Skip to main content
Top
Published in: BMC Medical Genetics 1/2005

Open Access 01-12-2005 | Research article

Molecular breakpoint cloning and gene expression studies of a novel translocation t(4;15)(q27;q11.2) associated with Prader-Willi syndrome

Authors: Birgitt Schüle, Mohammed Albalwi, Emma Northrop, David I Francis, Margaret Rowell, Howard R Slater, RJ McKinlay Gardner, Uta Francke

Published in: BMC Medical Genetics | Issue 1/2005

Login to get access

Abstract

Background

Prader-Willi syndrome (MIM #176270; PWS) is caused by lack of the paternally-derived copies, or their expression, of multiple genes in a 4 Mb region on chromosome 15q11.2. Known mechanisms include large deletions, maternal uniparental disomy or mutations involving the imprinting center. De novo balanced reciprocal translocations in 5 reported individuals had breakpoints clustering in SNRPN intron 2 or exon 20/intron 20. To further dissect the PWS phenotype and define the minimal critical region for PWS features, we have studied a 22 year old male with a milder PWS phenotype and a de novo translocation t(4;15)(q27;q11.2).

Methods

We used metaphase FISH to narrow the breakpoint region and molecular analyses to map the breakpoints on both chromosomes at the nucleotide level. The expression of genes on chromosome 15 on both sides of the breakpoint was determined by RT-PCR analyses.

Results

Pertinent clinical features include neonatal hypotonia with feeding difficulties, hypogonadism, short stature, late-onset obesity, learning difficulties, abnormal social behavior and marked tolerance to pain, as well as sticky saliva and narcolepsy. Relative macrocephaly and facial features are not typical for PWS. The translocation breakpoints were identified within SNRPN intron 17 and intron 10 of a spliced non-coding transcript in band 4q27. LINE and SINE sequences at the exchange points may have contributed to the translocation event. By RT-PCR of lymphoblasts and fibroblasts, we find that upstream SNURF/SNRPN exons and snoRNAs HBII-437 and HBII-13 are expressed, but the downstream snoRNAs PWCR1/HBII-85 and HBII-438A/B snoRNAs are not.

Conclusion

As part of the PWCR1/HBII-85 snoRNA cluster is highly conserved between human and mice, while no copy of HBII-438 has been found in mouse, we conclude that PWCR1/HBII-85 snoRNAs is likely to play a major role in the PWS- phenotype.
Appendix
Available only for authorised users
Literature
1.
go back to reference Holm VA, Cassidy SB, Butler MG, Hanchett JM, Greenswag LR, Whitman BY, Greenberg F: Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics. 1993, 91: 398-402.PubMed Holm VA, Cassidy SB, Butler MG, Hanchett JM, Greenswag LR, Whitman BY, Greenberg F: Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics. 1993, 91: 398-402.PubMed
2.
go back to reference Cassidy SB: Prader-Willi syndrome. 2001, 301-322. Cassidy SB: Prader-Willi syndrome. 2001, 301-322.
3.
go back to reference Ledbetter DH, Riccardi VM, Airhart SD, Strobel RJ, Keenan BS, Crawford JD: Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. N Engl J Med. 1981, 304: 325-329.CrossRefPubMed Ledbetter DH, Riccardi VM, Airhart SD, Strobel RJ, Keenan BS, Crawford JD: Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. N Engl J Med. 1981, 304: 325-329.CrossRefPubMed
4.
go back to reference Buiting K, Gross S, Lich C, Gillessen-Kaesbach G, el-Maarri O, Horsthemke B: Epimutations in Prader-Willi and Angelman syndromes: a molecular study of 136 patients with an imprinting defect. Am J Hum Genet. 2003, 72: 571-577. 10.1086/367926.CrossRefPubMedPubMedCentral Buiting K, Gross S, Lich C, Gillessen-Kaesbach G, el-Maarri O, Horsthemke B: Epimutations in Prader-Willi and Angelman syndromes: a molecular study of 136 patients with an imprinting defect. Am J Hum Genet. 2003, 72: 571-577. 10.1086/367926.CrossRefPubMedPubMedCentral
5.
go back to reference Mascari MJ, Gottlieb W, Rogan PK, Butler MG, Waller DA, Armour JA, Jeffreys AJ, Ladda RL, Nicholls RD: The frequency of uniparental disomy in Prader-Willi syndrome. Implications for molecular diagnosis. N Engl J Med. 1992, 326: 1599-1607.CrossRefPubMed Mascari MJ, Gottlieb W, Rogan PK, Butler MG, Waller DA, Armour JA, Jeffreys AJ, Ladda RL, Nicholls RD: The frequency of uniparental disomy in Prader-Willi syndrome. Implications for molecular diagnosis. N Engl J Med. 1992, 326: 1599-1607.CrossRefPubMed
6.
go back to reference Sutcliffe JS, Nakao M, Christian S, Orstavik KH, Tommerup N, Ledbetter DH, Beaudet AL: Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region [see comments]. Nat Genet. 1994, 8: 52-58. 10.1038/ng0994-52.CrossRefPubMed Sutcliffe JS, Nakao M, Christian S, Orstavik KH, Tommerup N, Ledbetter DH, Beaudet AL: Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region [see comments]. Nat Genet. 1994, 8: 52-58. 10.1038/ng0994-52.CrossRefPubMed
7.
go back to reference Buiting K, Saitoh S, Gross S, Dittrich B, Schwartz S, Nicholls RD, Horsthemke B: Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15 [published erratum appears in Nat Genet 1995 10:249]. Nat Genet. 1995, 9: 395-400. 10.1038/ng0495-395.CrossRefPubMed Buiting K, Saitoh S, Gross S, Dittrich B, Schwartz S, Nicholls RD, Horsthemke B: Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15 [published erratum appears in Nat Genet 1995 10:249]. Nat Genet. 1995, 9: 395-400. 10.1038/ng0495-395.CrossRefPubMed
8.
go back to reference Jong MT, Carey AH, Caldwell KA, Lau MH, Handel MA, Driscoll DJ, Stewart CL, Rinchik EM, Nicholls RD: Imprinting of a RING zinc-finger encoding gene in the mouse chromosome region homologous to the Prader-Willi syndrome genetic region. Hum Mol Genet. 1999, 8: 795-803. 10.1093/hmg/8.5.795.CrossRefPubMed Jong MT, Carey AH, Caldwell KA, Lau MH, Handel MA, Driscoll DJ, Stewart CL, Rinchik EM, Nicholls RD: Imprinting of a RING zinc-finger encoding gene in the mouse chromosome region homologous to the Prader-Willi syndrome genetic region. Hum Mol Genet. 1999, 8: 795-803. 10.1093/hmg/8.5.795.CrossRefPubMed
9.
go back to reference Jong MT, Gray TA, Ji Y, Glenn CC, Saitoh S, Driscoll DJ, Nicholls RD: A novel imprinted gene, encoding a RING zinc-finger protein, and overlapping antisense transcript in the Prader-Willi syndrome critical region. Hum Mol Genet. 1999, 8: 783-793. 10.1093/hmg/8.5.783.CrossRefPubMed Jong MT, Gray TA, Ji Y, Glenn CC, Saitoh S, Driscoll DJ, Nicholls RD: A novel imprinted gene, encoding a RING zinc-finger protein, and overlapping antisense transcript in the Prader-Willi syndrome critical region. Hum Mol Genet. 1999, 8: 783-793. 10.1093/hmg/8.5.783.CrossRefPubMed
10.
go back to reference Boccaccio I, Glatt-Deeley H, Watrin F, Roeckel N, Lalande M, Muscatelli F: The human MAGEL2 gene and its mouse homologue are paternally expressed and mapped to the Prader-Willi region. Hum Mol Genet. 1999, 8: 2497-2505. 10.1093/hmg/8.13.2497.CrossRefPubMed Boccaccio I, Glatt-Deeley H, Watrin F, Roeckel N, Lalande M, Muscatelli F: The human MAGEL2 gene and its mouse homologue are paternally expressed and mapped to the Prader-Willi region. Hum Mol Genet. 1999, 8: 2497-2505. 10.1093/hmg/8.13.2497.CrossRefPubMed
11.
go back to reference Lee S, Kozlov S, Hernandez L, Chamberlain SJ, Brannan CI, Stewart CL, Wevrick R: Expression and imprinting of MAGEL2 suggest a role in prader-willi syndrome and the homologous murine imprinting phenotype. Hum Mol Genet. 2000, 9: 1813-1819. 10.1093/hmg/9.12.1813.CrossRefPubMed Lee S, Kozlov S, Hernandez L, Chamberlain SJ, Brannan CI, Stewart CL, Wevrick R: Expression and imprinting of MAGEL2 suggest a role in prader-willi syndrome and the homologous murine imprinting phenotype. Hum Mol Genet. 2000, 9: 1813-1819. 10.1093/hmg/9.12.1813.CrossRefPubMed
12.
go back to reference Jay P, Rougeulle C, Massacrier A, Moncla A, Mattei MG, Malzac P, Roeckel N, Taviaux S, Lefranc JL, Cau P, Berta P, Lalande M, Muscatelli F: The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region. Nat Genet. 1997, 17: 357-361.CrossRefPubMed Jay P, Rougeulle C, Massacrier A, Moncla A, Mattei MG, Malzac P, Roeckel N, Taviaux S, Lefranc JL, Cau P, Berta P, Lalande M, Muscatelli F: The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region. Nat Genet. 1997, 17: 357-361.CrossRefPubMed
13.
go back to reference MacDonald HR, Wevrick R: The necdin gene is deleted in Prader-Willi syndrome and is imprinted in human and mouse. Hum Mol Genet. 1997, 6: 1873-1878. 10.1093/hmg/6.11.1873.CrossRefPubMed MacDonald HR, Wevrick R: The necdin gene is deleted in Prader-Willi syndrome and is imprinted in human and mouse. Hum Mol Genet. 1997, 6: 1873-1878. 10.1093/hmg/6.11.1873.CrossRefPubMed
14.
go back to reference Özçelik T, Leff SE, Robinson WP, Donlon T, Lalande M, Sanjines E, Schinzel A, Francke U: Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader-Willi syndrome critical region. Nature Genet. 1992, 2: 265-269. 10.1038/ng1292-265.CrossRefPubMed Özçelik T, Leff SE, Robinson WP, Donlon T, Lalande M, Sanjines E, Schinzel A, Francke U: Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader-Willi syndrome critical region. Nature Genet. 1992, 2: 265-269. 10.1038/ng1292-265.CrossRefPubMed
15.
go back to reference Nakao M, Sutcliffe JS, Durtschi B, Mutirangura A, Ledbetter DH, Beaudet AL: Imprinting analysis of three genes in the Prader-Willi/Angelman region: SNRPN, E6-associated protein, and PAR-2 (D15S225E). Hum Mol Genet. 1994, 3: 309-315.CrossRefPubMed Nakao M, Sutcliffe JS, Durtschi B, Mutirangura A, Ledbetter DH, Beaudet AL: Imprinting analysis of three genes in the Prader-Willi/Angelman region: SNRPN, E6-associated protein, and PAR-2 (D15S225E). Hum Mol Genet. 1994, 3: 309-315.CrossRefPubMed
16.
go back to reference Reed ML, Leff SE: Maternal imprinting of human SNRPN, a gene deleted in Prader-Willi syndrome. Nat Genet. 1994, 6: 163-167. 10.1038/ng0294-163.CrossRefPubMed Reed ML, Leff SE: Maternal imprinting of human SNRPN, a gene deleted in Prader-Willi syndrome. Nat Genet. 1994, 6: 163-167. 10.1038/ng0294-163.CrossRefPubMed
17.
go back to reference Glenn CC, Saitoh S, Jong MT, Filbrandt MM, Surti U, Driscoll DJ, Nicholls RD: Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene. Am J Hum Genet. 1996, 58: 335-346.PubMedPubMedCentral Glenn CC, Saitoh S, Jong MT, Filbrandt MM, Surti U, Driscoll DJ, Nicholls RD: Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene. Am J Hum Genet. 1996, 58: 335-346.PubMedPubMedCentral
18.
go back to reference Gray TA, Saitoh S, Nicholls RD: An imprinted, mammalian bicistronic transcript encodes two independent proteins. Proc Natl Acad Sci U S A. 1999, 96: 5616-5621. 10.1073/pnas.96.10.5616.CrossRefPubMedPubMedCentral Gray TA, Saitoh S, Nicholls RD: An imprinted, mammalian bicistronic transcript encodes two independent proteins. Proc Natl Acad Sci U S A. 1999, 96: 5616-5621. 10.1073/pnas.96.10.5616.CrossRefPubMedPubMedCentral
19.
go back to reference Runte M, Huttenhofer A, Gross S, Kiefmann M, Horsthemke B, Buiting K: The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet. 2001, 10: 2687-2700. 10.1093/hmg/10.23.2687.CrossRefPubMed Runte M, Huttenhofer A, Gross S, Kiefmann M, Horsthemke B, Buiting K: The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet. 2001, 10: 2687-2700. 10.1093/hmg/10.23.2687.CrossRefPubMed
20.
go back to reference Wirth J, Back E, Huttenhofer A, Nothwang HG, Lich C, Gross S, Menzel C, Schinzel A, Kioschis P, Tommerup N, Ropers HH, Horsthemke B, Buiting K: A translocation breakpoint cluster disrupts the newly defined 3' end of the SNURF-SNRPN transcription unit on chromosome 15. Hum Mol Genet. 2001, 10: 201-210. 10.1093/hmg/10.3.201.CrossRefPubMed Wirth J, Back E, Huttenhofer A, Nothwang HG, Lich C, Gross S, Menzel C, Schinzel A, Kioschis P, Tommerup N, Ropers HH, Horsthemke B, Buiting K: A translocation breakpoint cluster disrupts the newly defined 3' end of the SNURF-SNRPN transcription unit on chromosome 15. Hum Mol Genet. 2001, 10: 201-210. 10.1093/hmg/10.3.201.CrossRefPubMed
21.
go back to reference de Los Santos T, Schweizer J, Rees CA, Francke U: Small evolutionarily conserved RNA, resembling C/D box small nucleolar RNA, is transcribed from PWCR1, a novel imprinted gene in the Prader-Willi deletion region, which is highly expressed in brain. Am J Hum Genet. 2000, 67: 1067-1082. 10.1086/303106.CrossRefPubMedPubMedCentral de Los Santos T, Schweizer J, Rees CA, Francke U: Small evolutionarily conserved RNA, resembling C/D box small nucleolar RNA, is transcribed from PWCR1, a novel imprinted gene in the Prader-Willi deletion region, which is highly expressed in brain. Am J Hum Genet. 2000, 67: 1067-1082. 10.1086/303106.CrossRefPubMedPubMedCentral
22.
go back to reference Cavaille J, Buiting K, Kiefmann M, Lalande M, Brannan CI, Horsthemke B, Bachellerie JP, Brosius J, Huttenhofer A: Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci U S A. 2000, 97: 14311-14316. 10.1073/pnas.250426397.CrossRefPubMedPubMedCentral Cavaille J, Buiting K, Kiefmann M, Lalande M, Brannan CI, Horsthemke B, Bachellerie JP, Brosius J, Huttenhofer A: Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci U S A. 2000, 97: 14311-14316. 10.1073/pnas.250426397.CrossRefPubMedPubMedCentral
23.
go back to reference Kiss T: Small Nucleolar RNAs: An Abundant Group of Noncoding RNAs with Diverse Cellular Functions. Cell. 2002, 109: 145-148. 10.1016/S0092-8674(02)00718-3.CrossRefPubMed Kiss T: Small Nucleolar RNAs: An Abundant Group of Noncoding RNAs with Diverse Cellular Functions. Cell. 2002, 109: 145-148. 10.1016/S0092-8674(02)00718-3.CrossRefPubMed
24.
go back to reference Schulze A, Hansen C, Skakkebaek NE, Brondum-Nielsen K, Ledbeter DH, Tommerup N: Exclusion of SNRPN as a major determinant of Prader-Willi syndrome by a translocation breakpoint. Nat Genet. 1996, 12: 452-454. 10.1038/ng0496-452.CrossRefPubMed Schulze A, Hansen C, Skakkebaek NE, Brondum-Nielsen K, Ledbeter DH, Tommerup N: Exclusion of SNRPN as a major determinant of Prader-Willi syndrome by a translocation breakpoint. Nat Genet. 1996, 12: 452-454. 10.1038/ng0496-452.CrossRefPubMed
25.
go back to reference Sun Y, Nicholls RD, Butler MG, Saitoh S, Hainline BE, Palmer CG: Breakage in the SNRPN locus in a balanced 46,XY,t(15;19) Prader-Willi syndrome patient. Hum Mol Genet. 1996, 5: 517-524. 10.1093/hmg/5.4.517.CrossRefPubMed Sun Y, Nicholls RD, Butler MG, Saitoh S, Hainline BE, Palmer CG: Breakage in the SNRPN locus in a balanced 46,XY,t(15;19) Prader-Willi syndrome patient. Hum Mol Genet. 1996, 5: 517-524. 10.1093/hmg/5.4.517.CrossRefPubMed
26.
go back to reference Conroy JM, Grebe TA, Becker LA, Tsuchiya K, Nicholls RD, Buiting K, Horsthemke B, Cassidy SB, Schwartz S: Balanced translocation 46,XY,t(2;15)(q37.2;q11.2) associated with atypical Prader-Willi syndrome. Am J Hum Genet. 1997, 61: 388-394.CrossRefPubMedPubMedCentral Conroy JM, Grebe TA, Becker LA, Tsuchiya K, Nicholls RD, Buiting K, Horsthemke B, Cassidy SB, Schwartz S: Balanced translocation 46,XY,t(2;15)(q37.2;q11.2) associated with atypical Prader-Willi syndrome. Am J Hum Genet. 1997, 61: 388-394.CrossRefPubMedPubMedCentral
27.
go back to reference Kuslich CD, Kobori JA, Mohapatra G, Gregorio-King C, Donlon TA: Prader-Willi syndrome is caused by disruption of the SNRPN gene. Am J Hum Genet. 1999, 64: 70-76. 10.1086/302177.CrossRefPubMedPubMedCentral Kuslich CD, Kobori JA, Mohapatra G, Gregorio-King C, Donlon TA: Prader-Willi syndrome is caused by disruption of the SNRPN gene. Am J Hum Genet. 1999, 64: 70-76. 10.1086/302177.CrossRefPubMedPubMedCentral
28.
go back to reference Gallagher RC, Pils B, Albalwi M, Francke U: Evidence for the role of PWCR1/HBII-85 C/D box small nucleolar RNAs in Prader-Willi syndrome. Am J Hum Genet. 2002, 71: 669-678. 10.1086/342408.CrossRefPubMedPubMedCentral Gallagher RC, Pils B, Albalwi M, Francke U: Evidence for the role of PWCR1/HBII-85 C/D box small nucleolar RNAs in Prader-Willi syndrome. Am J Hum Genet. 2002, 71: 669-678. 10.1086/342408.CrossRefPubMedPubMedCentral
29.
go back to reference Li L, Moore P, Ngo C, Petrovic V, White SM, Northrop E, Ioannou PA, McKinlay Gardner RJ, Slater HR: Identification of a haplosufficient 3.6-Mb region in human chromosome 11q14.3-->q21. Cytogenet Genome Res. 2002, 97: 158-162. 10.1159/000066612.CrossRefPubMed Li L, Moore P, Ngo C, Petrovic V, White SM, Northrop E, Ioannou PA, McKinlay Gardner RJ, Slater HR: Identification of a haplosufficient 3.6-Mb region in human chromosome 11q14.3-->q21. Cytogenet Genome Res. 2002, 97: 158-162. 10.1159/000066612.CrossRefPubMed
30.
go back to reference Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL: A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992, 89: 1827-1831.CrossRefPubMedPubMedCentral Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL: A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992, 89: 1827-1831.CrossRefPubMedPubMedCentral
31.
go back to reference Kubota T, Das S, Christian SL, Baylin SB, Herman JG, Ledbetter DH: Methylation-specific PCR simplifies imprinting analysis. Nat Genet. 1997, 16: 16-17.PubMed Kubota T, Das S, Christian SL, Baylin SB, Herman JG, Ledbetter DH: Methylation-specific PCR simplifies imprinting analysis. Nat Genet. 1997, 16: 16-17.PubMed
32.
go back to reference Bustin SA: Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol. 2000, 25: 169-193. 10.1677/jme.0.0250169.CrossRefPubMed Bustin SA: Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol. 2000, 25: 169-193. 10.1677/jme.0.0250169.CrossRefPubMed
33.
go back to reference Ginzinger DG: Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol. 2002, 30: 503-512. 10.1016/S0301-472X(02)00806-8.CrossRefPubMed Ginzinger DG: Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol. 2002, 30: 503-512. 10.1016/S0301-472X(02)00806-8.CrossRefPubMed
34.
go back to reference Ungaro P, Christian SL, Fantes JA, Mutirangura A, Black S, Reynolds J, Malcolm S, Dobyns WB, Ledbetter DH: Molecular characterisation of four cases of intrachromosomal triplication of chromosome 15q11-q14. J Med Genet. 2001, 38: 26-34. 10.1136/jmg.38.1.26.CrossRefPubMedPubMedCentral Ungaro P, Christian SL, Fantes JA, Mutirangura A, Black S, Reynolds J, Malcolm S, Dobyns WB, Ledbetter DH: Molecular characterisation of four cases of intrachromosomal triplication of chromosome 15q11-q14. J Med Genet. 2001, 38: 26-34. 10.1136/jmg.38.1.26.CrossRefPubMedPubMedCentral
35.
go back to reference Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA: An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 1995, 23: 1087-1088.CrossRefPubMedPubMedCentral Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA: An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 1995, 23: 1087-1088.CrossRefPubMedPubMedCentral
36.
go back to reference Rüdiger NS, Gregersen N, Kielland-Brandt MC: One short well conserved region of Alu-sequences is involved in human gene rearrangements and has homology with prokaryotic chi. Nucleic Acids Res. 1995, 23: 256-260.CrossRefPubMedPubMedCentral Rüdiger NS, Gregersen N, Kielland-Brandt MC: One short well conserved region of Alu-sequences is involved in human gene rearrangements and has homology with prokaryotic chi. Nucleic Acids Res. 1995, 23: 256-260.CrossRefPubMedPubMedCentral
38.
go back to reference Deininger PL, Jolly DJ, Rubin CM, Friedmann T, Schmid CW: Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J Mol Biol. 1981, 151: 17-33. 10.1016/0022-2836(81)90219-9.CrossRefPubMed Deininger PL, Jolly DJ, Rubin CM, Friedmann T, Schmid CW: Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J Mol Biol. 1981, 151: 17-33. 10.1016/0022-2836(81)90219-9.CrossRefPubMed
39.
go back to reference Gunay-Aygun M, Schwartz S, Heeger S, O'Riordan MA, Cassidy SB: The changing purpose of Prader-Willi syndrome clinical diagnostic criteria and proposed revised criteria. Pediatrics. 2001, 108: E92-10.1542/peds.108.5.e92.CrossRefPubMed Gunay-Aygun M, Schwartz S, Heeger S, O'Riordan MA, Cassidy SB: The changing purpose of Prader-Willi syndrome clinical diagnostic criteria and proposed revised criteria. Pediatrics. 2001, 108: E92-10.1542/peds.108.5.e92.CrossRefPubMed
40.
go back to reference Hamabe J, Kuroki Y, Imaizumi K, Sugimoto T, Fukushima Y, Yamaguchi A, Izumikawa Y, Niikawa N: DNA deletion and its parental origin in Angelman syndrome patients. Am J Med Genet. 1991, 41: 64-68.CrossRefPubMed Hamabe J, Kuroki Y, Imaizumi K, Sugimoto T, Fukushima Y, Yamaguchi A, Izumikawa Y, Niikawa N: DNA deletion and its parental origin in Angelman syndrome patients. Am J Med Genet. 1991, 41: 64-68.CrossRefPubMed
41.
go back to reference Runte M, Varon R, Horn D, Horsthemke B, Buiting K: Exclusion of the C/D box snoRNA gene cluster HBII-52 from a major role in Prader-Willi syndrome. Hum Genet. 2005, 116: 228-230. 10.1007/s00439-004-1219-2.CrossRefPubMed Runte M, Varon R, Horn D, Horsthemke B, Buiting K: Exclusion of the C/D box snoRNA gene cluster HBII-52 from a major role in Prader-Willi syndrome. Hum Genet. 2005, 116: 228-230. 10.1007/s00439-004-1219-2.CrossRefPubMed
42.
go back to reference Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nature Genetics. 2004, 36: 40-45. 10.1038/ng1285.CrossRefPubMed Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nature Genetics. 2004, 36: 40-45. 10.1038/ng1285.CrossRefPubMed
43.
go back to reference Chai JH, Locke DP, Greally JM, Knoll JH, Ohta T, Dunai J, Yavor A, Eichler EE, Nicholls RD: Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader-Willi/Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons. Am J Hum Genet. 2003, 73: 898-925. 10.1086/378816.CrossRefPubMedPubMedCentral Chai JH, Locke DP, Greally JM, Knoll JH, Ohta T, Dunai J, Yavor A, Eichler EE, Nicholls RD: Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader-Willi/Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons. Am J Hum Genet. 2003, 73: 898-925. 10.1086/378816.CrossRefPubMedPubMedCentral
Metadata
Title
Molecular breakpoint cloning and gene expression studies of a novel translocation t(4;15)(q27;q11.2) associated with Prader-Willi syndrome
Authors
Birgitt Schüle
Mohammed Albalwi
Emma Northrop
David I Francis
Margaret Rowell
Howard R Slater
RJ McKinlay Gardner
Uta Francke
Publication date
01-12-2005
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2005
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/1471-2350-6-18

Other articles of this Issue 1/2005

BMC Medical Genetics 1/2005 Go to the issue