Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2014

Open Access 01-12-2014 | Research article

Testing non-inferiority of a new treatment in three-arm clinical trials with binary endpoints

Authors: Nian-Sheng Tang, Bin Yu, Man-Lai Tang

Published in: BMC Medical Research Methodology | Issue 1/2014

Login to get access

Abstract

Background

A two-arm non-inferiority trial without a placebo is usually adopted to demonstrate that an experimental treatment is not worse than a reference treatment by a small pre-specified non-inferiority margin due to ethical concerns. Selection of the non-inferiority margin and establishment of assay sensitivity are two major issues in the design, analysis and interpretation for two-arm non-inferiority trials. Alternatively, a three-arm non-inferiority clinical trial including a placebo is usually conducted to assess the assay sensitivity and internal validity of a trial. Recently, some large-sample approaches have been developed to assess the non-inferiority of a new treatment based on the three-arm trial design. However, these methods behave badly with small sample sizes in the three arms. This manuscript aims to develop some reliable small-sample methods to test three-arm non-inferiority.

Methods

Saddlepoint approximation, exact and approximate unconditional, and bootstrap-resampling methods are developed to calculate p-values of the Wald-type, score and likelihood ratio tests. Simulation studies are conducted to evaluate their performance in terms of type I error rate and power.

Results

Our empirical results show that the saddlepoint approximation method generally behaves better than the asymptotic method based on the Wald-type test statistic. For small sample sizes, approximate unconditional and bootstrap-resampling methods based on the score test statistic perform better in the sense that their corresponding type I error rates are generally closer to the prespecified nominal level than those of other test procedures.

Conclusions

Both approximate unconditional and bootstrap-resampling test procedures based on the score test statistic are generally recommended for three-arm non-inferiority trials with binary outcomes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dunnett CW, Gent M: Significance testing to establish equivalence between treatments with special reference to data in the form of 2 × 2 tables. Biometrics. 1977, 33: 593-602. 10.2307/2529457.CrossRefPubMed Dunnett CW, Gent M: Significance testing to establish equivalence between treatments with special reference to data in the form of 2 × 2 tables. Biometrics. 1977, 33: 593-602. 10.2307/2529457.CrossRefPubMed
2.
go back to reference Tango T: Equivalence test and confidence interval for the difference in proportions for the paired-sample design. Stat Med. 1998, 17: 891-908. 10.1002/(SICI)1097-0258(19980430)17:8<891::AID-SIM780>3.0.CO;2-B.CrossRefPubMed Tango T: Equivalence test and confidence interval for the difference in proportions for the paired-sample design. Stat Med. 1998, 17: 891-908. 10.1002/(SICI)1097-0258(19980430)17:8<891::AID-SIM780>3.0.CO;2-B.CrossRefPubMed
3.
go back to reference Tang NS, Tang ML, Chan ISF: On tests of equivalence via non-unity relative risk for matched-pair design. Stat Med. 2003, 22: 1217-1233. 10.1002/sim.1213.CrossRefPubMed Tang NS, Tang ML, Chan ISF: On tests of equivalence via non-unity relative risk for matched-pair design. Stat Med. 2003, 22: 1217-1233. 10.1002/sim.1213.CrossRefPubMed
4.
go back to reference Li G, Gao S: A group sequential type design for three-arm non-inferiority trials with binary endpoints. Biom J. 2010, 52: 504-518. 10.1002/bimj.200900188.CrossRefPubMed Li G, Gao S: A group sequential type design for three-arm non-inferiority trials with binary endpoints. Biom J. 2010, 52: 504-518. 10.1002/bimj.200900188.CrossRefPubMed
5.
go back to reference Hida E, Tango T: Three-arm noninferiority trials with a prespecified margin for inference of the difference in the proportions of binary endpoints. J Biopharm Stat. 2013, 23: 774-789. 10.1080/10543406.2013.789893.CrossRefPubMed Hida E, Tango T: Three-arm noninferiority trials with a prespecified margin for inference of the difference in the proportions of binary endpoints. J Biopharm Stat. 2013, 23: 774-789. 10.1080/10543406.2013.789893.CrossRefPubMed
6.
go back to reference Koch GG, Röhmel J: Hypothesis testing in the gold standard design for proving the efficacy of an experimental treatment relative to placebo and a reference. J Biopharm Stat. 2004, 14: 315-325. 10.1081/BIP-120037182.CrossRefPubMed Koch GG, Röhmel J: Hypothesis testing in the gold standard design for proving the efficacy of an experimental treatment relative to placebo and a reference. J Biopharm Stat. 2004, 14: 315-325. 10.1081/BIP-120037182.CrossRefPubMed
7.
go back to reference Hida E, Tango T: On the three-arm non-inferiority trial including a placebo with a prespecified margin. Stat Med. 2011, 30: 224-231. 10.1002/sim.4099.CrossRefPubMed Hida E, Tango T: On the three-arm non-inferiority trial including a placebo with a prespecified margin. Stat Med. 2011, 30: 224-231. 10.1002/sim.4099.CrossRefPubMed
8.
go back to reference Koch GG, Tangen CM: Nonparametric analysis of covariance and its role in non-inferiority clinical trials. Drug Inf J. 1999, 33: 1145-1159. Koch GG, Tangen CM: Nonparametric analysis of covariance and its role in non-inferiority clinical trials. Drug Inf J. 1999, 33: 1145-1159.
9.
go back to reference Pigeot I, Schafer J, Rohmel J, Hauschke D: Assessing non-inferiority of a new treatment in a three-arm clinical trial including a placebo. Stat Med. 2003, 22: 883-899. 10.1002/sim.1450.CrossRefPubMed Pigeot I, Schafer J, Rohmel J, Hauschke D: Assessing non-inferiority of a new treatment in a three-arm clinical trial including a placebo. Stat Med. 2003, 22: 883-899. 10.1002/sim.1450.CrossRefPubMed
10.
go back to reference Koti KM: Use of the fieller-hinkley distribution of the ratio of random variables in testing for noninferiority. J Biopharm Stat. 2007, 17: 215-228. 10.1080/10543400601177335.CrossRefPubMed Koti KM: Use of the fieller-hinkley distribution of the ratio of random variables in testing for noninferiority. J Biopharm Stat. 2007, 17: 215-228. 10.1080/10543400601177335.CrossRefPubMed
11.
go back to reference Hasler M, Vonk R, Hothorn LA: Assessing non-inferiority of a new treatment in a three-arm trial in the presence of heteroscedasticity. Stat Med. 2008, 27: 490-503. 10.1002/sim.3052.CrossRefPubMed Hasler M, Vonk R, Hothorn LA: Assessing non-inferiority of a new treatment in a three-arm trial in the presence of heteroscedasticity. Stat Med. 2008, 27: 490-503. 10.1002/sim.3052.CrossRefPubMed
12.
go back to reference Ghosh P, Nathoo F, Gönen M, Tiwari RC: Assessing noninferiority in a three-arm trial using the bayesian approach. Stat Med. 2011, 30: 1795-1808. 10.1002/sim.4244.CrossRefPubMed Ghosh P, Nathoo F, Gönen M, Tiwari RC: Assessing noninferiority in a three-arm trial using the bayesian approach. Stat Med. 2011, 30: 1795-1808. 10.1002/sim.4244.CrossRefPubMed
13.
go back to reference Gamalo MA, Muthukumarana S, Ghosh P, Tiwari RC: A generalized p-value approach for assessing noninferiority in a three-arm trial. Stat Methods Med Res. 2013, 22: 261-277. 10.1177/0962280210395739.CrossRefPubMed Gamalo MA, Muthukumarana S, Ghosh P, Tiwari RC: A generalized p-value approach for assessing noninferiority in a three-arm trial. Stat Methods Med Res. 2013, 22: 261-277. 10.1177/0962280210395739.CrossRefPubMed
14.
go back to reference Tang ML, Tang NS: Tests of non-inferiority via rate difference for three-arm clinical trials with placebo. J Biopharm Stat. 2004, 14: 337-347. 10.1081/BIP-120037184.CrossRefPubMed Tang ML, Tang NS: Tests of non-inferiority via rate difference for three-arm clinical trials with placebo. J Biopharm Stat. 2004, 14: 337-347. 10.1081/BIP-120037184.CrossRefPubMed
15.
go back to reference Munk A, Mielke M, Skipka G, Freitag G: Testing noninferiority in three-armed clinical trials based on likelihood ratio statistics. Canadiaan J Stat. 2007, 35: 413-431. 10.1002/cjs.5550350306.CrossRef Munk A, Mielke M, Skipka G, Freitag G: Testing noninferiority in three-armed clinical trials based on likelihood ratio statistics. Canadiaan J Stat. 2007, 35: 413-431. 10.1002/cjs.5550350306.CrossRef
16.
go back to reference Liu JT, Tzeng CS, Tsou HH: Establishing non-inferiority of a new treatment in a three-arm trial: apply a step-down hierarchical model in a papulopustular acne study and an oral prophylactic antibiotics study. Intl J Stat Med Res. 2014, 3: 11-20. Liu JT, Tzeng CS, Tsou HH: Establishing non-inferiority of a new treatment in a three-arm trial: apply a step-down hierarchical model in a papulopustular acne study and an oral prophylactic antibiotics study. Intl J Stat Med Res. 2014, 3: 11-20.
17.
go back to reference Jensen J: Saddlepoint Approximations. 1995, Oxford: Oxford Science Publications Jensen J: Saddlepoint Approximations. 1995, Oxford: Oxford Science Publications
18.
go back to reference Tang NS, Tang ML: Exact unconditional inference for risk ratio in a correlated 2 × 2 table with structural zero. Biometrics. 2002, 58: 972-980. 10.1111/j.0006-341X.2002.00972.x.CrossRefPubMed Tang NS, Tang ML: Exact unconditional inference for risk ratio in a correlated 2 × 2 table with structural zero. Biometrics. 2002, 58: 972-980. 10.1111/j.0006-341X.2002.00972.x.CrossRefPubMed
19.
go back to reference Kieser M, Friede T: Planning and analysis of three-arm non-inferiority trials with binary endpoints. Stat Med. 2007, 26: 253-273. 10.1002/sim.2543.CrossRefPubMed Kieser M, Friede T: Planning and analysis of three-arm non-inferiority trials with binary endpoints. Stat Med. 2007, 26: 253-273. 10.1002/sim.2543.CrossRefPubMed
20.
go back to reference Blackwelder WC: Proving the null hypothesis in clinical trials. Control Clin Trials. 1982, 3: 345-353. 10.1016/0197-2456(82)90024-1.CrossRefPubMed Blackwelder WC: Proving the null hypothesis in clinical trials. Control Clin Trials. 1982, 3: 345-353. 10.1016/0197-2456(82)90024-1.CrossRefPubMed
21.
go back to reference Farrington CP, Manning G: Test statistics and sample size formulae for comparative binomial trials with null hypothesis of non-zero risk difference or non-unity relative risk. Stat Med. 1990, 9: 1447-1454. 10.1002/sim.4780091208.CrossRefPubMed Farrington CP, Manning G: Test statistics and sample size formulae for comparative binomial trials with null hypothesis of non-zero risk difference or non-unity relative risk. Stat Med. 1990, 9: 1447-1454. 10.1002/sim.4780091208.CrossRefPubMed
22.
go back to reference Jing BY, Robinson J: Saddlepoint approximations for marginal and conditional probabilities of transformed variables. Ann Stat. 1994, 22: 1115-1132. 10.1214/aos/1176325620.CrossRef Jing BY, Robinson J: Saddlepoint approximations for marginal and conditional probabilities of transformed variables. Ann Stat. 1994, 22: 1115-1132. 10.1214/aos/1176325620.CrossRef
23.
go back to reference Tang ML, Tang NS, Rosner B: Statistical inference for correlated data in ophthalmologic studies. Stat Med. 2006, 25: 2271-2783. Tang ML, Tang NS, Rosner B: Statistical inference for correlated data in ophthalmologic studies. Stat Med. 2006, 25: 2271-2783.
24.
go back to reference Efron B, Tibshirani RJ: An Introduction to the Bootstrap. 1993, Boca Raton: Chapman & HallCrossRef Efron B, Tibshirani RJ: An Introduction to the Bootstrap. 1993, Boca Raton: Chapman & HallCrossRef
25.
go back to reference Holtmann G, Gschossmann J, Mayr P, Talley NJ: A randomized placebo-controlled trail of simethicone and cisapride for the treatment of patients with functional dyspepsia. Aliment Pharmacol Ther. 2002, 16: 1641-1648. 10.1046/j.1365-2036.2002.01322.x.CrossRefPubMed Holtmann G, Gschossmann J, Mayr P, Talley NJ: A randomized placebo-controlled trail of simethicone and cisapride for the treatment of patients with functional dyspepsia. Aliment Pharmacol Ther. 2002, 16: 1641-1648. 10.1046/j.1365-2036.2002.01322.x.CrossRefPubMed
Metadata
Title
Testing non-inferiority of a new treatment in three-arm clinical trials with binary endpoints
Authors
Nian-Sheng Tang
Bin Yu
Man-Lai Tang
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2014
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/1471-2288-14-134

Other articles of this Issue 1/2014

BMC Medical Research Methodology 1/2014 Go to the issue