Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2014

Open Access 01-12-2014 | Research article

Visualizing inconsistency in network meta-analysis by independent path decomposition

Authors: Ulrike Krahn, Harald Binder, Jochem König

Published in: BMC Medical Research Methodology | Issue 1/2014

Login to get access

Abstract

Background

In network meta-analysis, several alternative treatments can be compared by pooling the evidence of all randomised comparisons made in different studies. Incorporated indirect conclusions require a consistent network of treatment effects. An assessment of this assumption and of the influence of deviations is fundamental for the validity evaluation.

Methods

We show that network estimates for single pairwise treatment comparisons can be approximated by the evidence of a subnet that is decomposable into independent paths. Path-based estimates and the estimate of the residual evidence can be used with their contribution to the network estimate to set up a forest plot for the consistency assessment. Using a network meta-analysis of twelve antidepressants and controlled perturbations in the real and constructed consistent data, we discuss the consistency assessment by the independent path decomposition in contrast to an approach using a recently presented graphical tool, the net heat plot. In addition, we define influence functions that describe how changes in study effects are translated into network estimates.

Results

While the consistency assessment by the net heat plot comprises all network estimates, an independent path decomposition and visualisation in a forest plot is tailored to one specific treatment comparison. It allows for the recognition as to whether inconsistencies between different paths of evidence and outlier effects do affect the considered treatment comparison.

Conclusions

The approximation of the network estimate for a single comparison by the evidence of a subnet and the visualisation of the decomposition into independent paths provide the applicability of a graphical validation instrument that is known from classical meta-analysis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Salanti G: Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Res Synth Methods. 2012, 3 (2): 80-97. 10.1002/jrsm.1037.CrossRefPubMed Salanti G: Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Res Synth Methods. 2012, 3 (2): 80-97. 10.1002/jrsm.1037.CrossRefPubMed
2.
go back to reference Dias S, Welton NJ, Sutton AJ, Caldwell DM, Lu G, Ades AE: Evidence synthesis for decision making4: inconsistency in networks of evidence based on randomised controlled trials. Med Decis Making. 2013, 33: 641-656. 10.1177/0272989X12455847.CrossRefPubMedPubMedCentral Dias S, Welton NJ, Sutton AJ, Caldwell DM, Lu G, Ades AE: Evidence synthesis for decision making4: inconsistency in networks of evidence based on randomised controlled trials. Med Decis Making. 2013, 33: 641-656. 10.1177/0272989X12455847.CrossRefPubMedPubMedCentral
3.
go back to reference Sutton AJ, Higgins JPT: Recent developments in meta-analysis. Stat Med. 2008, 27: 625-650. 10.1002/sim.2934.CrossRefPubMed Sutton AJ, Higgins JPT: Recent developments in meta-analysis. Stat Med. 2008, 27: 625-650. 10.1002/sim.2934.CrossRefPubMed
5.
go back to reference Salanti G, Marinho V, Higgins JPT: A case study of multiple-treatments meta-analysis demonstrates that covariates should be considered. J Clin Epidemiol. 2009, 62 (8): 857-864. 10.1016/j.jclinepi.2008.10.001.CrossRefPubMed Salanti G, Marinho V, Higgins JPT: A case study of multiple-treatments meta-analysis demonstrates that covariates should be considered. J Clin Epidemiol. 2009, 62 (8): 857-864. 10.1016/j.jclinepi.2008.10.001.CrossRefPubMed
6.
go back to reference Dias S, Welton NJ, Sutton AJ, Caldwell DM, Guobing L, Ades AE: NICE DSU Technical Support Document 4: Inconsistency in Networks of Evidence Based on Randomised Controlled Trials. 2011, [http://www.nicedsu.org.uk], Dias S, Welton NJ, Sutton AJ, Caldwell DM, Guobing L, Ades AE: NICE DSU Technical Support Document 4: Inconsistency in Networks of Evidence Based on Randomised Controlled Trials. 2011, [http://​www.​nicedsu.​org.​uk],
7.
go back to reference Lu G, Ades AE: Assessing evidence inconsistency in mixed treatment comparisons. J Am Stat Assoc. 2006, 101 (474): 447-459. 10.1198/016214505000001302.CrossRef Lu G, Ades AE: Assessing evidence inconsistency in mixed treatment comparisons. J Am Stat Assoc. 2006, 101 (474): 447-459. 10.1198/016214505000001302.CrossRef
8.
go back to reference Dias S, Welton NJ, Caldwell DM, Ades AE: Checking consistency in mixed treatment comparison meta-analysis. Stat Med. 2010, 29: 932-944. 10.1002/sim.3767.CrossRefPubMed Dias S, Welton NJ, Caldwell DM, Ades AE: Checking consistency in mixed treatment comparison meta-analysis. Stat Med. 2010, 29: 932-944. 10.1002/sim.3767.CrossRefPubMed
9.
go back to reference Piepho HP: Network meta-analysis made easy: detection of inconsistency using factorial analysis-of-variance models. BMC Med Res Methodol. 2014, 14: 61-10.1186/1471-2288-14-61.CrossRefPubMedPubMedCentral Piepho HP: Network meta-analysis made easy: detection of inconsistency using factorial analysis-of-variance models. BMC Med Res Methodol. 2014, 14: 61-10.1186/1471-2288-14-61.CrossRefPubMedPubMedCentral
10.
go back to reference Krahn U, Binder H, König J: A graphical tool for locating inconsistency in network meta-analyses. BMC Med Res Methodol. 2013, 13: 35-10.1186/1471-2288-13-35.CrossRefPubMedPubMedCentral Krahn U, Binder H, König J: A graphical tool for locating inconsistency in network meta-analyses. BMC Med Res Methodol. 2013, 13: 35-10.1186/1471-2288-13-35.CrossRefPubMedPubMedCentral
11.
go back to reference Cipriani A, Furukawa TA, Salanti G, Geddes JR, Higgins JP, Churchill R, Watanabe N, Nakagawa A, Omori IM, McGuire H, Tansella M, Barbui C: Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet. 2009, 373 (9665): 746-758. 10.1016/S0140-6736(09)60046-5.CrossRefPubMed Cipriani A, Furukawa TA, Salanti G, Geddes JR, Higgins JP, Churchill R, Watanabe N, Nakagawa A, Omori IM, McGuire H, Tansella M, Barbui C: Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet. 2009, 373 (9665): 746-758. 10.1016/S0140-6736(09)60046-5.CrossRefPubMed
12.
go back to reference Higgins JPT, Jackson D, Barrett JK, Lu G, Ades AE, White IR: Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods. 2012, 3 (2): 98-110. 10.1002/jrsm.1044.CrossRefPubMedPubMedCentral Higgins JPT, Jackson D, Barrett JK, Lu G, Ades AE, White IR: Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods. 2012, 3 (2): 98-110. 10.1002/jrsm.1044.CrossRefPubMedPubMedCentral
13.
go back to reference White IR, Barrett JK, Jackson D, Higgins JPT: Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Res Synth Methods. 2012, 3 (2): 111-125. 10.1002/jrsm.1045.CrossRefPubMedPubMedCentral White IR, Barrett JK, Jackson D, Higgins JPT: Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Res Synth Methods. 2012, 3 (2): 111-125. 10.1002/jrsm.1045.CrossRefPubMedPubMedCentral
14.
go back to reference Caldwell DM, Welton NJ, Ades AE: Mixed treatment comparison analysis provides internally coherent treatment effect estimates based on overviews of reviews and can reveal inconsistency. J Clin Epidemiol. 2010, 63 (8): 875-882. 10.1016/j.jclinepi.2009.08.025.CrossRefPubMed Caldwell DM, Welton NJ, Ades AE: Mixed treatment comparison analysis provides internally coherent treatment effect estimates based on overviews of reviews and can reveal inconsistency. J Clin Epidemiol. 2010, 63 (8): 875-882. 10.1016/j.jclinepi.2009.08.025.CrossRefPubMed
15.
go back to reference Bucher HC, Guyatt GH, Griffith LE, Walter SD: The results of direct and indirect treatment comparisons in meta-analysis of randomised controlled trials. J Clin Epidemiol. 1997, 50 (6): 683-691. 10.1016/S0895-4356(97)00049-8.CrossRefPubMed Bucher HC, Guyatt GH, Griffith LE, Walter SD: The results of direct and indirect treatment comparisons in meta-analysis of randomised controlled trials. J Clin Epidemiol. 1997, 50 (6): 683-691. 10.1016/S0895-4356(97)00049-8.CrossRefPubMed
16.
go back to reference König J, Krahn U, Binder H: Visualizing the flow of evidence in network meta-analysis and characterizing mixed treatment comparisons. Stat Med. 2013, 32: 5414-5429. 10.1002/sim.6001.CrossRefPubMed König J, Krahn U, Binder H: Visualizing the flow of evidence in network meta-analysis and characterizing mixed treatment comparisons. Stat Med. 2013, 32: 5414-5429. 10.1002/sim.6001.CrossRefPubMed
17.
go back to reference Dijkstra EW: A note on two problems in connexion with graphs. Numerische Mathematik. 1959, 1: 269-271. 10.1007/BF01386390.CrossRef Dijkstra EW: A note on two problems in connexion with graphs. Numerische Mathematik. 1959, 1: 269-271. 10.1007/BF01386390.CrossRef
20.
go back to reference Song F, Harvey I, Lilford R: Adjusted indirect comparison may be less biased than direct comparison for evaluating new pharmaceutical interventions. J Clin Epidemiol. 2008, 61 (5): 455-463. 10.1016/j.jclinepi.2007.06.006.CrossRefPubMed Song F, Harvey I, Lilford R: Adjusted indirect comparison may be less biased than direct comparison for evaluating new pharmaceutical interventions. J Clin Epidemiol. 2008, 61 (5): 455-463. 10.1016/j.jclinepi.2007.06.006.CrossRefPubMed
21.
go back to reference Lu G, Ades AE: Modeling between-trial variance structure in mixed treatment comparisons. Biostatistics. 2009, 10 (4): 792-805. 10.1093/biostatistics/kxp032.CrossRefPubMed Lu G, Ades AE: Modeling between-trial variance structure in mixed treatment comparisons. Biostatistics. 2009, 10 (4): 792-805. 10.1093/biostatistics/kxp032.CrossRefPubMed
22.
go back to reference Cook RD, Weisberg S: Residuals and Influence in Regression. 1982, New York: Chapman and Hall, Cook RD, Weisberg S: Residuals and Influence in Regression. 1982, New York: Chapman and Hall,
23.
go back to reference Belsley DA, Kuh E, Welsch RE: Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. 2004, New Jersey: John Wiley & Sons, Belsley DA, Kuh E, Welsch RE: Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. 2004, New Jersey: John Wiley & Sons,
24.
go back to reference Spiegelhalter DJ, Best NG, Carlin BP, van der Linde: Bayesian measures of model compelxity and fit. J R Stat Soc B. 2002, 64: 583-639. 10.1111/1467-9868.00353.CrossRef Spiegelhalter DJ, Best NG, Carlin BP, van der Linde: Bayesian measures of model compelxity and fit. J R Stat Soc B. 2002, 64: 583-639. 10.1111/1467-9868.00353.CrossRef
25.
go back to reference Senn S, Gavini F, Magrez D, Scheen A: Issues in performing a network meta-analysis. Stat Methods Med Res. 2012, 22 (2): 169-189.CrossRefPubMed Senn S, Gavini F, Magrez D, Scheen A: Issues in performing a network meta-analysis. Stat Methods Med Res. 2012, 22 (2): 169-189.CrossRefPubMed
26.
go back to reference Lu G, Welton NJ, Higgins J, White I, Ades A: Linear inference for mixed treatment comparison meta-analysis: a two-stage approach. Res Synth Methods. 2011, 2 (1): 43-60. 10.1002/jrsm.34.CrossRefPubMed Lu G, Welton NJ, Higgins J, White I, Ades A: Linear inference for mixed treatment comparison meta-analysis: a two-stage approach. Res Synth Methods. 2011, 2 (1): 43-60. 10.1002/jrsm.34.CrossRefPubMed
27.
go back to reference Sturtz S, Bender R: Unsolved issues of mixed treatment comparison meta-analysis: network size and inconsistency. Res Synth Methods. 2012, 3: 300-311. 10.1002/jrsm.1057.CrossRefPubMed Sturtz S, Bender R: Unsolved issues of mixed treatment comparison meta-analysis: network size and inconsistency. Res Synth Methods. 2012, 3: 300-311. 10.1002/jrsm.1057.CrossRefPubMed
Metadata
Title
Visualizing inconsistency in network meta-analysis by independent path decomposition
Authors
Ulrike Krahn
Harald Binder
Jochem König
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2014
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/1471-2288-14-131

Other articles of this Issue 1/2014

BMC Medical Research Methodology 1/2014 Go to the issue