D: Neuroprotective features of mesenchymal stem cells. Best Pract Res Clin Haematol. 2011, 24: 59-64. 10.1016/j.beha.2011.01.004.CrossRefPubMed
33.
go back to reference Rossi SL, Nistor G, Wyatt T, Yin HZ, Poole AJ, Weiss JH, Gardener MJ, Dijkstra S, Fischer DF, Keirstead HS: Histological and functional benefit following transplantation of motor neuron progenitors to the injured rat spinal cord. PLoS One. 2010, 5 (7): e11852-10.1371/journal.pone.0011852.CrossRefPubMedPubMedCentral Rossi SL, Nistor G, Wyatt T, Yin HZ, Poole AJ, Weiss JH, Gardener MJ, Dijkstra S, Fischer DF, Keirstead HS: Histological and functional benefit following transplantation of motor neuron progenitors to the injured rat spinal cord. PLoS One. 2010, 5 (7): e11852-10.1371/journal.pone.0011852.CrossRefPubMedPubMedCentral
34.
go back to reference Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS: Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia. 2005, 49 (3): 385-396. 10.1002/glia.20127.CrossRefPubMed Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS: Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia. 2005, 49 (3): 385-396. 10.1002/glia.20127.CrossRefPubMed
35.
go back to reference Hatch MN, Nistor G, Keirstead HS: Derivation of High-Purity Oligodendroglial Progenitors. Neural Cell Transplantation. 2009, 59-75.CrossRef Hatch MN, Nistor G, Keirstead HS: Derivation of High-Purity Oligodendroglial Progenitors. Neural Cell Transplantation. 2009, 59-75.CrossRef
36.
go back to reference Waxman SG: Demyelination in spinal-cord injury. Journal of the Neurological Sciences. 1989, 91 (12): 1-14.CrossRefPubMed Waxman SG: Demyelination in spinal-cord injury. Journal of the Neurological Sciences. 1989, 91 (12): 1-14.CrossRefPubMed
37.
go back to reference Totoiu MO, Keirstead HS: Spinal cord injury is accompanied by chronic progressive demyelination. Journal of Comparative Neurology. 2005, 486 (4): 373-383. 10.1002/cne.20517.CrossRefPubMed Totoiu MO, Keirstead HS: Spinal cord injury is accompanied by chronic progressive demyelination. Journal of Comparative Neurology. 2005, 486 (4): 373-383. 10.1002/cne.20517.CrossRefPubMed
38.
go back to reference Guest JD, Hiester ED, Bunge RP: Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp Neurol. 2005, 192 (2): 384-393. 10.1016/j.expneurol.2004.11.033.CrossRefPubMed Guest JD, Hiester ED, Bunge RP: Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp Neurol. 2005, 192 (2): 384-393. 10.1016/j.expneurol.2004.11.033.CrossRefPubMed
39.
go back to reference Griffiths I, Klugmann M, Anderson T, Yool D, Thomson C, Schwab MH, Schneider A, Zimmermann F, McCulloch M, Nadon N, et al: Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science. 1998, 280 (5369): 1610-1613. 10.1126/science.280.5369.1610.CrossRefPubMed Griffiths I, Klugmann M, Anderson T, Yool D, Thomson C, Schwab MH, Schneider A, Zimmermann F, McCulloch M, Nadon N, et al: Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science. 1998, 280 (5369): 1610-1613. 10.1126/science.280.5369.1610.CrossRefPubMed
40.
go back to reference Lasiene J, Shupe L, Perlmutter S, Horner P: No evidence for chronic demyelination in spared axons after spinal cord injury in a mouse. Journal of Neuroscience. 2008, 28 (15): 3887-3896. 10.1523/JNEUROSCI.4756-07.2008.CrossRefPubMedPubMedCentral Lasiene J, Shupe L, Perlmutter S, Horner P: No evidence for chronic demyelination in spared axons after spinal cord injury in a mouse. Journal of Neuroscience. 2008, 28 (15): 3887-3896. 10.1523/JNEUROSCI.4756-07.2008.CrossRefPubMedPubMedCentral
41.
go back to reference Siebert JR, Stelzner DJ, Osterhout DJ: Chondroitinase treatment following spinal contusion injury increases migration of oligodendrocyte progenitor cells. Exp Neurol. 2011 Siebert JR, Stelzner DJ, Osterhout DJ: Chondroitinase treatment following spinal contusion injury increases migration of oligodendrocyte progenitor cells. Exp Neurol. 2011
42.
go back to reference Su Z, Yuan Y, Chen J, Zhu Y, Qiu Y, Zhu F, Huang A, He C: Reactive Astrocytes Inhibit the Survival and Differentiation of Oligodendrocyte Precursor Cells by Secreted TNF-alpha. J Neurotrauma. 2011, 28 (6): 1089-1100. 10.1089/neu.2010.1597.CrossRefPubMed Su Z, Yuan Y, Chen J, Zhu Y, Qiu Y, Zhu F, Huang A, He C: Reactive Astrocytes Inhibit the Survival and Differentiation of Oligodendrocyte Precursor Cells by Secreted TNF-alpha. J Neurotrauma. 2011, 28 (6): 1089-1100. 10.1089/neu.2010.1597.CrossRefPubMed
43.
go back to reference Wang Y, Cheng X, He Q, Zheng Y, Kim DH, Whittemore SR, Cao QL: Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins. J Neurosci. 2011, 31 (16): 6053-6058. 10.1523/JNEUROSCI.5524-09.2011.CrossRefPubMedPubMedCentral Wang Y, Cheng X, He Q, Zheng Y, Kim DH, Whittemore SR, Cao QL: Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins. J Neurosci. 2011, 31 (16): 6053-6058. 10.1523/JNEUROSCI.5524-09.2011.CrossRefPubMedPubMedCentral
44.
go back to reference Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O: Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. Journal of Neuroscience. 2005, 25 (19): 4694-4705. 10.1523/JNEUROSCI.0311-05.2005.CrossRefPubMed Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O: Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. Journal of Neuroscience. 2005, 25 (19): 4694-4705. 10.1523/JNEUROSCI.0311-05.2005.CrossRefPubMed
45.
go back to reference Logan A, Berry M: Transforming growth factor-beta(1) and basic fibroblast growth-factor in the injured cns. Trends in Pharmacological Sciences. 1993, 14 (9): 337-343. 10.1016/0165-6147(93)90007-7.CrossRefPubMed Logan A, Berry M: Transforming growth factor-beta(1) and basic fibroblast growth-factor in the injured cns. Trends in Pharmacological Sciences. 1993, 14 (9): 337-343. 10.1016/0165-6147(93)90007-7.CrossRefPubMed
46.
go back to reference Bareyre FM, Schwab ME: Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends in Neurosciences. 2003, 26 (10): 555-563. 10.1016/j.tins.2003.08.004.CrossRefPubMed Bareyre FM, Schwab ME: Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends in Neurosciences. 2003, 26 (10): 555-563. 10.1016/j.tins.2003.08.004.CrossRefPubMed
47.
go back to reference Menei P, Montero-Menei C, Whittemore SR, Bunge RP, Bunge MB: Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord. European Journal of Neuroscience. 1998, 10 (2): 607-621. 10.1046/j.1460-9568.1998.00071.x.CrossRefPubMed Menei P, Montero-Menei C, Whittemore SR, Bunge RP, Bunge MB: Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord. European Journal of Neuroscience. 1998, 10 (2): 607-621. 10.1046/j.1460-9568.1998.00071.x.CrossRefPubMed
48.
go back to reference Hagg T, Oudega M: Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma. 2006, 23 (34): 264-280.PubMed Hagg T, Oudega M: Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma. 2006, 23 (34): 264-280.PubMed
49.
go back to reference McDonald JW, Belegu V: Demyelination and remyelination after spinal cord injury. J Neurotrauma. 2006, 23 (34): 345-359.CrossRefPubMed McDonald JW, Belegu V: Demyelination and remyelination after spinal cord injury. J Neurotrauma. 2006, 23 (34): 345-359.CrossRefPubMed
50.
go back to reference Barnabe-Heider F, Goritz C, Sabelstrom H, Takebayashi H, Pfrieger FW, Meletis K, Frisen J: Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell. 2010, 7 (4): 470-482. 10.1016/j.stem.2010.07.014.CrossRefPubMed Barnabe-Heider F, Goritz C, Sabelstrom H, Takebayashi H, Pfrieger FW, Meletis K, Frisen J: Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell. 2010, 7 (4): 470-482. 10.1016/j.stem.2010.07.014.CrossRefPubMed
51.
go back to reference Zhang YW, Denham J, Thies RS: Oligodendrocyte progenitor cells derived from human embryonic stem cells express neurotrophic factors. Stem Cells Dev. 2006, 15 (6): 943-952. 10.1089/scd.2006.15.943.CrossRefPubMed Zhang YW, Denham J, Thies RS: Oligodendrocyte progenitor cells derived from human embryonic stem cells express neurotrophic factors. Stem Cells Dev. 2006, 15 (6): 943-952. 10.1089/scd.2006.15.943.CrossRefPubMed
52.
go back to reference Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS: Human embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cell Transplants Improve Recovery after Cervical Spinal Cord Injury. Stem Cells. 2009 Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS: Human embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cell Transplants Improve Recovery after Cervical Spinal Cord Injury. Stem Cells. 2009
53.
go back to reference Wilkins A, Majed H, Layfield R, Compston A, Chandran S: Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J Neurosci. 2003, 23 (12): 4967-4974.PubMed Wilkins A, Majed H, Layfield R, Compston A, Chandran S: Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J Neurosci. 2003, 23 (12): 4967-4974.PubMed
54.
go back to reference Schwab JM, Brechtel K, Mueller CA, Failli V, Kaps HP, Tuli SK, Schluesener HJ: Experimental strategies to promote spinal cord regeneration - an integrative perspective. Progress in Neurobiology. 2006, 78 (2): 91-116. 10.1016/j.pneurobio.2005.12.004.CrossRefPubMed Schwab JM, Brechtel K, Mueller CA, Failli V, Kaps HP, Tuli SK, Schluesener HJ: Experimental strategies to promote spinal cord regeneration - an integrative perspective. Progress in Neurobiology. 2006, 78 (2): 91-116. 10.1016/j.pneurobio.2005.12.004.CrossRefPubMed
55.
go back to reference Thoenen H, Sendtner M: Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nature Neuroscience. 2002, 5: 1046-1050. 10.1038/nn938.CrossRefPubMed Thoenen H, Sendtner M: Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nature Neuroscience. 2002, 5: 1046-1050. 10.1038/nn938.CrossRefPubMed
56.
go back to reference McDonald JW, Stefovska VG, Liu XZ, Shin H, Liu S, Choi DW: Neurotrophin potentiation of iron-induced spinal cord injury. Neuroscience. 2002, 115 (3): 931-939. 10.1016/S0306-4522(02)00342-1.CrossRefPubMed McDonald JW, Stefovska VG, Liu XZ, Shin H, Liu S, Choi DW: Neurotrophin potentiation of iron-induced spinal cord injury. Neuroscience. 2002, 115 (3): 931-939. 10.1016/S0306-4522(02)00342-1.CrossRefPubMed
57.
go back to reference Finnerup NB, Jensen TS: Spinal cord injury pain - mechanisms and treatment. European Journal of Neurology. 2004, 11 (2): 73-82. 10.1046/j.1351-5101.2003.00725.x.CrossRefPubMed Finnerup NB, Jensen TS: Spinal cord injury pain - mechanisms and treatment. European Journal of Neurology. 2004, 11 (2): 73-82. 10.1046/j.1351-5101.2003.00725.x.CrossRefPubMed
58.
go back to reference Weaver LC, Verghese P, Bruce JC, Fehlings MG, Krenz NR, Marsh DR: Autonomic dysreflexia and primary afferent sprouting after clip-compression injury of the rat spinal cord. J Neurotrauma. 2001, 18 (10): 1107-1119. 10.1089/08977150152693782.CrossRefPubMed Weaver LC, Verghese P, Bruce JC, Fehlings MG, Krenz NR, Marsh DR: Autonomic dysreflexia and primary afferent sprouting after clip-compression injury of the rat spinal cord. J Neurotrauma. 2001, 18 (10): 1107-1119. 10.1089/08977150152693782.CrossRefPubMed
59.
61.
go back to reference Kerr CL, Letzen BS, Hill CM, Agrawal G, Thakor NV, Sterneckert JL, Gearhart JD, All AH: Efficient differentiation of human embryonic stem cells into oligodendrocyte progenitors for application in a rat contusion model of spinal cord injury. Int J Neurosci. 2010, 120 (4): 305-313. 10.3109/00207450903585290.CrossRefPubMed Kerr CL, Letzen BS, Hill CM, Agrawal G, Thakor NV, Sterneckert JL, Gearhart JD, All AH: Efficient differentiation of human embryonic stem cells into oligodendrocyte progenitors for application in a rat contusion model of spinal cord injury. Int J Neurosci. 2010, 120 (4): 305-313. 10.3109/00207450903585290.CrossRefPubMed
62.
go back to reference Erceg S, Ronaghi M, Oria M, Rosello MG, Arago MA, Lopez MG, Radojevic I, Moreno-Manzano V, Rodriguez-Jimenez FJ, Bhattacharya SS, et al: Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection. Stem Cells. 2010, 28 (9): 1541-1549. 10.1002/stem.489.CrossRefPubMedPubMedCentral Erceg S, Ronaghi M, Oria M, Rosello MG, Arago MA, Lopez MG, Radojevic I, Moreno-Manzano V, Rodriguez-Jimenez FJ, Bhattacharya SS, et al: Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection. Stem Cells. 2010, 28 (9): 1541-1549. 10.1002/stem.489.CrossRefPubMedPubMedCentral
63.
go back to reference Cao Q, He Q, Wang Y, Cheng X, Howard RM, Zhang Y, DeVries WH, Shields CB, Magnuson DS, Xu XM, et al: Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury. J Neurosci. 2010, 30 (8): 2989-3001. 10.1523/JNEUROSCI.3174-09.2010.CrossRefPubMedPubMedCentral Cao Q, He Q, Wang Y, Cheng X, Howard RM, Zhang Y, DeVries WH, Shields CB, Magnuson DS, Xu XM, et al: Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury. J Neurosci. 2010, 30 (8): 2989-3001. 10.1523/JNEUROSCI.3174-09.2010.CrossRefPubMedPubMedCentral
65.
go back to reference De La Torre JC: Spinal cord injury models. Progress in Neurobiology (Oxford). 1984, 22 (4): 289-344. 10.1016/0301-0082(84)90004-2.CrossRef De La Torre JC: Spinal cord injury models. Progress in Neurobiology (Oxford). 1984, 22 (4): 289-344. 10.1016/0301-0082(84)90004-2.CrossRef
66.
go back to reference Burney RE, Maio RF, Maynard F, Karunas R: Incidence, characteristics, and outcome of spinal-cord injury at trauma centers in North-America. Archives of Surgery. 1993, 128 (5): 596-599.CrossRefPubMed Burney RE, Maio RF, Maynard F, Karunas R: Incidence, characteristics, and outcome of spinal-cord injury at trauma centers in North-America. Archives of Surgery. 1993, 128 (5): 596-599.CrossRefPubMed
67.
go back to reference Tator CH, Koyanagi I: Vascular mechanisms in the pathophysiology of human spinal cord injury. Journal of Neurosurgery. 1997, 86 (3): 483-492. 10.3171/jns.1997.86.3.0483.CrossRefPubMed Tator CH, Koyanagi I: Vascular mechanisms in the pathophysiology of human spinal cord injury. Journal of Neurosurgery. 1997, 86 (3): 483-492. 10.3171/jns.1997.86.3.0483.CrossRefPubMed
68.
go back to reference Young W: Spinal cord contusion models. Spinal Cord Trauma: Regeneration, Neural Repair and Functional Recovery. 2002, 137: 231-255. Young W: Spinal cord contusion models. Spinal Cord Trauma: Regeneration, Neural Repair and Functional Recovery. 2002, 137: 231-255.
69.
go back to reference Werner C, Mollenberg O, Kochs E, Schulte J: Sevoflurane improves neurological outcome after incomplete cerebral-ischemia in rats. British Journal of Anaesthesia. 1995, 75 (6): 756-760.CrossRefPubMed Werner C, Mollenberg O, Kochs E, Schulte J: Sevoflurane improves neurological outcome after incomplete cerebral-ischemia in rats. British Journal of Anaesthesia. 1995, 75 (6): 756-760.CrossRefPubMed
70.
go back to reference Sheng HX, Wang HC, Homi HM, Spasojevic I, Batinic-Haberle I, Pearlstein RD, Warner DS: A no-laminectomy spinal cord compression injury model in mice. J Neurotrauma. 2004, 21 (5): 595-603. 10.1089/089771504774129928.CrossRefPubMed Sheng HX, Wang HC, Homi HM, Spasojevic I, Batinic-Haberle I, Pearlstein RD, Warner DS: A no-laminectomy spinal cord compression injury model in mice. J Neurotrauma. 2004, 21 (5): 595-603. 10.1089/089771504774129928.CrossRefPubMed
71.
go back to reference Barros TED, Molina A: Analysis of the sensitivity and reproducibility of the Basso, Beattie, Bresnahan (BBB) scale in Wistar rats. Clinics. 2008, 63 (1): 103-108. 10.1590/S1807-59322008000100018.CrossRef Barros TED, Molina A: Analysis of the sensitivity and reproducibility of the Basso, Beattie, Bresnahan (BBB) scale in Wistar rats. Clinics. 2008, 63 (1): 103-108. 10.1590/S1807-59322008000100018.CrossRef
72.
go back to reference Akhtar AZ, Pippin JJ, Sandusky CB: Animal models in spinal cord injury: A review. Reviews in the Neurosciences. 2008, 19 (1): 47-60. 10.1515/REVNEURO.2008.19.1.47.CrossRefPubMed Akhtar AZ, Pippin JJ, Sandusky CB: Animal models in spinal cord injury: A review. Reviews in the Neurosciences. 2008, 19 (1): 47-60. 10.1515/REVNEURO.2008.19.1.47.CrossRefPubMed
73.
go back to reference Ben-David U, Benvenisty N: The tumorigenicity of human embryonic and induced pluripotent stem cells. Nature Reviews Cancer. 2011, 11 (4): 268-277. 10.1038/nrc3034.CrossRefPubMed Ben-David U, Benvenisty N: The tumorigenicity of human embryonic and induced pluripotent stem cells. Nature Reviews Cancer. 2011, 11 (4): 268-277. 10.1038/nrc3034.CrossRefPubMed
74.
go back to reference Blum B, Benvenisty N: The tumorigenicity of human embryonic stem cells. Advances in Cancer Research. 2008, 100: 133-+.CrossRefPubMed Blum B, Benvenisty N: The tumorigenicity of human embryonic stem cells. Advances in Cancer Research. 2008, 100: 133-+.CrossRefPubMed
75.
go back to reference Okarma T: Interview with Thomas Okarma, M.D., Ph.D.; CEO, Geron. Rejuvenation Res. 2009, 12 (4): 295-300.CrossRefPubMed Okarma T: Interview with Thomas Okarma, M.D., Ph.D.; CEO, Geron. Rejuvenation Res. 2009, 12 (4): 295-300.CrossRefPubMed
76.
go back to reference Okamura RM, Lebkowski J, Au M, Priest CA, Denham J, Majumdar AS: Immunological properties of human embryonic stem cell-derived oligodendrocyte progenitor cells. Journal of Neuroimmunology. 2007, 192 (12): 134-144.CrossRefPubMed Okamura RM, Lebkowski J, Au M, Priest CA, Denham J, Majumdar AS: Immunological properties of human embryonic stem cell-derived oligodendrocyte progenitor cells. Journal of Neuroimmunology. 2007, 192 (12): 134-144.CrossRefPubMed
77.
go back to reference Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Reubinoff B, Mandelboim O, Benvenisty N: Characterization of the expression of MHC proteins in human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America. 2002, 99 (15): 9864-9869. 10.1073/pnas.142298299.CrossRefPubMedPubMedCentral Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Reubinoff B, Mandelboim O, Benvenisty N: Characterization of the expression of MHC proteins in human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America. 2002, 99 (15): 9864-9869. 10.1073/pnas.142298299.CrossRefPubMedPubMedCentral
78.
go back to reference Li L, Baroja ML, Majumdar A, Chadwick K, Rouleau A, Gallacher L, Ferber I, Lebkowski J, Martin T, Madrenas J, et al: Human embryonic stem cells possess immune-privileged properties. Stem Cells. 2004, 22 (4): 448-456. 10.1634/stemcells.22-4-448.CrossRefPubMed Li L, Baroja ML, Majumdar A, Chadwick K, Rouleau A, Gallacher L, Ferber I, Lebkowski J, Martin T, Madrenas J, et al: Human embryonic stem cells possess immune-privileged properties. Stem Cells. 2004, 22 (4): 448-456. 10.1634/stemcells.22-4-448.CrossRefPubMed
79.
go back to reference Fairchild PJ, Robertson NJ, Minger SL, Waldmann H: Embryonic stem cells: protecting pluripotency from alloreactivity. Current Opinion in Immunology. 2007, 19 (5): 596-602. 10.1016/j.coi.2007.07.010.CrossRefPubMed Fairchild PJ, Robertson NJ, Minger SL, Waldmann H: Embryonic stem cells: protecting pluripotency from alloreactivity. Current Opinion in Immunology. 2007, 19 (5): 596-602. 10.1016/j.coi.2007.07.010.CrossRefPubMed
80.
go back to reference Hatch MN, Nistor GI, Keirstead HS: Oligodendrocyte Differentiation from Human Embryonic Stem Cells. Human Stem Cell Manual: A Laboratory Guide. Edited by: Loring J, Wesselschmidt RL, Schwartz PH. 2007, New York: Elsevier, 210-226. 1CrossRef Hatch MN, Nistor GI, Keirstead HS: Oligodendrocyte Differentiation from Human Embryonic Stem Cells. Human Stem Cell Manual: A Laboratory Guide. Edited by: Loring J, Wesselschmidt RL, Schwartz PH. 2007, New York: Elsevier, 210-226. 1CrossRef
81.
go back to reference Sundberg M, Hyysalo A, Skottman H, Shin S, Vemuri M, Suuronen R, Narkilahti S: A xeno-free culturing protocol for pluripotent stem cell-derived oligodendrocyte precursor cell production. Regen Med. 2011, 6 (4): 449-460. 10.2217/rme.11.36.CrossRefPubMed Sundberg M, Hyysalo A, Skottman H, Shin S, Vemuri M, Suuronen R, Narkilahti S: A xeno-free culturing protocol for pluripotent stem cell-derived oligodendrocyte precursor cell production. Regen Med. 2011, 6 (4): 449-460. 10.2217/rme.11.36.CrossRefPubMed
82.
go back to reference Cloutier F, Siegenthaler MM, Nistor G, Keirstead HS: Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm. Regen Med. 2006, 1 (4): 469-479. 10.2217/17460751.1.4.469.CrossRefPubMed Cloutier F, Siegenthaler MM, Nistor G, Keirstead HS: Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm. Regen Med. 2006, 1 (4): 469-479. 10.2217/17460751.1.4.469.CrossRefPubMed
83.
go back to reference McLaren A: Ethical and social considerations of stem cell research. Nature. 2001, 414 (6859): 129-131. 10.1038/35102194.CrossRefPubMed McLaren A: Ethical and social considerations of stem cell research. Nature. 2001, 414 (6859): 129-131. 10.1038/35102194.CrossRefPubMed
84.
go back to reference Zarzeczny A, Caulfield T: Emerging Ethical, Legal and Social Issues Associated with Stem Cell Research & and the Current Role of the Moral Status of the Embryo. Stem Cell Reviews and Reports. 2009, 5 (2): 96-101. 10.1007/s12015-009-9062-4.CrossRefPubMed Zarzeczny A, Caulfield T: Emerging Ethical, Legal and Social Issues Associated with Stem Cell Research & and the Current Role of the Moral Status of the Embryo. Stem Cell Reviews and Reports. 2009, 5 (2): 96-101. 10.1007/s12015-009-9062-4.CrossRefPubMed
86.
go back to reference Bretzner F, Gilbert F, Baylis F, Brownstone RM: Target populations for first-in-human embryonic stem cell research in spinal cord injury. Cell Stem Cell. 2011, 8 (5): 468-475. 10.1016/j.stem.2011.04.012.CrossRefPubMed Bretzner F, Gilbert F, Baylis F, Brownstone RM: Target populations for first-in-human embryonic stem cell research in spinal cord injury. Cell Stem Cell. 2011, 8 (5): 468-475. 10.1016/j.stem.2011.04.012.CrossRefPubMed
87.
go back to reference Wirth E, Lebkowski JS, Lebacqz K: Response to Frederic Bretzner et al. "Target populations for first-in-human embryonic stem cell research in spinal cord injury". Cell Stem Cell. 2011, 8 (5): 476-478. 10.1016/j.stem.2011.04.008.CrossRefPubMed Wirth E, Lebkowski JS, Lebacqz K: Response to Frederic Bretzner et al. "Target populations for first-in-human embryonic stem cell research in spinal cord injury". Cell Stem Cell. 2011, 8 (5): 476-478. 10.1016/j.stem.2011.04.008.CrossRefPubMed
88.
go back to reference Solbakk JH, Zoloth L: The tragedy of translation: the case of "first use" in human embryonic stem cell research. Cell Stem Cell. 2011, 8 (5): 479-481. 10.1016/j.stem.2011.04.009.CrossRefPubMed Solbakk JH, Zoloth L: The tragedy of translation: the case of "first use" in human embryonic stem cell research. Cell Stem Cell. 2011, 8 (5): 479-481. 10.1016/j.stem.2011.04.009.CrossRefPubMed
90.
go back to reference Wirth E, Priest C, Davies A, Cullen S, Denham J, Owens N, Sugianto A, Bacolini L, Reddy A, Okamura R, Lebkowski J: Update on a Phase 1 Safety Trial of Human Embryonic Stem Cell- Derived Oligodendrocyte Progenitor Cells (GRNOPC1) in Subjects with Neurologically Complete, Subacute Spinal Cord Injuries. Abstract from. 2011, Accessed 29th July 2011, Presentation Abstracts from the 2011 International Congress on Spinal Cord Medicine and Rehabilitation.pdf [http://www.iscos.org.uk/files/Oral] ISCoS Meeting Wirth E, Priest C, Davies A, Cullen S, Denham J, Owens N, Sugianto A, Bacolini L, Reddy A, Okamura R, Lebkowski J: Update on a Phase 1 Safety Trial of Human Embryonic Stem Cell- Derived Oligodendrocyte Progenitor Cells (GRNOPC1) in Subjects with Neurologically Complete, Subacute Spinal Cord Injuries. Abstract from. 2011, Accessed 29th July 2011, Presentation Abstracts from the 2011 International Congress on Spinal Cord Medicine and Rehabilitation.pdf [http://​www.​iscos.​org.​uk/​files/​Oral] ISCoS Meeting
92.
go back to reference Dobkin BH, Curt A, Guest J: Cellular transplants in China: Observational study from the largest human experiment in chronic spinal cord injury. Neurorehabilitation and Neural Repair. 2006, 20 (1): 5-13. 10.1177/1545968305284675.CrossRefPubMedPubMedCentral Dobkin BH, Curt A, Guest J: Cellular transplants in China: Observational study from the largest human experiment in chronic spinal cord injury. Neurorehabilitation and Neural Repair. 2006, 20 (1): 5-13. 10.1177/1545968305284675.CrossRefPubMedPubMedCentral
93.
go back to reference Cohen CB, Cohen PJ: International stem cell tourism and the need for effective regulation. Part I: Stem cell tourism in Russia and India: clinical research, innovative treatment, or unproven hype?. Kennedy Inst Ethics J. 2010, 20 (1): 27-49. 10.1353/ken.0.0305.CrossRefPubMed Cohen CB, Cohen PJ: International stem cell tourism and the need for effective regulation. Part I: Stem cell tourism in Russia and India: clinical research, innovative treatment, or unproven hype?. Kennedy Inst Ethics J. 2010, 20 (1): 27-49. 10.1353/ken.0.0305.CrossRefPubMed
94.
go back to reference Cohen CB, Cohen PJ: International stem cell tourism and the need for effective regulation. Part II: Developing sound oversight measures and effective patient support. Kennedy Inst Ethics J. 2010, 20 (3): 207-230. 10.1353/ken.2010.0001.CrossRefPubMed Cohen CB, Cohen PJ: International stem cell tourism and the need for effective regulation. Part II: Developing sound oversight measures and effective patient support. Kennedy Inst Ethics J. 2010, 20 (3): 207-230. 10.1353/ken.2010.0001.CrossRefPubMed
Metadata
Title
What is the potential of oligodendrocyte progenitor cells to successfully treat human spinal cord injury?
Authors
Robert A Watson
Trevor M Yeung
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2011
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/1471-2377-11-113

Other articles of this Issue 1/2011

BMC Neurology 1/2011 Go to the issue