Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2013

Open Access 01-12-2013 | Research article

Quantitative summaries of treatment effect estimates obtained with network meta-analysis of survival curves to inform decision-making

Authors: Shannon Cope, Jeroen P Jansen

Published in: BMC Medical Research Methodology | Issue 1/2013

Login to get access

Abstract

Background

Increasingly, network meta-analysis (NMA) of published survival data are based on parametric survival curves as opposed to reported hazard ratios to avoid relying on the proportional hazards assumption. If a Bayesian framework is used for the NMA, rank probabilities associated with the alternative treatments can be obtained, which directly support decision-making. In the context of survival analysis multiple treatment effect measures are available to inform the rank probabilities.

Methods

A fractional polynomial NMA of overall survival in advanced melanoma was performed as an illustrative example. Rank probabilities were calculated and presented for the following effect measures: 1) median survival; 2) expected survival; 3) mean survival at the follow-up time point of the trial with the shortest follow-up; 4) hazard or hazard ratio over time; 5) cumulative hazard or survival proportions over time; and 6) mean survival at subsequent time points. The advantages and disadvantages of the alternative measures were discussed.

Results

Since hazard and survival estimates may vary over time for the compared interventions, calculations of rank probabilities for an NMA of survival curves may depend on the effect measure. With methods 1–3 rank probabilities do not vary over time, which are easier to understand and communicate than rank probabilities that vary over time as obtained with methods 4–6. However, rank probabilities based on methods 4–6 provide useful information regarding the relative treatment effects over time.

Conclusions

Different approaches to summarize results of a NMA of survival curves with rank probabilities have pros and cons. Rank probabilities of treatment effects over time provide a more transparent and informative approach to help guide decision-making than single rank probabilities based on collapsed measures, such as median survival or expected survival. Rank probabilities based on survival proportions are the most intuitive and straightforward to communicate, but alternatives based on the hazard function or mean survival over time may also be useful.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dias S, Sutton AJ, Ades AE, Welton NJ: Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med Decis Making. 2013, 33 (5): 607-617. 10.1177/0272989X12458724.CrossRefPubMedPubMedCentral Dias S, Sutton AJ, Ades AE, Welton NJ: Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med Decis Making. 2013, 33 (5): 607-617. 10.1177/0272989X12458724.CrossRefPubMedPubMedCentral
2.
go back to reference Glenny AM, Altman DG, Song F, et al: Indirect comparisons of competing interventions. Health Technol Assess. 2005, 9: 1-134.CrossRefPubMed Glenny AM, Altman DG, Song F, et al: Indirect comparisons of competing interventions. Health Technol Assess. 2005, 9: 1-134.CrossRefPubMed
3.
go back to reference Jansen JP, Fleurence R, Devine B, et al: Interpreting indirect treatment comparisons & network meta-analysis for health care decision-making: report of the ISPOR task force on indirect treatment comparisons good research practices—part 1. Value Health. 2011, 14: 417-428. 10.1016/j.jval.2011.04.002.CrossRefPubMed Jansen JP, Fleurence R, Devine B, et al: Interpreting indirect treatment comparisons & network meta-analysis for health care decision-making: report of the ISPOR task force on indirect treatment comparisons good research practices—part 1. Value Health. 2011, 14: 417-428. 10.1016/j.jval.2011.04.002.CrossRefPubMed
4.
go back to reference Song F, Altman DG, Glenny A, Deeks JJ: Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses. BMJ. 2003, 326: 472-10.1136/bmj.326.7387.472.CrossRefPubMedPubMedCentral Song F, Altman DG, Glenny A, Deeks JJ: Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses. BMJ. 2003, 326: 472-10.1136/bmj.326.7387.472.CrossRefPubMedPubMedCentral
5.
go back to reference Caldwell DM, Ades AE, Higgins JPT: Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ. 2005, 331: 897-900. 10.1136/bmj.331.7521.897.CrossRefPubMedPubMedCentral Caldwell DM, Ades AE, Higgins JPT: Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ. 2005, 331: 897-900. 10.1136/bmj.331.7521.897.CrossRefPubMedPubMedCentral
6.
go back to reference Sutton A, Ades AE, Cooper N, Abrams K: Use of indirect and mixed treatment comparisons for technology assessment. Pharmacoeconomics. 2008, 26: 753-767. 10.2165/00019053-200826090-00006.CrossRefPubMed Sutton A, Ades AE, Cooper N, Abrams K: Use of indirect and mixed treatment comparisons for technology assessment. Pharmacoeconomics. 2008, 26: 753-767. 10.2165/00019053-200826090-00006.CrossRefPubMed
7.
go back to reference National Institute for Health and Clinical Excellence: Guide to the Methods of Technology Appraisal. 2008, London: NICE National Institute for Health and Clinical Excellence: Guide to the Methods of Technology Appraisal. 2008, London: NICE
8.
go back to reference Pharmaceutical Benefits Advisory Committee: Guidelines for preparing submissions to the Pharmaceutical Benefits Advisory committee. (Version 4.3). 2008, Canberra: Australian Government, Department of Health and Ageing Pharmaceutical Benefits Advisory Committee: Guidelines for preparing submissions to the Pharmaceutical Benefits Advisory committee. (Version 4.3). 2008, Canberra: Australian Government, Department of Health and Ageing
9.
go back to reference Wells GA, Sultan SA, Chen L, Khan M, Coyle D: Indirect Evidence: Indirect Treatment Comparisons in Meta-Analysis. 2009, Ottawa: Canadian Agency for Drugs and Technologies in Health Wells GA, Sultan SA, Chen L, Khan M, Coyle D: Indirect Evidence: Indirect Treatment Comparisons in Meta-Analysis. 2009, Ottawa: Canadian Agency for Drugs and Technologies in Health
10.
go back to reference Lu G, Ades AE: Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med. 2004, 23: 3105-3124. 10.1002/sim.1875.CrossRefPubMed Lu G, Ades AE: Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med. 2004, 23: 3105-3124. 10.1002/sim.1875.CrossRefPubMed
11.
go back to reference Sculpher M, Claxton K, Drummon M, McCabe C: Whither trial-based economic evaluation for health care decision-making?. Health Econ. 2006, 15 (7): 677-687. 10.1002/hec.1093.CrossRefPubMed Sculpher M, Claxton K, Drummon M, McCabe C: Whither trial-based economic evaluation for health care decision-making?. Health Econ. 2006, 15 (7): 677-687. 10.1002/hec.1093.CrossRefPubMed
12.
go back to reference Jansen JP, Crawford B, Bergman G, Stam W: Bayesian meta-analysis of multiple treatment comparisons: an introduction to mixed treatment comparisons. Value Health. 2008, 11 (5): 956-964. 10.1111/j.1524-4733.2008.00347.x.CrossRefPubMed Jansen JP, Crawford B, Bergman G, Stam W: Bayesian meta-analysis of multiple treatment comparisons: an introduction to mixed treatment comparisons. Value Health. 2008, 11 (5): 956-964. 10.1111/j.1524-4733.2008.00347.x.CrossRefPubMed
13.
go back to reference Salanti G, Ades AE, Ioannidis JPA: Graphical methods and numeric summaries for presenting results for multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011, 64 (2): 163-171. 10.1016/j.jclinepi.2010.03.016.CrossRefPubMed Salanti G, Ades AE, Ioannidis JPA: Graphical methods and numeric summaries for presenting results for multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011, 64 (2): 163-171. 10.1016/j.jclinepi.2010.03.016.CrossRefPubMed
14.
go back to reference Ouwens MJNM, Philips Z, Jansen JP: Network meta-analysis of parametric survival curves. Res Synth Methods. 2010, 1 (3–4): 258-271.CrossRefPubMed Ouwens MJNM, Philips Z, Jansen JP: Network meta-analysis of parametric survival curves. Res Synth Methods. 2010, 1 (3–4): 258-271.CrossRefPubMed
16.
go back to reference Jansen JP, Cope S: Meta-regression models to address heterogeneity and inconsistency in network meta-analysis of survival outcomes. BMC Med Res Methodol. 2012, 12: 152-10.1186/1471-2288-12-152. doi:10.1186/1471-2288-12-152CrossRefPubMedPubMedCentral Jansen JP, Cope S: Meta-regression models to address heterogeneity and inconsistency in network meta-analysis of survival outcomes. BMC Med Res Methodol. 2012, 12: 152-10.1186/1471-2288-12-152. doi:10.1186/1471-2288-12-152CrossRefPubMedPubMedCentral
17.
go back to reference Latimer NR: Survival analysis for economic evaluations alongside clinical trials- extrapolation with individual patient-level data. Med Decis Making. 2013, 33 (5): doi:10.1177/0272989X12472398 Latimer NR: Survival analysis for economic evaluations alongside clinical trials- extrapolation with individual patient-level data. Med Decis Making. 2013, 33 (5): doi:10.1177/0272989X12472398
18.
go back to reference Avril MF, Aamdal S, Grob JJ, Hauschild A, Mohr P, Bonerandi JJ, et al: Fotemustine compared with dacarbazine in patients with disseminated malignant melanoma: a phase III study. J Clin Oncol. 2004, 22 (6): 1118-1125. 10.1200/JCO.2004.04.165.CrossRefPubMed Avril MF, Aamdal S, Grob JJ, Hauschild A, Mohr P, Bonerandi JJ, et al: Fotemustine compared with dacarbazine in patients with disseminated malignant melanoma: a phase III study. J Clin Oncol. 2004, 22 (6): 1118-1125. 10.1200/JCO.2004.04.165.CrossRefPubMed
19.
go back to reference Bajetta E, Di Leo A, Zampino MG, Sertoli MR, Comella G, Barduagni M, et al: Multicenter randomized trial of dacarbazine alone or in combination with two different doses and schedules of interferon alfa-2a in the treatment of advanced melanoma. J Clin Oncol. 1994, 12: 806-811.PubMed Bajetta E, Di Leo A, Zampino MG, Sertoli MR, Comella G, Barduagni M, et al: Multicenter randomized trial of dacarbazine alone or in combination with two different doses and schedules of interferon alfa-2a in the treatment of advanced melanoma. J Clin Oncol. 1994, 12: 806-811.PubMed
20.
go back to reference Chapman PB, Einhorn LH, Meyers ML, Saxman S, Destro AN, Panageas KS, et al: Phase III multicenter randomized trial of the dartmouth regimen versus dacarbazine in patients with metastatic melanoma. J Clin Oncol. 1999, 17: 2745-2751.PubMed Chapman PB, Einhorn LH, Meyers ML, Saxman S, Destro AN, Panageas KS, et al: Phase III multicenter randomized trial of the dartmouth regimen versus dacarbazine in patients with metastatic melanoma. J Clin Oncol. 1999, 17: 2745-2751.PubMed
21.
go back to reference Chiarion SV, Nortilli R, Aversa SM, Paccagnella A, Medici M, Corti L, et al: Phase II randomized study of dacarbazine, carmustine, cisplatin and tamoxifen versus dacarbazine alone in advanced melanoma patients. Melanoma Res. 2001, 11 (2): 189-196. 10.1097/00008390-200104000-00015.CrossRef Chiarion SV, Nortilli R, Aversa SM, Paccagnella A, Medici M, Corti L, et al: Phase II randomized study of dacarbazine, carmustine, cisplatin and tamoxifen versus dacarbazine alone in advanced melanoma patients. Melanoma Res. 2001, 11 (2): 189-196. 10.1097/00008390-200104000-00015.CrossRef
22.
go back to reference Cocconi G, Bella M, Calabresi F, Tonato M, Canaletti R, Boni C, et al: Treatment of metastatic malignant melanoma with dacarbazine plus tamoxifen. New Engl J Med. 1992, 327: 516-523. 10.1056/NEJM199208203270803.CrossRefPubMed Cocconi G, Bella M, Calabresi F, Tonato M, Canaletti R, Boni C, et al: Treatment of metastatic malignant melanoma with dacarbazine plus tamoxifen. New Engl J Med. 1992, 327: 516-523. 10.1056/NEJM199208203270803.CrossRefPubMed
23.
go back to reference Falkson CI, Ibrahim J, Kirkwood JM, Coates AS, Atkins MB, Blum RH: Phase III trial of dacarbazine versus dacarbazine with interferon alpha-2b versus dacarbazine with tamoxifen versus dacarbazine with interferon alpha-2b and tamoxifen in patients with metastatic malignant melanoma: an eastern cooperative oncology group study. J Clin Oncol. 1998, 16: 1743-1751.PubMed Falkson CI, Ibrahim J, Kirkwood JM, Coates AS, Atkins MB, Blum RH: Phase III trial of dacarbazine versus dacarbazine with interferon alpha-2b versus dacarbazine with tamoxifen versus dacarbazine with interferon alpha-2b and tamoxifen in patients with metastatic malignant melanoma: an eastern cooperative oncology group study. J Clin Oncol. 1998, 16: 1743-1751.PubMed
24.
go back to reference Falkson CI, Falkson G, Falkson HC: Improved results with the addition of interferon alfa-2b to dacarbazine in the treatment of patients with metastatic malignant melanoma. J Clin Oncol. 1991, 9: 1403-1408.PubMed Falkson CI, Falkson G, Falkson HC: Improved results with the addition of interferon alfa-2b to dacarbazine in the treatment of patients with metastatic malignant melanoma. J Clin Oncol. 1991, 9: 1403-1408.PubMed
25.
go back to reference Middleton MR, Grob JJ, Aaronson N, Fierlbeck G, Tilgen W, Seiter S, et al: Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol. 2000, 18: 158-166.PubMed Middleton MR, Grob JJ, Aaronson N, Fierlbeck G, Tilgen W, Seiter S, et al: Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol. 2000, 18: 158-166.PubMed
26.
go back to reference Thomson DB, Adena M, McLeod GR, Hersey P, Gill PG, Coates AS, et al: Interferon-alpha 2a does not improve response or survival when combined with dacarbazine in metastatic malignant melanoma: results of a multi-institutional Australian randomized trial. Melanoma Res. 1993, 3: 133-138.PubMed Thomson DB, Adena M, McLeod GR, Hersey P, Gill PG, Coates AS, et al: Interferon-alpha 2a does not improve response or survival when combined with dacarbazine in metastatic malignant melanoma: results of a multi-institutional Australian randomized trial. Melanoma Res. 1993, 3: 133-138.PubMed
27.
go back to reference Young AM, Marsden J, Goodman A, Burton A, Dunn JA: Prospective randomized comparison of dacarbazine (DTIC) versus DTIC plus interferon-alpha (IFN-alpha) in metastatic melanoma. Clin Oncol. 2001, 13: 458-465. Young AM, Marsden J, Goodman A, Burton A, Dunn JA: Prospective randomized comparison of dacarbazine (DTIC) versus DTIC plus interferon-alpha (IFN-alpha) in metastatic melanoma. Clin Oncol. 2001, 13: 458-465.
28.
go back to reference Spiegelhalter D, Thomas A, Best N, Lunn D: WinBUGS User Manual: Version 1.4. 2003, Cambridge: MRC Biostatistics Unit Spiegelhalter D, Thomas A, Best N, Lunn D: WinBUGS User Manual: Version 1.4. 2003, Cambridge: MRC Biostatistics Unit
29.
go back to reference Cope S, Ouwens MJNM, Jansen JP, Schmid P: Progression-free survival with Fulvestrant 500 mg and alternative endocrine therapies as second-line treatment for advanced breast cancer: a network meta-analysis with parametric survival models. Value Health. 2013, 16 (2): 403-417. 10.1016/j.jval.2012.10.019.CrossRefPubMed Cope S, Ouwens MJNM, Jansen JP, Schmid P: Progression-free survival with Fulvestrant 500 mg and alternative endocrine therapies as second-line treatment for advanced breast cancer: a network meta-analysis with parametric survival models. Value Health. 2013, 16 (2): 403-417. 10.1016/j.jval.2012.10.019.CrossRefPubMed
Metadata
Title
Quantitative summaries of treatment effect estimates obtained with network meta-analysis of survival curves to inform decision-making
Authors
Shannon Cope
Jeroen P Jansen
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2013
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/1471-2288-13-147

Other articles of this Issue 1/2013

BMC Medical Research Methodology 1/2013 Go to the issue