Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2012

Open Access 01-12-2012 | Technical advance

Translation equations to compare ActiGraph GT3X and Actical accelerometers activity counts

Authors: Leon Straker, Amity Campbell

Published in: BMC Medical Research Methodology | Issue 1/2012

Login to get access

Abstract

Background

This study aimed to develop a translation equation to enable comparison between Actical and ActiGraph GT3X accelerometer counts recorded minute by minute.

Methods

Five males and five females of variable height, weight, body mass index and age participated in this investigation. Participants simultaneously wore an Actical and an ActiGraph accelerometer for two days. Conversion algorithms and R2 were calculated day by day for each subject between the omnidirectional Actical and three different ActiGraph (three-dimensional) outputs: 1) vertical direction, 2) combined vector, and 3) a custom vector. Three conversion algorithms suitable for minute/minute conversions were then calculated from the full data set.

Results

The vertical ActiGraph activity counts demonstrated the closest relationship with the Actical, with consistent moderate to strong conversions using the algorithm: y = 0.905x, in the day by day data (R2 range: 0.514 to 0.989 and average: 0.822) and full data set (R2 = 0.865).

Conclusions

The Actical is most sensitive to accelerations in the vertical direction, and does not closely correlate with three-dimensional ActiGraph output. Minute by minute conversions between the Actical and ActiGraph vertical component can be confidently performed between data sets and might allow further synthesis of information between studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Troiano RP, Macera CA, Ballard-Barbash R: Be physically active each day. How can we know?. J Nutr. 2001, 131 (2S-1): 451S-460S.PubMed Troiano RP, Macera CA, Ballard-Barbash R: Be physically active each day. How can we know?. J Nutr. 2001, 131 (2S-1): 451S-460S.PubMed
2.
go back to reference Colley RC, et al: Physical activity of Canadian adults: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011, 22 (1): 7-14.PubMed Colley RC, et al: Physical activity of Canadian adults: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011, 22 (1): 7-14.PubMed
3.
go back to reference Paul DR, et al: Validation of a food frequency questionnaire by direct measurement of habitual ad libitum food intake. Am J Epidemiol. 2005, 162 (8): 806-14. 10.1093/aje/kwi279.CrossRefPubMed Paul DR, et al: Validation of a food frequency questionnaire by direct measurement of habitual ad libitum food intake. Am J Epidemiol. 2005, 162 (8): 806-14. 10.1093/aje/kwi279.CrossRefPubMed
4.
go back to reference Harris TJ, et al: A comparison of questionnaire, accelerometer, and pedometer: measures in older people. Med Sci Sports Exerc. 2009, 41 (7): 1392-402. 10.1249/MSS.0b013e31819b3533.CrossRefPubMed Harris TJ, et al: A comparison of questionnaire, accelerometer, and pedometer: measures in older people. Med Sci Sports Exerc. 2009, 41 (7): 1392-402. 10.1249/MSS.0b013e31819b3533.CrossRefPubMed
5.
go back to reference Cliff DP, Reilly JJ, Okely AD: Methodological considerations in using accelerometers to assess habitual physical activity in children aged 0–5 years. J Sci Med Sport. 2009, 12 (5): 557-67. 10.1016/j.jsams.2008.10.008.CrossRefPubMed Cliff DP, Reilly JJ, Okely AD: Methodological considerations in using accelerometers to assess habitual physical activity in children aged 0–5 years. J Sci Med Sport. 2009, 12 (5): 557-67. 10.1016/j.jsams.2008.10.008.CrossRefPubMed
6.
go back to reference Troiano RP, Freedson PS: Promises and pitfalls of emerging measures of physical activity and the environment. Am J Prev Med. 2010, 38 (6): 682-3. 10.1016/j.amepre.2010.03.005.CrossRefPubMedPubMedCentral Troiano RP, Freedson PS: Promises and pitfalls of emerging measures of physical activity and the environment. Am J Prev Med. 2010, 38 (6): 682-3. 10.1016/j.amepre.2010.03.005.CrossRefPubMedPubMedCentral
7.
go back to reference Rowlands AV, Ingledew DK, Eston RG: The effect of type of physical activity measure on the relationship between body fatness and habitual physical activity in children: a meta-analysis. Ann Hum Biol. 2000, 27 (5): 479-97. 10.1080/030144600419314.CrossRefPubMed Rowlands AV, Ingledew DK, Eston RG: The effect of type of physical activity measure on the relationship between body fatness and habitual physical activity in children: a meta-analysis. Ann Hum Biol. 2000, 27 (5): 479-97. 10.1080/030144600419314.CrossRefPubMed
8.
go back to reference Ness AR, et al: Objectively measured physical activity and fat mass in a large cohort of children. PLoS Med. 2007, 4 (3): e97-10.1371/journal.pmed.0040097.CrossRefPubMedPubMedCentral Ness AR, et al: Objectively measured physical activity and fat mass in a large cohort of children. PLoS Med. 2007, 4 (3): e97-10.1371/journal.pmed.0040097.CrossRefPubMedPubMedCentral
9.
go back to reference Bassett DR, Cureton AL, Ainsworth BE: Measurement of daily walking distance-questionnaire versus pedometer. Med Sci Sports Exerc. 2000, 32 (5)): 1018-23.CrossRefPubMed Bassett DR, Cureton AL, Ainsworth BE: Measurement of daily walking distance-questionnaire versus pedometer. Med Sci Sports Exerc. 2000, 32 (5)): 1018-23.CrossRefPubMed
10.
go back to reference Janz KF: Physical activity in epidemiology: moving from questionnaire to objective measurement. Br J Sports Med. 2006, 40 (3): 191-2. 10.1136/bjsm.2005.023036.CrossRefPubMedPubMedCentral Janz KF: Physical activity in epidemiology: moving from questionnaire to objective measurement. Br J Sports Med. 2006, 40 (3): 191-2. 10.1136/bjsm.2005.023036.CrossRefPubMedPubMedCentral
11.
go back to reference Esliger DW, Tremblay MS: [Establishing a profile of physical activity and inactivity: the next generation]. Appl Physiol Nutr Metab. 2007, 32 (Suppl 2F): S217-30.CrossRefPubMed Esliger DW, Tremblay MS: [Establishing a profile of physical activity and inactivity: the next generation]. Appl Physiol Nutr Metab. 2007, 32 (Suppl 2F): S217-30.CrossRefPubMed
12.
go back to reference Rowlands AV, et al: Validation of the RT3 triaxial accelerometer for the assessment of physical activity. Med Sci Sports Exerc. 2004, 36 (3): 518-24. 10.1249/01.MSS.0000117158.14542.E7.CrossRefPubMed Rowlands AV, et al: Validation of the RT3 triaxial accelerometer for the assessment of physical activity. Med Sci Sports Exerc. 2004, 36 (3): 518-24. 10.1249/01.MSS.0000117158.14542.E7.CrossRefPubMed
13.
go back to reference Heil DP: Predicting activity energy expenditure using the Actical activity monitor. Res Q Exerc Sport. 2006, 77 (1): 64-80. 10.5641/027013606X13080769703920.CrossRefPubMed Heil DP: Predicting activity energy expenditure using the Actical activity monitor. Res Q Exerc Sport. 2006, 77 (1): 64-80. 10.5641/027013606X13080769703920.CrossRefPubMed
14.
go back to reference Shapiro D, Goldstein IB: Wrist actigraph measures of physical activity level and ambulatory blood pressure in healthy elderly persons. Psychophysiology. 1998, 35 (3): 305-12. 10.1017/S0048577298970883.CrossRefPubMed Shapiro D, Goldstein IB: Wrist actigraph measures of physical activity level and ambulatory blood pressure in healthy elderly persons. Psychophysiology. 1998, 35 (3): 305-12. 10.1017/S0048577298970883.CrossRefPubMed
15.
go back to reference Finn KJ, Specker B: Comparison of Actiwatch activity monitor and Children's Activity Rating Scale in children. Med Sci Sports Exerc. 2000, 32 (10): 1794-7. 10.1097/00005768-200010000-00021.CrossRefPubMed Finn KJ, Specker B: Comparison of Actiwatch activity monitor and Children's Activity Rating Scale in children. Med Sci Sports Exerc. 2000, 32 (10): 1794-7. 10.1097/00005768-200010000-00021.CrossRefPubMed
16.
go back to reference Riddoch CJ, et al: Physical activity levels and patterns of 9- and 15-yr-old European children. Med Sci Sports Exerc. 2004, 36 (1): 86-92. 10.1249/01.MSS.0000106174.43932.92.CrossRefPubMed Riddoch CJ, et al: Physical activity levels and patterns of 9- and 15-yr-old European children. Med Sci Sports Exerc. 2004, 36 (1): 86-92. 10.1249/01.MSS.0000106174.43932.92.CrossRefPubMed
17.
go back to reference Thompson AM, et al: Physical activity and body mass index in grade 3, 7, and 11 Nova Scotia students. Med Sci Sports Exerc. 2005, 37 (11): 1902-8. 10.1249/01.mss.0000176306.11134.23.CrossRefPubMed Thompson AM, et al: Physical activity and body mass index in grade 3, 7, and 11 Nova Scotia students. Med Sci Sports Exerc. 2005, 37 (11): 1902-8. 10.1249/01.mss.0000176306.11134.23.CrossRefPubMed
19.
go back to reference Feito Y, et al: Effects of body mass index and tilt angle on output of two wearable activity monitors. Med Sci Sports Exerc. 2011, 43 (5): 861-6. 10.1249/MSS.0b013e3181fefd40.CrossRefPubMed Feito Y, et al: Effects of body mass index and tilt angle on output of two wearable activity monitors. Med Sci Sports Exerc. 2011, 43 (5): 861-6. 10.1249/MSS.0b013e3181fefd40.CrossRefPubMed
20.
go back to reference Tryon WW, Williams R: Fully proportional actigraphy: A new instrument. Behaviour research methods. 1996, 28 (3): 392-403.CrossRef Tryon WW, Williams R: Fully proportional actigraphy: A new instrument. Behaviour research methods. 1996, 28 (3): 392-403.CrossRef
21.
go back to reference Hawkins MS, et al: Objectively measured physical activity of USA adults by sex, age, and racial/ethnic groups: a cross-sectional study. Int J Behav Nutr Phys Act. 2009, 6: 31-10.1186/1479-5868-6-31.CrossRefPubMedPubMedCentral Hawkins MS, et al: Objectively measured physical activity of USA adults by sex, age, and racial/ethnic groups: a cross-sectional study. Int J Behav Nutr Phys Act. 2009, 6: 31-10.1186/1479-5868-6-31.CrossRefPubMedPubMedCentral
22.
go back to reference Troiano RP: A timely meeting: objective measurement of physical activity. Med Sci Sports Exerc. 2005, 37 (11 Suppl): S487-9.CrossRefPubMed Troiano RP: A timely meeting: objective measurement of physical activity. Med Sci Sports Exerc. 2005, 37 (11 Suppl): S487-9.CrossRefPubMed
23.
go back to reference Chen KY, Bassett DR: The technology of accelerometry-based activity monitors: Current and future. Medicine and Science in Sports and Exercise. 2005, 37 (11(suppl))): S490-S500.CrossRefPubMed Chen KY, Bassett DR: The technology of accelerometry-based activity monitors: Current and future. Medicine and Science in Sports and Exercise. 2005, 37 (11(suppl))): S490-S500.CrossRefPubMed
24.
go back to reference Rand D, Jeng JS: How active are people with Stroke? Use of accelerometers to assess physical activity. Stroke. 2009, 40: 163-168. 10.1161/STROKEAHA.108.523621.CrossRefPubMed Rand D, Jeng JS: How active are people with Stroke? Use of accelerometers to assess physical activity. Stroke. 2009, 40: 163-168. 10.1161/STROKEAHA.108.523621.CrossRefPubMed
25.
go back to reference Hendelman D, et al: Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Med Sci Sports Exerc. 2000, 32 (9 Suppl): S442-9.CrossRefPubMed Hendelman D, et al: Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Med Sci Sports Exerc. 2000, 32 (9 Suppl): S442-9.CrossRefPubMed
26.
go back to reference Eston RG, Rowlands AV, Ingledew DK: Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children's activities. J Appl Physiol. 1998, 84 (1): 362-71.PubMed Eston RG, Rowlands AV, Ingledew DK: Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children's activities. J Appl Physiol. 1998, 84 (1): 362-71.PubMed
27.
go back to reference Trost SG, McIver KL, Pate RR: Conducting accelerometer-based activity assessments in field-based research. Medicine and Science in Sports and Exercise. 2005, 37 (11): S531-S543.CrossRefPubMed Trost SG, McIver KL, Pate RR: Conducting accelerometer-based activity assessments in field-based research. Medicine and Science in Sports and Exercise. 2005, 37 (11): S531-S543.CrossRefPubMed
28.
go back to reference Howe CA, Staudenmayer JW, Freedson PS: Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis. Med Sci Sports Exerc. 2009, 41 (12): 2199-206. 10.1249/MSS.0b013e3181aa3a0e.CrossRefPubMed Howe CA, Staudenmayer JW, Freedson PS: Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis. Med Sci Sports Exerc. 2009, 41 (12): 2199-206. 10.1249/MSS.0b013e3181aa3a0e.CrossRefPubMed
29.
go back to reference Freedson P, Pober D, Janz KF: Calibration of accelerometer output for children. Medicine and Science in Sports and Exercise. 2005, 37 (11): S523-CrossRefPubMed Freedson P, Pober D, Janz KF: Calibration of accelerometer output for children. Medicine and Science in Sports and Exercise. 2005, 37 (11): S523-CrossRefPubMed
30.
go back to reference Oliver M, et al: Utility of accelerometer thresholds for classifying sitting in office workers. Prev Med. 2010, 51 (5): 357-60. 10.1016/j.ypmed.2010.08.010.CrossRefPubMed Oliver M, et al: Utility of accelerometer thresholds for classifying sitting in office workers. Prev Med. 2010, 51 (5): 357-60. 10.1016/j.ypmed.2010.08.010.CrossRefPubMed
31.
go back to reference Healy GN, et al: Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care. 2008, 31 (4): 661-6. 10.2337/dc07-2046.CrossRefPubMed Healy GN, et al: Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care. 2008, 31 (4): 661-6. 10.2337/dc07-2046.CrossRefPubMed
32.
go back to reference Healy GN, et al: Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care. 2008, 31 (2): 369-71.CrossRefPubMed Healy GN, et al: Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care. 2008, 31 (2): 369-71.CrossRefPubMed
33.
go back to reference Hagstromer M, et al: Levels and patterns of objectively assessed physical activity–a comparison between Sweden and the United States. Am J Epidemiol. 2010, 171 (10): 1055-64. 10.1093/aje/kwq069.CrossRefPubMed Hagstromer M, et al: Levels and patterns of objectively assessed physical activity–a comparison between Sweden and the United States. Am J Epidemiol. 2010, 171 (10): 1055-64. 10.1093/aje/kwq069.CrossRefPubMed
34.
go back to reference Healy GN, et al: Objectively measured light-intensity physical activity is independently associated with 2-h plasma glucose. Diabetes Care. 2007, 30 (6): 1384-9. 10.2337/dc07-0114.CrossRefPubMed Healy GN, et al: Objectively measured light-intensity physical activity is independently associated with 2-h plasma glucose. Diabetes Care. 2007, 30 (6): 1384-9. 10.2337/dc07-0114.CrossRefPubMed
35.
go back to reference Jago R, et al: Decision boundaries and receiver operating characteristic curves: new methods for determining accelerometer cutpoints. J Sports Sci. 2007, 25 (8): 937-44. 10.1080/02640410600908027.CrossRefPubMed Jago R, et al: Decision boundaries and receiver operating characteristic curves: new methods for determining accelerometer cutpoints. J Sports Sci. 2007, 25 (8): 937-44. 10.1080/02640410600908027.CrossRefPubMed
36.
go back to reference Colley RC, Tremblay MS: Moderate and vigorous physical activity intensity cut-points for the Actical accelerometer. J Sports Sci. 2011, 29 (8): 783-9. 10.1080/02640414.2011.557744.CrossRefPubMed Colley RC, Tremblay MS: Moderate and vigorous physical activity intensity cut-points for the Actical accelerometer. J Sports Sci. 2011, 29 (8): 783-9. 10.1080/02640414.2011.557744.CrossRefPubMed
37.
go back to reference Wong SL, et al: Actical accelerometer sedentary activity thresholds for adults. J Phys Act Health. 2011, 8: 587-594.PubMed Wong SL, et al: Actical accelerometer sedentary activity thresholds for adults. J Phys Act Health. 2011, 8: 587-594.PubMed
38.
go back to reference Esliger DW, Tremblay MS: Technical reliability assessment of three accelerometer models in a mechanical setup. Med Sci Sports Exerc. 2006, 38 (12): 2173-81. 10.1249/01.mss.0000239394.55461.08.CrossRefPubMed Esliger DW, Tremblay MS: Technical reliability assessment of three accelerometer models in a mechanical setup. Med Sci Sports Exerc. 2006, 38 (12): 2173-81. 10.1249/01.mss.0000239394.55461.08.CrossRefPubMed
39.
go back to reference Esliger DW, Tremblay MS: Physical activity and inactivity profiling: the next generation. Can J Public Health. 2007, 98 (Suppl 2): S195-207.PubMed Esliger DW, Tremblay MS: Physical activity and inactivity profiling: the next generation. Can J Public Health. 2007, 98 (Suppl 2): S195-207.PubMed
40.
go back to reference Matthews CE, et al: Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol. 2008, 167 (7): 875-81. 10.1093/aje/kwm390.CrossRefPubMedPubMedCentral Matthews CE, et al: Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol. 2008, 167 (7): 875-81. 10.1093/aje/kwm390.CrossRefPubMedPubMedCentral
41.
go back to reference The University of Auckland, A National Survey of Children and Young People's Physical Activity and Dietary Behaviours in New Zealand: 2008/2009, Clinical Trials Research Unit. 2010, Auckland, New Zealand The University of Auckland, A National Survey of Children and Young People's Physical Activity and Dietary Behaviours in New Zealand: 2008/2009, Clinical Trials Research Unit. 2010, Auckland, New Zealand
42.
go back to reference Troiano RP, et al: Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008, 40 (1): 181-8.CrossRefPubMed Troiano RP, et al: Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008, 40 (1): 181-8.CrossRefPubMed
Metadata
Title
Translation equations to compare ActiGraph GT3X and Actical accelerometers activity counts
Authors
Leon Straker
Amity Campbell
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2012
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/1471-2288-12-54

Other articles of this Issue 1/2012

BMC Medical Research Methodology 1/2012 Go to the issue