Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2011

Open Access 01-12-2011 | Research article

A comparison of a new multinomial stopping rule with stopping rules of fleming and gehan in single arm phase II cancer clinical trials

Authors: John R Goffin, Greg R Pond, Dongsheng Tu

Published in: BMC Medical Research Methodology | Issue 1/2011

Login to get access

Abstract

Background

Response rate (RR) alone may be insensitive to drug activity in phase II trials. Early progressive disease (EPD) could improve sensitivity as well as increase stage I stopping rates. This study compares the previously developed dual endpoint stopping rule (DESR), which incorporates both RR and EPD into a two-stage, phase II trial, with rules using only RR.

Methods

Stopping rules according to the DESR were compared with studies conducted under the Fleming (16 trials) or Gehan (23 trials) designs. The RR hypothesis for the DESR was consistent with the comparison studies (r alt = 0.2, r nul = 0.05). Two parameter sets were used for EPD rates of interest and disinterest respectively (epd alt, epd nul): (0.4, 0.6) and (0.3, 0.5).

Results

Compared with Fleming, the DESR was more likely to allow stage two of accrual and to reject the null hypothesis (H nul) after stage two, with rejection being more common with EPD parameters (0.4, 0.6) than (0.3, 0.5). Compared with Gehan, both DESR parameter sets accepted H nul in 15 trials after stage I compared with 8 trials by Gehan, with consistent conclusions in all 23 trials after stage II.

Conclusions

The DESR may reject H nul when EPD rates alone are low, and thereby may improve phase II trial sensitivity to active, cytostatic drugs having limited response rates. Conversely, the DESR may invoke early stopping when response rates are low and EPD rates are high, thus shortening trials when drug activity is unlikely. EPD parameters should be chosen specific to each trial.
Literature
1.
go back to reference DiMasi JA, Hansen RW, Grabowski HG: The price of innovation: new estimates of drug development costs. J Health Econ. 2003, 22: 151-185. 10.1016/S0167-6296(02)00126-1.CrossRefPubMed DiMasi JA, Hansen RW, Grabowski HG: The price of innovation: new estimates of drug development costs. J Health Econ. 2003, 22: 151-185. 10.1016/S0167-6296(02)00126-1.CrossRefPubMed
2.
go back to reference Booth B, Glassman R, Ma P: Oncology's trials. Nat Rev Drug Discov. 2003, 2: 609-610. 10.1038/nrd1158.CrossRefPubMed Booth B, Glassman R, Ma P: Oncology's trials. Nat Rev Drug Discov. 2003, 2: 609-610. 10.1038/nrd1158.CrossRefPubMed
3.
go back to reference DiMasi JA, Grabowski HG: Economics of new oncology drug development. J Clin Oncol. 2007, 25: 209-216. 10.1200/JCO.2006.09.0803.CrossRefPubMed DiMasi JA, Grabowski HG: Economics of new oncology drug development. J Clin Oncol. 2007, 25: 209-216. 10.1200/JCO.2006.09.0803.CrossRefPubMed
4.
go back to reference Dhani N, Tu D, Sargent DJ, Seymour L, Moore MJ: Alternate endpoints for screening phase II studies. Clin Cancer Res. 2009, 15: 1873-1882. 10.1158/1078-0432.CCR-08-2034.CrossRefPubMed Dhani N, Tu D, Sargent DJ, Seymour L, Moore MJ: Alternate endpoints for screening phase II studies. Clin Cancer Res. 2009, 15: 1873-1882. 10.1158/1078-0432.CCR-08-2034.CrossRefPubMed
5.
go back to reference Gehan EA: The determination of the number of patients required in a preliminary and a follow-up trial of a new chemotherapeutic agent. J Chronic Dis. 1961, 13: 346-353. 10.1016/0021-9681(61)90060-1.CrossRefPubMed Gehan EA: The determination of the number of patients required in a preliminary and a follow-up trial of a new chemotherapeutic agent. J Chronic Dis. 1961, 13: 346-353. 10.1016/0021-9681(61)90060-1.CrossRefPubMed
6.
go back to reference Fleming TR: One-sample multiple testing procedure for phase II clinical trials. Biometrics. 1982, 38: 143-151. 10.2307/2530297.CrossRefPubMed Fleming TR: One-sample multiple testing procedure for phase II clinical trials. Biometrics. 1982, 38: 143-151. 10.2307/2530297.CrossRefPubMed
7.
go back to reference Simon R: Optimal two-stage designs for phase II clinical trials. Control Clin Trials. 1989, 10: 1-10. 10.1016/0197-2456(89)90015-9.CrossRefPubMed Simon R: Optimal two-stage designs for phase II clinical trials. Control Clin Trials. 1989, 10: 1-10. 10.1016/0197-2456(89)90015-9.CrossRefPubMed
8.
go back to reference El-Maraghi RH, Eisenhauer EA: Review of phase II trial designs used in studies of molecular targeted agents: outcomes and predictors of success in phase III. J Clin Oncol. 2008, 26: 1346-1354. 10.1200/JCO.2007.13.5913.CrossRefPubMed El-Maraghi RH, Eisenhauer EA: Review of phase II trial designs used in studies of molecular targeted agents: outcomes and predictors of success in phase III. J Clin Oncol. 2008, 26: 1346-1354. 10.1200/JCO.2007.13.5913.CrossRefPubMed
9.
go back to reference Thezenas S, Duffour J, Culine S, Kramar A: Five-year change in statistical designs of phase II trials published in leading cancer journals. Eur J Cancer. 2004, 40: 1244-1249. 10.1016/j.ejca.2004.01.008.CrossRefPubMed Thezenas S, Duffour J, Culine S, Kramar A: Five-year change in statistical designs of phase II trials published in leading cancer journals. Eur J Cancer. 2004, 40: 1244-1249. 10.1016/j.ejca.2004.01.008.CrossRefPubMed
10.
go back to reference Cesano A, Lane SR, Poulin R, Ross G, Fields SZ: Stabilization of disease as a useful predictor of survival following second-line chemotherapy in small cell lung cancer and ovarian cancer patients. Int J Oncol. 1999, 15: 1233-1238.PubMed Cesano A, Lane SR, Poulin R, Ross G, Fields SZ: Stabilization of disease as a useful predictor of survival following second-line chemotherapy in small cell lung cancer and ovarian cancer patients. Int J Oncol. 1999, 15: 1233-1238.PubMed
11.
go back to reference Rapp E, Pater JL, Willan A, Cormier Y, Murray N, Evans WK, Hodson DI, Clark DA, Feld R, Arnold AM, et al: Chemotherapy can prolong survival in patients with advanced non-small-cell lung cancer--report of a Canadian multicenter randomized trial. J Clin Oncol. 1988, 6: 633-641.PubMed Rapp E, Pater JL, Willan A, Cormier Y, Murray N, Evans WK, Hodson DI, Clark DA, Feld R, Arnold AM, et al: Chemotherapy can prolong survival in patients with advanced non-small-cell lung cancer--report of a Canadian multicenter randomized trial. J Clin Oncol. 1988, 6: 633-641.PubMed
12.
go back to reference Sekine I, Tamura T, Kunitoh H, Kubota K, Shinkai T, Kamiya Y, Saijo N: Progressive disease rate as a surrogate endpoint of phase II trials for non-small-cell lung cancer. Ann Oncol. 1999, 10: 731-733. 10.1023/A:1008303921033.CrossRefPubMed Sekine I, Tamura T, Kunitoh H, Kubota K, Shinkai T, Kamiya Y, Saijo N: Progressive disease rate as a surrogate endpoint of phase II trials for non-small-cell lung cancer. Ann Oncol. 1999, 10: 731-733. 10.1023/A:1008303921033.CrossRefPubMed
13.
go back to reference Lara PN, Redman MW, Kelly K, Edelman MJ, Williamson SK, Crowley JJ, Gandara DR: Disease control rate at 8 weeks predicts clinical benefit in advanced non-small-cell lung cancer: results from Southwest Oncology Group randomized trials. J Clin Oncol. 2008, 26: 463-467. 10.1200/JCO.2007.13.0344.CrossRefPubMed Lara PN, Redman MW, Kelly K, Edelman MJ, Williamson SK, Crowley JJ, Gandara DR: Disease control rate at 8 weeks predicts clinical benefit in advanced non-small-cell lung cancer: results from Southwest Oncology Group randomized trials. J Clin Oncol. 2008, 26: 463-467. 10.1200/JCO.2007.13.0344.CrossRefPubMed
14.
go back to reference Zee B, Melnychuk D, Dancey J, Eisenhauer E: Multinomial phase II cancer trials incorporating response and early progression. J Biopharm Stat. 1999, 9: 351-363. 10.1081/BIP-100101181.CrossRefPubMed Zee B, Melnychuk D, Dancey J, Eisenhauer E: Multinomial phase II cancer trials incorporating response and early progression. J Biopharm Stat. 1999, 9: 351-363. 10.1081/BIP-100101181.CrossRefPubMed
15.
go back to reference Freidlin B, Dancey J, Korn EL, Zee B, Eisenhauer E: Multinomial phase II trial designs. J Clin Oncol. 2002, 20: 599-PubMed Freidlin B, Dancey J, Korn EL, Zee B, Eisenhauer E: Multinomial phase II trial designs. J Clin Oncol. 2002, 20: 599-PubMed
16.
go back to reference Goffin JR, Tu D: Phase II stopping rules that employ response rates and early progression. J Clin Oncol. 2008, 26: 3715-3720. 10.1200/JCO.2007.14.1044.CrossRefPubMed Goffin JR, Tu D: Phase II stopping rules that employ response rates and early progression. J Clin Oncol. 2008, 26: 3715-3720. 10.1200/JCO.2007.14.1044.CrossRefPubMed
17.
go back to reference Dent S, Zee B, Dancey J, Hanauske A, Wanders J, Eisenhauer E: Application of a new multinomial phase II stopping rule using response and early progression. J Clin Oncol. 2001, 19: 785-791.PubMed Dent S, Zee B, Dancey J, Hanauske A, Wanders J, Eisenhauer E: Application of a new multinomial phase II stopping rule using response and early progression. J Clin Oncol. 2001, 19: 785-791.PubMed
18.
go back to reference Gallagher DJ, Milowsky MI, Gerst SR, Ishill N, Riches J, Regazzi A, Boyle MG, Trout A, Flaherty AM, Bajorin DF: Phase II Study of Sunitinib in Patients With Metastatic Urothelial Cancer. Journal of Clinical Oncology. 2010, 28: 1373-1379. 10.1200/JCO.2009.25.3922.CrossRefPubMed Gallagher DJ, Milowsky MI, Gerst SR, Ishill N, Riches J, Regazzi A, Boyle MG, Trout A, Flaherty AM, Bajorin DF: Phase II Study of Sunitinib in Patients With Metastatic Urothelial Cancer. Journal of Clinical Oncology. 2010, 28: 1373-1379. 10.1200/JCO.2009.25.3922.CrossRefPubMed
19.
go back to reference Schiller JH, Larson T, Ou SH, Limentani S, Sandler A, Vokes E, Kim S, Liau K, Bycott P, Olszanski AJ, et al: Efficacy and safety of axitinib in patients with advanced non-small-cell lung cancer: results from a phase II study. J Clin Oncol. 2009, 27: 3836-3841. 10.1200/JCO.2008.20.8355.CrossRefPubMed Schiller JH, Larson T, Ou SH, Limentani S, Sandler A, Vokes E, Kim S, Liau K, Bycott P, Olszanski AJ, et al: Efficacy and safety of axitinib in patients with advanced non-small-cell lung cancer: results from a phase II study. J Clin Oncol. 2009, 27: 3836-3841. 10.1200/JCO.2008.20.8355.CrossRefPubMed
20.
go back to reference Panageas KS, Smith A, Gonen M, Chapman PB: An optimal two-stage phase II design utilizing complete and partial response information separately. Control Clin Trials. 2002, 23: 367-379. 10.1016/S0197-2456(02)00217-9.CrossRefPubMed Panageas KS, Smith A, Gonen M, Chapman PB: An optimal two-stage phase II design utilizing complete and partial response information separately. Control Clin Trials. 2002, 23: 367-379. 10.1016/S0197-2456(02)00217-9.CrossRefPubMed
Metadata
Title
A comparison of a new multinomial stopping rule with stopping rules of fleming and gehan in single arm phase II cancer clinical trials
Authors
John R Goffin
Greg R Pond
Dongsheng Tu
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2011
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/1471-2288-11-95

Other articles of this Issue 1/2011

BMC Medical Research Methodology 1/2011 Go to the issue