Skip to main content
Top
Published in: BMC Medical Imaging 1/2012

Open Access 01-12-2012 | Research article

Tumour size measurement in a mouse model using high resolution MRI

Authors: Mikael Montelius, Maria Ljungberg, Michael Horn, Eva Forssell-Aronsson

Published in: BMC Medical Imaging | Issue 1/2012

Login to get access

Abstract

Background

Animal models are frequently used to assess new treatment methods in cancer research. MRI offers a non-invasive in vivo monitoring of tumour tissue and thus allows longitudinal measurements of treatment effects, without the need for large cohorts of animals. Tumour size is an important biomarker of the disease development, but to our knowledge, MRI based size measurements have not yet been verified for small tumours (10−2–10−1 g). The aim of this study was to assess the accuracy of MRI based tumour size measurements of small tumours on mice.

Methods

2D and 3D T2-weighted RARE images of tumour bearing mice were acquired in vivo using a 7 T dedicated animal MR system. For the 3D images the acquired image resolution was varied. The images were exported to a PC workstation where the tumour mass was determined assuming a density of 1 g/cm3, using an in-house developed tool for segmentation and delineation. The resulting data were compared to the weight of the resected tumours after sacrifice of the animal using regression analysis.

Results

Strong correlations were demonstrated between MRI- and necropsy determined masses. In general, 3D acquisition was not a prerequisite for high accuracy. However, it was slightly more accurate than 2D when small (<0.2 g) tumours were assessed for inter- and intraobserver variation. In 3D images, the voxel sizes could be increased from 1603 μm3 to 2403 μm3 without affecting the results significantly, thus reducing acquisition time substantially.

Conclusions

2D MRI was sufficient for accurate tumour size measurement, except for small tumours (<0.2 g) where 3D acquisition was necessary to reduce interobserver variation. Acquisition times between 15 and 50 minutes, depending on tumour size, were sufficient for accurate tumour volume measurement. Hence, it is possible to include further MR investigations of the tumour, such as tissue perfusion, diffusion or metabolic composition in the same MR session.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schmitt A, Bernhardt P, Nilsson O, Ahlman H, Kolby L, Maecke HR, Forssell-Aronsson E: Radiation Therapy of Small Cell Lung Cancer with 177Lu-DOTA-Tyr3-Octreotate in an Animal Model. J Nucl Med. 2004, 45 (9): 1542-1548.PubMed Schmitt A, Bernhardt P, Nilsson O, Ahlman H, Kolby L, Maecke HR, Forssell-Aronsson E: Radiation Therapy of Small Cell Lung Cancer with 177Lu-DOTA-Tyr3-Octreotate in an Animal Model. J Nucl Med. 2004, 45 (9): 1542-1548.PubMed
2.
go back to reference Masciotti J, Provenzano F, Papa J, Klose A, Hur J, Gu X, Yamashiro D, Kandel J, Hielscher A: Monitoring Tumor Growth and Treatment in Small Animals with Magnetic Resonance and Optical Tomographic Imaging. Proceedings of SPIE: 21 January 2006; San Jose. Edited by: Fred S. 2006, Azar, Dimitris N, Metaxas, 608105-1- Masciotti J, Provenzano F, Papa J, Klose A, Hur J, Gu X, Yamashiro D, Kandel J, Hielscher A: Monitoring Tumor Growth and Treatment in Small Animals with Magnetic Resonance and Optical Tomographic Imaging. Proceedings of SPIE: 21 January 2006; San Jose. Edited by: Fred S. 2006, Azar, Dimitris N, Metaxas, 608105-1-
3.
go back to reference Kölby L, Bernhardt P, Johanson V, Schmitt A, Ahlman H, Forssell-Aronsson E, Macke H, Nilsson O: Successful receptor-mediated radiation therapy of xenografted human midgut carcinoid tumour. Br J Cancer. 2005, 93 (10): 1144-1151. 10.1038/sj.bjc.6602845.CrossRefPubMedPubMedCentral Kölby L, Bernhardt P, Johanson V, Schmitt A, Ahlman H, Forssell-Aronsson E, Macke H, Nilsson O: Successful receptor-mediated radiation therapy of xenografted human midgut carcinoid tumour. Br J Cancer. 2005, 93 (10): 1144-1151. 10.1038/sj.bjc.6602845.CrossRefPubMedPubMedCentral
4.
go back to reference Tomayko M, Reynolds C: Determination of subcutaneous tumor size in athymic (nude) mice. Cancer chemotherapy and pharmacology. 1989, 24 (3): 148-154. 10.1007/BF00300234.CrossRefPubMed Tomayko M, Reynolds C: Determination of subcutaneous tumor size in athymic (nude) mice. Cancer chemotherapy and pharmacology. 1989, 24 (3): 148-154. 10.1007/BF00300234.CrossRefPubMed
5.
go back to reference Euhus DM, Hudd C, Laregina MC, Johnson FE: Tumor measurement in the nude mouse. J Surg Oncol. 1986, 31 (4): 229-234. 10.1002/jso.2930310402.CrossRefPubMed Euhus DM, Hudd C, Laregina MC, Johnson FE: Tumor measurement in the nude mouse. J Surg Oncol. 1986, 31 (4): 229-234. 10.1002/jso.2930310402.CrossRefPubMed
6.
go back to reference He Z, Evelhoch JL, Mohammad RM, Adsay NV, Pettit GR, Vaitkevicius VK, Sarkar FH: Magnetic Resonance Imaging to Measure Therapeutic Response Using an Orthotopic Model of Human Pancreatic Cancer. Pancreas. 2000, 21 (1): 69-76. 10.1097/00006676-200007000-00054.CrossRefPubMed He Z, Evelhoch JL, Mohammad RM, Adsay NV, Pettit GR, Vaitkevicius VK, Sarkar FH: Magnetic Resonance Imaging to Measure Therapeutic Response Using an Orthotopic Model of Human Pancreatic Cancer. Pancreas. 2000, 21 (1): 69-76. 10.1097/00006676-200007000-00054.CrossRefPubMed
7.
go back to reference Mazurchuk R, Glaves D, Raghavan D: Magnetic resonance imaging of response to chemotherapy in orthotopic xenografts of human bladder cancer. Clin Cancer Res. 1997, 3 (9): 1635-1641.PubMed Mazurchuk R, Glaves D, Raghavan D: Magnetic resonance imaging of response to chemotherapy in orthotopic xenografts of human bladder cancer. Clin Cancer Res. 1997, 3 (9): 1635-1641.PubMed
8.
go back to reference Grimm J, Potthast A, Wunder A, Moore A: Magnetic resonance imaging of the pancreas and pancreatic tumors in a mouse orthotopic model of human cancer. Int J Cancer. 2003, 106 (5): 806-811. 10.1002/ijc.11281.CrossRefPubMed Grimm J, Potthast A, Wunder A, Moore A: Magnetic resonance imaging of the pancreas and pancreatic tumors in a mouse orthotopic model of human cancer. Int J Cancer. 2003, 106 (5): 806-811. 10.1002/ijc.11281.CrossRefPubMed
9.
go back to reference Partecke I, Kaeding A, Sendler M, Albers N, Kuhn J-P, Speerforck S, Roese S, Seubert F, Diedrich S, Kuehn S, et al: In vivo imaging of pancreatic tumours and liver metastases using 7 Tesla MRI in a murine orthotopic pancreatic cancer model and a liver metastases model. BMC Cancer. 2011, 11 (1): 40-10.1186/1471-2407-11-40.CrossRefPubMedPubMedCentral Partecke I, Kaeding A, Sendler M, Albers N, Kuhn J-P, Speerforck S, Roese S, Seubert F, Diedrich S, Kuehn S, et al: In vivo imaging of pancreatic tumours and liver metastases using 7 Tesla MRI in a murine orthotopic pancreatic cancer model and a liver metastases model. BMC Cancer. 2011, 11 (1): 40-10.1186/1471-2407-11-40.CrossRefPubMedPubMedCentral
10.
go back to reference Forssell-Aronsson E, Kjellén E, Mattsson S, Hellström M, Swedish Cancer Society Investigation Group T: Medical Imaging for Improved Tumour Characterization, Delineation and Treatment Verification. Acta Oncologica. 2002, 41 (7): 604-614. 10.1080/028418602321028201.CrossRefPubMed Forssell-Aronsson E, Kjellén E, Mattsson S, Hellström M, Swedish Cancer Society Investigation Group T: Medical Imaging for Improved Tumour Characterization, Delineation and Treatment Verification. Acta Oncologica. 2002, 41 (7): 604-614. 10.1080/028418602321028201.CrossRefPubMed
11.
go back to reference Weissleder R: Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer. 2002, 2 (1): 11-18. 10.1038/nrc701.CrossRefPubMed Weissleder R: Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer. 2002, 2 (1): 11-18. 10.1038/nrc701.CrossRefPubMed
12.
go back to reference Jensen M, Jorgensen J, Binderup T, Kjaer A: Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18 F-FDG-microPET or external caliper. BMC Medical Imaging. 2008, 8 (1): 16-10.1186/1471-2342-8-16.CrossRefPubMedPubMedCentral Jensen M, Jorgensen J, Binderup T, Kjaer A: Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18 F-FDG-microPET or external caliper. BMC Medical Imaging. 2008, 8 (1): 16-10.1186/1471-2342-8-16.CrossRefPubMedPubMedCentral
13.
go back to reference Sorensen AG: Magnetic Resonance As a Cancer Imaging Biomarker. J Clin Oncol. 2006, 24 (20): 3274-3281. 10.1200/JCO.2006.06.6597.CrossRefPubMed Sorensen AG: Magnetic Resonance As a Cancer Imaging Biomarker. J Clin Oncol. 2006, 24 (20): 3274-3281. 10.1200/JCO.2006.06.6597.CrossRefPubMed
14.
go back to reference De Schepper AM, De Beuckeleer L, Vandevenne J, Somville J: Magnetic resonance imaging of soft tissue tumors. Eur Radiol. 2000, 10 (2): 213-223. 10.1007/s003300050037.CrossRefPubMed De Schepper AM, De Beuckeleer L, Vandevenne J, Somville J: Magnetic resonance imaging of soft tissue tumors. Eur Radiol. 2000, 10 (2): 213-223. 10.1007/s003300050037.CrossRefPubMed
15.
go back to reference Low RN: Abdominal MRI advances in the detection of liver tumours and characterisation. The Lancet Oncology. 2007, 8 (6): 525-535. 10.1016/S1470-2045(07)70170-5.CrossRefPubMed Low RN: Abdominal MRI advances in the detection of liver tumours and characterisation. The Lancet Oncology. 2007, 8 (6): 525-535. 10.1016/S1470-2045(07)70170-5.CrossRefPubMed
16.
go back to reference Hakumäki JM, Brindle KM: Techniques: Visualizing apoptosis using nuclear magnetic resonance. Trends Pharmacol Sci. 2003, 24 (3): 146-149. 10.1016/S0165-6147(03)00032-4.CrossRefPubMed Hakumäki JM, Brindle KM: Techniques: Visualizing apoptosis using nuclear magnetic resonance. Trends Pharmacol Sci. 2003, 24 (3): 146-149. 10.1016/S0165-6147(03)00032-4.CrossRefPubMed
17.
go back to reference Raman V, Pathak AP, Glunde K, Artemov D, Bhujwalla ZM: Magnetic resonance imaging and spectroscopy of transgenic models of cancer. NMR Biomed. 2007, 20 (3): 186-199. 10.1002/nbm.1136.CrossRefPubMed Raman V, Pathak AP, Glunde K, Artemov D, Bhujwalla ZM: Magnetic resonance imaging and spectroscopy of transgenic models of cancer. NMR Biomed. 2007, 20 (3): 186-199. 10.1002/nbm.1136.CrossRefPubMed
18.
go back to reference Kettunen MI, Brindle KM: Apoptosis detection using magnetic resonance imaging and spectroscopy. Prog Nucl Magn Reson Spectrosc. 2005, 47 (3–4): 175-185.CrossRef Kettunen MI, Brindle KM: Apoptosis detection using magnetic resonance imaging and spectroscopy. Prog Nucl Magn Reson Spectrosc. 2005, 47 (3–4): 175-185.CrossRef
19.
go back to reference Barrett T, Brechbiel M, Bernardo M, Choyke PL: MRI of tumor angiogenesis. J Magn Reson Imaging. 2007, 26 (2): 235-249. 10.1002/jmri.20991.CrossRefPubMed Barrett T, Brechbiel M, Bernardo M, Choyke PL: MRI of tumor angiogenesis. J Magn Reson Imaging. 2007, 26 (2): 235-249. 10.1002/jmri.20991.CrossRefPubMed
20.
go back to reference Schmuecking M, Boltze C, Geyer H, Salz H, Schilling B, Wendt TG, Kloetzer K-H, Marx C: Dynamic MRI and CAD vs. Choline MRS: Where is the detection level for a lesion characterisation in prostate cancer?. Int J Radiat Biol. 2009, 85 (9): 814-824. 10.1080/09553000903090027.CrossRefPubMed Schmuecking M, Boltze C, Geyer H, Salz H, Schilling B, Wendt TG, Kloetzer K-H, Marx C: Dynamic MRI and CAD vs. Choline MRS: Where is the detection level for a lesion characterisation in prostate cancer?. Int J Radiat Biol. 2009, 85 (9): 814-824. 10.1080/09553000903090027.CrossRefPubMed
21.
go back to reference Pacheco-Torres J, López-Larrubia P, Ballesteros P, Cerdán S: Imaging tumor hypoxia by magnetic resonance methods. NMR Biomed. 2011, 24 (1): 1-16. 10.1002/nbm.1558.CrossRefPubMed Pacheco-Torres J, López-Larrubia P, Ballesteros P, Cerdán S: Imaging tumor hypoxia by magnetic resonance methods. NMR Biomed. 2011, 24 (1): 1-16. 10.1002/nbm.1558.CrossRefPubMed
22.
go back to reference Hennig J, Nauerth A, Friedburg H: RARE imaging: A fast imaging method for clinical MR. Magn Reson Med. 1986, 3 (6): 823-833. 10.1002/mrm.1910030602.CrossRefPubMed Hennig J, Nauerth A, Friedburg H: RARE imaging: A fast imaging method for clinical MR. Magn Reson Med. 1986, 3 (6): 823-833. 10.1002/mrm.1910030602.CrossRefPubMed
23.
go back to reference Crémillieux Y, Ding S, Dunn JF: High-resolution in vivo measurements of transverse relaxation times in rats at 7 Tesla. Magn Reson Med. 1998, 39 (2): 285-290. 10.1002/mrm.1910390216.CrossRefPubMed Crémillieux Y, Ding S, Dunn JF: High-resolution in vivo measurements of transverse relaxation times in rats at 7 Tesla. Magn Reson Med. 1998, 39 (2): 285-290. 10.1002/mrm.1910390216.CrossRefPubMed
24.
go back to reference Frost C, Thompson SG: Correcting for regression dilution bias: comparison of methods for a single predictor variable. Journal of the Royal Statistical Society: Series A (Statistics in Society). 2000, 163 (2): 173-189. 10.1111/1467-985X.00164.CrossRef Frost C, Thompson SG: Correcting for regression dilution bias: comparison of methods for a single predictor variable. Journal of the Royal Statistical Society: Series A (Statistics in Society). 2000, 163 (2): 173-189. 10.1111/1467-985X.00164.CrossRef
Metadata
Title
Tumour size measurement in a mouse model using high resolution MRI
Authors
Mikael Montelius
Maria Ljungberg
Michael Horn
Eva Forssell-Aronsson
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2012
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/1471-2342-12-12

Other articles of this Issue 1/2012

BMC Medical Imaging 1/2012 Go to the issue