Skip to main content
Top
Published in: BMC Medical Imaging 1/2014

Open Access 01-12-2014 | Research article

Application of mean-shift clustering to Blood oxygen level dependent functional MRI activation detection

Authors: Leo Ai, Xin Gao, Jinhu Xiong

Published in: BMC Medical Imaging | Issue 1/2014

Login to get access

Abstract

Background

Functional magnetic resonance imaging (fMRI) analysis is commonly done with cross-correlation analysis (CCA) and the General Linear Model (GLM). Both CCA and GLM techniques, however, typically perform calculations on a per-voxel basis and do not consider relationships neighboring voxels may have. Clustered voxel analyses have then been developed to improve fMRI signal detections by taking advantages of relationships of neighboring voxels. Mean-shift clustering (MSC) is another technique which takes into account properties of neighboring voxels and can be considered for enhancing fMRI activation detection.

Methods

This study examines the adoption of MSC to fMRI analysis. MSC was applied to a Statistical Parameter Image generated with the CCA technique on both simulated and real fMRI data. The MSC technique was then compared with CCA and CCA plus cluster analysis. A range of kernel sizes were used to examine how the technique behaves.

Results

Receiver Operating Characteristic curves shows an improvement over CCA and Cluster analysis. False positive rates are lower with the proposed technique. MSC allows the use of a low intensity threshold and also does not require the use of a cluster size threshold, which improves detection of weak activations and highly focused activations.

Conclusion

The proposed technique shows improved activation detection for both simulated and real Blood Oxygen Level Dependent fMRI data. More detailed studies are required to further develop the proposed technique.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bandettini P, Jesmanowicz A, Wong E, Hyde J: Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med. 1993, 30 (2): 161-173. 10.1002/mrm.1910300204.CrossRefPubMed Bandettini P, Jesmanowicz A, Wong E, Hyde J: Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med. 1993, 30 (2): 161-173. 10.1002/mrm.1910300204.CrossRefPubMed
2.
go back to reference Boynton G, Engel S, Glover G, Heeger D: Linear systems analysis of functional magnetic resonance imaging in human. J Neurosci. 1996, 16 (13): 4207-4221.PubMed Boynton G, Engel S, Glover G, Heeger D: Linear systems analysis of functional magnetic resonance imaging in human. J Neurosci. 1996, 16 (13): 4207-4221.PubMed
3.
go back to reference Bullmore E, Brammer M, Williams SCR, Rabe-Hesketh S, Janot N, David A, Mellers J, Howard R, Sham P: Statistical methods of estimation and inference for functional MR image analysis. Magn Reson Med. 1996, 35 (2): 261-277. 10.1002/mrm.1910350219.CrossRefPubMed Bullmore E, Brammer M, Williams SCR, Rabe-Hesketh S, Janot N, David A, Mellers J, Howard R, Sham P: Statistical methods of estimation and inference for functional MR image analysis. Magn Reson Med. 1996, 35 (2): 261-277. 10.1002/mrm.1910350219.CrossRefPubMed
4.
go back to reference Calhoun V, Adali T, McGinty V, Pekar J, Watson T, Pearlson G, fMRI Activation in a Visual-Perception Task: Network of Areas Detected Using the General Linear Model and Independent Components Analysis. NeuroImage. 2001, 14 (5): 1080-1088. 10.1006/nimg.2001.0921.CrossRefPubMed Calhoun V, Adali T, McGinty V, Pekar J, Watson T, Pearlson G, fMRI Activation in a Visual-Perception Task: Network of Areas Detected Using the General Linear Model and Independent Components Analysis. NeuroImage. 2001, 14 (5): 1080-1088. 10.1006/nimg.2001.0921.CrossRefPubMed
5.
go back to reference Cohen M: Parametric Analysis of fMRI Data Using Linear Systems Methods. NeuroImage. 1997, 6 (2): 93-103. 10.1006/nimg.1997.0278.CrossRefPubMed Cohen M: Parametric Analysis of fMRI Data Using Linear Systems Methods. NeuroImage. 1997, 6 (2): 93-103. 10.1006/nimg.1997.0278.CrossRefPubMed
6.
go back to reference Friston K, Holmes A, Worsley K, Poline J, Frith C, Frackowaik R: Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp. 2004, 2 (4): 189-210.CrossRef Friston K, Holmes A, Worsley K, Poline J, Frith C, Frackowaik R: Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp. 2004, 2 (4): 189-210.CrossRef
7.
go back to reference Penny W, Friston K: Mixtures of general linear models for functional neuroimaging. IEEE Trans Med Imag. 2003, 22 (4): 504-514. 10.1109/TMI.2003.809140.CrossRef Penny W, Friston K: Mixtures of general linear models for functional neuroimaging. IEEE Trans Med Imag. 2003, 22 (4): 504-514. 10.1109/TMI.2003.809140.CrossRef
8.
go back to reference Foreman S, Cohen J, Fitzgerald M, Eddy W, Mintun M, Noll D: Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Res Med. 1995, 33 (5): 636-647. 10.1002/mrm.1910330508.CrossRef Foreman S, Cohen J, Fitzgerald M, Eddy W, Mintun M, Noll D: Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Res Med. 1995, 33 (5): 636-647. 10.1002/mrm.1910330508.CrossRef
9.
go back to reference Worsley K, Evans A, Marrett S, Neelin P: Three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab. 1992, 12 (6): 900-918. 10.1038/jcbfm.1992.127.CrossRefPubMed Worsley K, Evans A, Marrett S, Neelin P: Three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab. 1992, 12 (6): 900-918. 10.1038/jcbfm.1992.127.CrossRefPubMed
10.
go back to reference Xiong J, Gao J, Lancaster J, Fox P: Clustered Pixel Analysis for Functional MRI Activation Studies of the Human Brain. Hum Brain Mapp. 1995, 4 (4): 287-301.CrossRef Xiong J, Gao J, Lancaster J, Fox P: Clustered Pixel Analysis for Functional MRI Activation Studies of the Human Brain. Hum Brain Mapp. 1995, 4 (4): 287-301.CrossRef
11.
go back to reference MacQueen J: Some Methods for Classification and Analysis of Multivariate Observatoins. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967, Berkeley, USA: University of California Press, 281-297. MacQueen J: Some Methods for Classification and Analysis of Multivariate Observatoins. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967, Berkeley, USA: University of California Press, 281-297.
12.
go back to reference Bezdek J, Ehrlich R, Full W: FCM: The fuzzy C-Means Clustering Algorithm. Comput Geosci. 1984, 10 (2): 191-203.CrossRef Bezdek J, Ehrlich R, Full W: FCM: The fuzzy C-Means Clustering Algorithm. Comput Geosci. 1984, 10 (2): 191-203.CrossRef
13.
go back to reference Baumgartner R, Scarth G, Teichtmeister C, Somorjai R, Moser E: Fuzzy Clustering of Gradient-Echo Functional MRI in the Human Visual Cortex Part I: reproducibility. J. Magn Reson Imag. 1997, 7 (6): 1094-1101. 10.1002/jmri.1880070623.CrossRef Baumgartner R, Scarth G, Teichtmeister C, Somorjai R, Moser E: Fuzzy Clustering of Gradient-Echo Functional MRI in the Human Visual Cortex Part I: reproducibility. J. Magn Reson Imag. 1997, 7 (6): 1094-1101. 10.1002/jmri.1880070623.CrossRef
14.
go back to reference Baumgartner R, Windischberger C, Moser E: Quantification in functional magnetic resonance imaging: fuzzy clustering vs correlation analysis. Magn Reson Imag. 1998, 16 (2): 115-125. 10.1016/S0730-725X(97)00277-4.CrossRef Baumgartner R, Windischberger C, Moser E: Quantification in functional magnetic resonance imaging: fuzzy clustering vs correlation analysis. Magn Reson Imag. 1998, 16 (2): 115-125. 10.1016/S0730-725X(97)00277-4.CrossRef
15.
go back to reference Moser E, Diemling M, Baumgartner R: Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part II: quantification. J Magn Reson Imag. 1997, 7 (6): 1102-1108. 10.1002/jmri.1880070624.CrossRef Moser E, Diemling M, Baumgartner R: Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part II: quantification. J Magn Reson Imag. 1997, 7 (6): 1102-1108. 10.1002/jmri.1880070624.CrossRef
16.
go back to reference Singh M, Patel P, Khosla D, Kim T: Segmentation of functional MRI by K-Means Clustering. IEEE Trans Nucl Sci. 1996, 43 (3): 2030-2036. 10.1109/23.507264.CrossRef Singh M, Patel P, Khosla D, Kim T: Segmentation of functional MRI by K-Means Clustering. IEEE Trans Nucl Sci. 1996, 43 (3): 2030-2036. 10.1109/23.507264.CrossRef
17.
go back to reference Fukunaga K, Hostetler L: The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition. IEEE Trans Inf Theory. 1975, 21 (1): 32-40. 10.1109/TIT.1975.1055330.CrossRef Fukunaga K, Hostetler L: The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition. IEEE Trans Inf Theory. 1975, 21 (1): 32-40. 10.1109/TIT.1975.1055330.CrossRef
18.
go back to reference Cheng Y: Mean shift, Mode seeking, and Clustering. IEEE Trans Pattern Anal Mach Intell. 1995, 17 (8): 790-799. 10.1109/34.400568.CrossRef Cheng Y: Mean shift, Mode seeking, and Clustering. IEEE Trans Pattern Anal Mach Intell. 1995, 17 (8): 790-799. 10.1109/34.400568.CrossRef
19.
go back to reference Dorin C, Peter M: Mean shift: a robust approach towards feature space analysis. IEEE Trans Pattern Anal Mach Intell. 2002, 24 (5): 603-619. 10.1109/34.1000236.CrossRef Dorin C, Peter M: Mean shift: a robust approach towards feature space analysis. IEEE Trans Pattern Anal Mach Intell. 2002, 24 (5): 603-619. 10.1109/34.1000236.CrossRef
20.
go back to reference Mayer A, Greenspan H: An Adaptive Mean-Shift Framework for MRI Brain Segmentation. IEEE Trans Med Imag. 2009, 28 (8): 1238-1250.CrossRef Mayer A, Greenspan H: An Adaptive Mean-Shift Framework for MRI Brain Segmentation. IEEE Trans Med Imag. 2009, 28 (8): 1238-1250.CrossRef
21.
go back to reference Connolly C: The relationship between colour metrics and the appearance of three-dimensional coloured objects. Color Res Appl. 1996, 21: 331-337. 10.1002/(SICI)1520-6378(199610)21:5<331::AID-COL2>3.0.CO;2-Z.CrossRef Connolly C: The relationship between colour metrics and the appearance of three-dimensional coloured objects. Color Res Appl. 1996, 21: 331-337. 10.1002/(SICI)1520-6378(199610)21:5<331::AID-COL2>3.0.CO;2-Z.CrossRef
22.
go back to reference Wyszecki G, Stilles W: Color Science: Concepts and Methods, Quantitative Data, and Formulae. 1982, New York: J Wiley Wyszecki G, Stilles W: Color Science: Concepts and Methods, Quantitative Data, and Formulae. 1982, New York: J Wiley
23.
go back to reference Parzen E: On Estimation of a Probability Density Function and Mode. Ann Math Statist. 1962, 33 (3): 1065-1076. 10.1214/aoms/1177704472.CrossRef Parzen E: On Estimation of a Probability Density Function and Mode. Ann Math Statist. 1962, 33 (3): 1065-1076. 10.1214/aoms/1177704472.CrossRef
24.
go back to reference Cox R: AFNI: Software for Analysis and Visualition of Functional Magnetic Resonance Neuroimages. Comput Biomed Res. 1996, 29 (3): 169-173.CrossRef Cox R: AFNI: Software for Analysis and Visualition of Functional Magnetic Resonance Neuroimages. Comput Biomed Res. 1996, 29 (3): 169-173.CrossRef
Metadata
Title
Application of mean-shift clustering to Blood oxygen level dependent functional MRI activation detection
Authors
Leo Ai
Xin Gao
Jinhu Xiong
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2014
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/1471-2342-14-6

Other articles of this Issue 1/2014

BMC Medical Imaging 1/2014 Go to the issue

Reviewer acknowledgement

Reviewer acknowledgement 2013