Skip to main content
Top
Published in: BMC Medical Imaging 1/2014

Open Access 01-12-2014 | Research article

A semiautomatic tool for prostate segmentation in radiotherapy treatment planning

Authors: Jörn Schulz, Stein Olav Skrøvseth, Veronika Kristine Tømmerås, Kirsten Marienhagen, Fred Godtliebsen

Published in: BMC Medical Imaging | Issue 1/2014

Login to get access

Abstract

Background

Delineation of the target volume is a time-consuming task in radiotherapy treatment planning, yet essential for a successful treatment of cancers such as prostate cancer. To facilitate the delineation procedure, the paper proposes an intuitive approach for 3D modeling of the prostate by slice-wise best fitting ellipses.

Methods

The proposed estimate is initialized by the definition of a few control points in a new patient. The method is not restricted to particular image modalities but assumes a smooth shape with elliptic cross sections of the object. A training data set of 23 patients was used to calculate a prior shape model. The mean shape model was evaluated based on the manual contour of 10 test patients. The patient records of training and test data are based on axial T1-weighted 3D fast-field echo (FFE) sequences. The manual contours were considered as the reference model. Volume overlap (Vo), accuracy (Ac) (both ratio, range 0-1, optimal value 1) and Hausdorff distance (HD) (mm, optimal value 0) were calculated as evaluation parameters.

Results

The median and median absolute deviation (MAD) between manual delineation and deformed mean best fitting ellipses (MBFE) was Vo (0.9 ± 0.02), Ac (0.81 ± 0.03) and HD (4.05 ± 1.3)mm and between manual delineation and best fitting ellipses (BFE) was Vo (0.96 ± 0.01), Ac (0.92 ± 0.01) and HD (1.6 ± 0.27)mm. Additional results show a moderate improvement of the MBFE results after Monte Carlo Markov Chain (MCMC) method.

Conclusions

The results emphasize the potential of the proposed method of modeling the prostate by best fitting ellipses. It shows the robustness and reproducibility of the model. A small sample test on 8 patients suggest possible time saving using the model.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA- Cancer J Clin. 2011, 61 (2): 69-90. 10.3322/caac.20107.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA- Cancer J Clin. 2011, 61 (2): 69-90. 10.3322/caac.20107.CrossRefPubMed
2.
go back to reference Smith WL, Lewis C, Bauman G, Rodrigues G, D’Souza D, Ash R, Ho D, Venkatesan V, Downey D, Fenster A: Prostate volume contouring: a 3D analysis of segmentation using 3DTRUS, CT, and MR. Int J Radiat Oncol. 2007, 67 (4): 1238-1247. 10.1016/j.ijrobp.2006.11.027.CrossRef Smith WL, Lewis C, Bauman G, Rodrigues G, D’Souza D, Ash R, Ho D, Venkatesan V, Downey D, Fenster A: Prostate volume contouring: a 3D analysis of segmentation using 3DTRUS, CT, and MR. Int J Radiat Oncol. 2007, 67 (4): 1238-1247. 10.1016/j.ijrobp.2006.11.027.CrossRef
3.
go back to reference Ghose S, Oliver A, Vilanova JC, Freixenet J, Mitra J, Meriaudeau F, Martá R: A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images. Comp Meth Prog Bio. 2012, 108: 262-287. 10.1016/j.cmpb.2012.04.006.CrossRef Ghose S, Oliver A, Vilanova JC, Freixenet J, Mitra J, Meriaudeau F, Martá R: A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images. Comp Meth Prog Bio. 2012, 108: 262-287. 10.1016/j.cmpb.2012.04.006.CrossRef
4.
go back to reference Crouch J, Pizer SM, Chaney EL, Hu Y, Mageras GS, Zaider M: Automated finite element analysis for deformable registration of prostate images. IEEE T Med Imaging. 2007, 10: 1379-1390.CrossRef Crouch J, Pizer SM, Chaney EL, Hu Y, Mageras GS, Zaider M: Automated finite element analysis for deformable registration of prostate images. IEEE T Med Imaging. 2007, 10: 1379-1390.CrossRef
5.
go back to reference Dam EB, Fletcher P, Pizer SM: Automatic shape model building based on principal geodesic analysis bootstrapping. Med Image Anal. 2008, 12 (2): 136-151. 10.1016/j.media.2007.08.004.CrossRefPubMed Dam EB, Fletcher P, Pizer SM: Automatic shape model building based on principal geodesic analysis bootstrapping. Med Image Anal. 2008, 12 (2): 136-151. 10.1016/j.media.2007.08.004.CrossRefPubMed
6.
go back to reference Merck D, Tracton G, Saboo R, Levy J, Chaney E, Pizer S, Joshi S: Training models of anatomic shape variability. Med Phys. 2008, 35 (8): 3584-3596. 10.1118/1.2940188.CrossRefPubMedPubMedCentral Merck D, Tracton G, Saboo R, Levy J, Chaney E, Pizer S, Joshi S: Training models of anatomic shape variability. Med Phys. 2008, 35 (8): 3584-3596. 10.1118/1.2940188.CrossRefPubMedPubMedCentral
7.
8.
go back to reference Pizer SM, Jung S, Goswami D, Zhao X, Chaudhuri R, Damon JN, Huckemann S, Marron JS: Nested sphere statistics of skeletal models. Innovations for Shape Analysis: Models and Algorithms. Edited by: Breuß M, Bruckstein A. 2013, Berlin: Springer, 93-115.CrossRef Pizer SM, Jung S, Goswami D, Zhao X, Chaudhuri R, Damon JN, Huckemann S, Marron JS: Nested sphere statistics of skeletal models. Innovations for Shape Analysis: Models and Algorithms. Edited by: Breuß M, Bruckstein A. 2013, Berlin: Springer, 93-115.CrossRef
9.
go back to reference Dryden IL, Mardia KV: Statistical Shape Analysis. 1998, Chichester: John Wiley & Sons Dryden IL, Mardia KV: Statistical Shape Analysis. 1998, Chichester: John Wiley & Sons
10.
go back to reference Davies R, Twining C, Taylor C: Statistical Models of Shape - Optimisation and Evaluation. 2008, London: Springer Davies R, Twining C, Taylor C: Statistical Models of Shape - Optimisation and Evaluation. 2008, London: Springer
11.
go back to reference Heimann T, Meinzer HP: Statistical shape models for 3D medical image segmentation: A review. Med Image Anal. 2009, 13: 543-563. 10.1016/j.media.2009.05.004.CrossRefPubMed Heimann T, Meinzer HP: Statistical shape models for 3D medical image segmentation: A review. Med Image Anal. 2009, 13: 543-563. 10.1016/j.media.2009.05.004.CrossRefPubMed
12.
go back to reference Saroul L, Bernard O, Vray D, Friboulet D: Prostate segmentation in echographic images: A variational approach using deformable super-ellipse and Rayleigh distribution. IEEE International Symposium on Biomedical Imaging: From Nano to Macro: May 14-17 2008. 2008, Paris: IEEE, 129-132.CrossRef Saroul L, Bernard O, Vray D, Friboulet D: Prostate segmentation in echographic images: A variational approach using deformable super-ellipse and Rayleigh distribution. IEEE International Symposium on Biomedical Imaging: From Nano to Macro: May 14-17 2008. 2008, Paris: IEEE, 129-132.CrossRef
13.
go back to reference Mahdavi SS, Chng N, Spadinger I, Morris WJ, Salcudean SE: Semi-automatic segmentation for prostate interventions. Med Image Anal. 2011, 15 (2): 226-237. 10.1016/j.media.2010.10.002.CrossRefPubMed Mahdavi SS, Chng N, Spadinger I, Morris WJ, Salcudean SE: Semi-automatic segmentation for prostate interventions. Med Image Anal. 2011, 15 (2): 226-237. 10.1016/j.media.2010.10.002.CrossRefPubMed
14.
go back to reference Badiei S, Salcudean SE, Varah J, Morris WJ: Prostate segmentation in 2D ultrasound images using image warping and ellipse fitting. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006, Volume 4191 of Lecture Notes in Computer Science. 2006, Springer Berlin: Heidelberg, 17-24. Badiei S, Salcudean SE, Varah J, Morris WJ: Prostate segmentation in 2D ultrasound images using image warping and ellipse fitting. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006, Volume 4191 of Lecture Notes in Computer Science. 2006, Springer Berlin: Heidelberg, 17-24.
15.
go back to reference Saboo R, Levy J, Chaney E, Pizer SM: Medial models of populations of nearly tubular objects. Proceedings of the MICCAI Workshop on Probabilistic Models for Medical Image Analysis. 2009, London: MICCAI, 232-243. Saboo R, Levy J, Chaney E, Pizer SM: Medial models of populations of nearly tubular objects. Proceedings of the MICCAI Workshop on Probabilistic Models for Medical Image Analysis. 2009, London: MICCAI, 232-243.
16.
go back to reference Betrouni N, Dewalle AS, Puech P, Vermandel M, Rousseau J: Retraction notice to ” 3D delineation of prostate, rectum and bladder on MR images. Comput Med Imag Grap. 2009, 32 (7): 622-630.CrossRef Betrouni N, Dewalle AS, Puech P, Vermandel M, Rousseau J: Retraction notice to ” 3D delineation of prostate, rectum and bladder on MR images. Comput Med Imag Grap. 2009, 32 (7): 622-630.CrossRef
17.
go back to reference Lu C, Chelikani S, Papademetris X, Knisely JP, Milosevic MF, Chen Z, Jaffray DA, Staib LH, Duncan JS: An integrated approach to segmentation and nonrigid registration for application in image-guided pelvic radiotherapy. Med Image Anal. 2011, 15 (5): 772-785. 10.1016/j.media.2011.05.010.CrossRefPubMedPubMedCentral Lu C, Chelikani S, Papademetris X, Knisely JP, Milosevic MF, Chen Z, Jaffray DA, Staib LH, Duncan JS: An integrated approach to segmentation and nonrigid registration for application in image-guided pelvic radiotherapy. Med Image Anal. 2011, 15 (5): 772-785. 10.1016/j.media.2011.05.010.CrossRefPubMedPubMedCentral
18.
go back to reference Pasquier D, Lacornerie T, Vermandel M, Rousseau J, Lartigau E, Betrouni N: Automatic segmentation of pelvic structures from magnetic resonance images for prostate cancer radiotherapy. Int J Radiat Oncol. 2007, 68 (2): 592-600. 10.1016/j.ijrobp.2007.02.005.CrossRef Pasquier D, Lacornerie T, Vermandel M, Rousseau J, Lartigau E, Betrouni N: Automatic segmentation of pelvic structures from magnetic resonance images for prostate cancer radiotherapy. Int J Radiat Oncol. 2007, 68 (2): 592-600. 10.1016/j.ijrobp.2007.02.005.CrossRef
19.
go back to reference Ahn SJ, Rauh W, Warnecke HJ: Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola. Pattern Recogn. 2001, 34 (12): 2283-2303. 10.1016/S0031-3203(00)00152-7.CrossRef Ahn SJ, Rauh W, Warnecke HJ: Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola. Pattern Recogn. 2001, 34 (12): 2283-2303. 10.1016/S0031-3203(00)00152-7.CrossRef
20.
go back to reference Mulchrone KF, Choudhury KR: Fitting an ellipse to an arbitrary shape: implications for strain analysis. J Struct Geol. 2004, 26: 143-153. 10.1016/S0191-8141(03)00093-2.CrossRef Mulchrone KF, Choudhury KR: Fitting an ellipse to an arbitrary shape: implications for strain analysis. J Struct Geol. 2004, 26: 143-153. 10.1016/S0191-8141(03)00093-2.CrossRef
21.
go back to reference Casella G: An Introduction to empirical bayes data analsysis. Am Stat. 1985, 39 (2): 83-87. 10.2307/2682801. Casella G: An Introduction to empirical bayes data analsysis. Am Stat. 1985, 39 (2): 83-87. 10.2307/2682801.
22.
go back to reference Oguro S, Tokuda J, Elhawary H, Haker S, Kikinis R, Tempany CM, Hata N: MRI Signal intensity based B-spline nonrigid registration for pre- and intraoperative imaging during prostate brachytherapy. J Magn Reson Imaging. 2009, 30 (5): 1052-1058. 10.1002/jmri.21955.CrossRefPubMedPubMedCentral Oguro S, Tokuda J, Elhawary H, Haker S, Kikinis R, Tempany CM, Hata N: MRI Signal intensity based B-spline nonrigid registration for pre- and intraoperative imaging during prostate brachytherapy. J Magn Reson Imaging. 2009, 30 (5): 1052-1058. 10.1002/jmri.21955.CrossRefPubMedPubMedCentral
Metadata
Title
A semiautomatic tool for prostate segmentation in radiotherapy treatment planning
Authors
Jörn Schulz
Stein Olav Skrøvseth
Veronika Kristine Tømmerås
Kirsten Marienhagen
Fred Godtliebsen
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2014
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/1471-2342-14-4

Other articles of this Issue 1/2014

BMC Medical Imaging 1/2014 Go to the issue

Reviewer acknowledgement

Reviewer acknowledgement 2013