Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2011

Open Access 01-12-2011 | Research article

Competing risk models to estimate the excess mortality and the first recurrent-event hazards

Authors: Aurélien Belot, Laurent Remontet, Guy Launoy, Valérie Jooste, Roch Giorgi

Published in: BMC Medical Research Methodology | Issue 1/2011

Login to get access

Abstract

Background

In medical research, one common competing risks situation is the study of different types of events, such as disease recurrence and death. We focused on that situation but considered death under two aspects: "expected death" and "excess death", the latter could be directly or indirectly associated with the disease.

Methods

The excess hazard method allows estimating an excess mortality hazard using the population (expected) mortality hazard. We propose models combining the competing risks approach and the excess hazard method. These models are based on a joint modelling of each event-specific hazard, including the event-free excess death hazard. The proposed models are parsimonious, allow time-dependent hazard ratios, and facilitate comparisons between event-specific hazards and between covariate effects on different events. In a simulation study, we assessed the performance of the estimators and showed their good properties with different drop-out censoring rates and different sample sizes.

Results

We analyzed a population-based dataset on French colon cancer patients who have undergone curative surgery. Considering three competing events (local recurrence, distant metastasis, and death), we showed that the recurrence-free excess mortality hazard reached zero six months after treatment. Covariates sex, age, and cancer stage had the same effects on local recurrence and distant metastasis but a different effect on excess mortality.

Conclusions

The proposed models consider the excess mortality within the framework of competing risks. Moreover, the joint estimation of the parameters allow (i) direct comparisons between covariate effects, and (ii) fitting models with common parameters to obtain more parsimonious models and more efficient parameter estimators.
Appendix
Available only for authorised users
Literature
1.
go back to reference Klein JP: Modelling competing risks in cancer studies. Statistics in Medicine. 2006, 25: 1015-1034. 10.1002/sim.2246.CrossRefPubMed Klein JP: Modelling competing risks in cancer studies. Statistics in Medicine. 2006, 25: 1015-1034. 10.1002/sim.2246.CrossRefPubMed
2.
go back to reference Dignam JJ, Kocherginsky MN: Choice and interpretation of statistical tests used when competing risks are present. Journal of Clinical Oncology. 2008, 26: 4027-4034. 10.1200/JCO.2007.12.9866.CrossRefPubMedPubMedCentral Dignam JJ, Kocherginsky MN: Choice and interpretation of statistical tests used when competing risks are present. Journal of Clinical Oncology. 2008, 26: 4027-4034. 10.1200/JCO.2007.12.9866.CrossRefPubMedPubMedCentral
3.
go back to reference Andersen PK, Abildstrom SZ, Rosthoj S: Competing risks as a multi-state model. Statistical Methods in Medical Research. 2002, 11: 203-215. 10.1191/0962280202sm281ra.CrossRefPubMed Andersen PK, Abildstrom SZ, Rosthoj S: Competing risks as a multi-state model. Statistical Methods in Medical Research. 2002, 11: 203-215. 10.1191/0962280202sm281ra.CrossRefPubMed
4.
go back to reference Putter H, Fiocco M, Geskus RB: Tutorial in biostatistics: competing risks and multi-state models. Statistics in Medicine. 2007, 26: 2389-2430. 10.1002/sim.2712.CrossRefPubMed Putter H, Fiocco M, Geskus RB: Tutorial in biostatistics: competing risks and multi-state models. Statistics in Medicine. 2007, 26: 2389-2430. 10.1002/sim.2712.CrossRefPubMed
5.
go back to reference Manfredi S, Bouvier AM, Lepage C, Hatem C, Dancourt V, Faivre J: Incidence and patterns of recurrence after resection for cure of colonic cancer in a well defined population. British Journal of Surgery. 2006, 93: 1115-1122. 10.1002/bjs.5349.CrossRefPubMed Manfredi S, Bouvier AM, Lepage C, Hatem C, Dancourt V, Faivre J: Incidence and patterns of recurrence after resection for cure of colonic cancer in a well defined population. British Journal of Surgery. 2006, 93: 1115-1122. 10.1002/bjs.5349.CrossRefPubMed
6.
go back to reference Renehan AG, Egger M, Saunders MP, O'Dwyer ST: Impact on survival of intensive follow up after curative resection for colorectal cancer: systematic review and meta-analysis of randomised trials. British Medical Journal. 2002, 324: 813-10.1136/bmj.324.7341.813.CrossRefPubMedPubMedCentral Renehan AG, Egger M, Saunders MP, O'Dwyer ST: Impact on survival of intensive follow up after curative resection for colorectal cancer: systematic review and meta-analysis of randomised trials. British Medical Journal. 2002, 324: 813-10.1136/bmj.324.7341.813.CrossRefPubMedPubMedCentral
7.
go back to reference Berkson J, Gage RP: Calculation of survival rates for cancer. Proceedings of the Staff Meetings of the Mayo Clinic. 1950, 25: 270-286.PubMed Berkson J, Gage RP: Calculation of survival rates for cancer. Proceedings of the Staff Meetings of the Mayo Clinic. 1950, 25: 270-286.PubMed
8.
go back to reference Hakulinen T, Tenkanen L: Regression analysis of relative survival rates. Applied Statistics. 1987, 36: 309-317. 10.2307/2347789.CrossRef Hakulinen T, Tenkanen L: Regression analysis of relative survival rates. Applied Statistics. 1987, 36: 309-317. 10.2307/2347789.CrossRef
9.
go back to reference Esteve J, Benhamou E, Croasdale M, Raymond L: Relative survival and the estimation of net survival: elements for further discussion. Statistics in Medicine. 1990, 9: 529-538. 10.1002/sim.4780090506.CrossRefPubMed Esteve J, Benhamou E, Croasdale M, Raymond L: Relative survival and the estimation of net survival: elements for further discussion. Statistics in Medicine. 1990, 9: 529-538. 10.1002/sim.4780090506.CrossRefPubMed
10.
go back to reference Prentice RL, Kalbfleisch JD, Peterson AV, Flournoy N, Farewell VT, Breslow NE: The analysis of failure times in the presence of competing risks. Biometrics. 1978, 34: 541-554. 10.2307/2530374.CrossRefPubMed Prentice RL, Kalbfleisch JD, Peterson AV, Flournoy N, Farewell VT, Breslow NE: The analysis of failure times in the presence of competing risks. Biometrics. 1978, 34: 541-554. 10.2307/2530374.CrossRefPubMed
11.
go back to reference Gray RJ: A class of K-sample tests for comparing the cumulative incidence of a competing risk. Annals of statistics. 1988, 16: 1141-1154. 10.1214/aos/1176350951.CrossRef Gray RJ: A class of K-sample tests for comparing the cumulative incidence of a competing risk. Annals of statistics. 1988, 16: 1141-1154. 10.1214/aos/1176350951.CrossRef
12.
go back to reference Pepe MS, Mori M: Kaplan-Meier, marginal or conditional probability curves in summarizing competing risks failure time data?. Statistics in Medicine. 1993, 12: 737-751. 10.1002/sim.4780120803.CrossRefPubMed Pepe MS, Mori M: Kaplan-Meier, marginal or conditional probability curves in summarizing competing risks failure time data?. Statistics in Medicine. 1993, 12: 737-751. 10.1002/sim.4780120803.CrossRefPubMed
13.
go back to reference Gaynor JJ, Feuer EJ, Tan CC, Wu DH, Little CR, Straus DJ, Clarkson BD, Brennan MF: On the Use of Cause-Specific Failure and Conditional Failure Probabilities: Examples From Clinical Oncology Data. Journal of the American Statistical Association. 1993, 88: 400-409. 10.2307/2290318.CrossRef Gaynor JJ, Feuer EJ, Tan CC, Wu DH, Little CR, Straus DJ, Clarkson BD, Brennan MF: On the Use of Cause-Specific Failure and Conditional Failure Probabilities: Examples From Clinical Oncology Data. Journal of the American Statistical Association. 1993, 88: 400-409. 10.2307/2290318.CrossRef
14.
go back to reference Fine JP, Gray RJ: A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association. 1999, 94: 496-509. 10.2307/2670170.CrossRef Fine JP, Gray RJ: A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association. 1999, 94: 496-509. 10.2307/2670170.CrossRef
15.
go back to reference Fine JP: Regression modeling of competing crude failure probabilities. Biostatistics. 2001, 2: 85-97. 10.1093/biostatistics/2.1.85.CrossRefPubMed Fine JP: Regression modeling of competing crude failure probabilities. Biostatistics. 2001, 2: 85-97. 10.1093/biostatistics/2.1.85.CrossRefPubMed
16.
go back to reference Andersen PK, Borgan Ø, Gill RD, Keiding N: Statistical models based on counting processes. 1993, New York: Springer-VerlagCrossRef Andersen PK, Borgan Ø, Gill RD, Keiding N: Statistical models based on counting processes. 1993, New York: Springer-VerlagCrossRef
17.
go back to reference Lunn M, McNeil D: Applying Cox regression to competing risks. Biometrics. 1995, 51: 524-532. 10.2307/2532940.CrossRefPubMed Lunn M, McNeil D: Applying Cox regression to competing risks. Biometrics. 1995, 51: 524-532. 10.2307/2532940.CrossRefPubMed
18.
go back to reference Kalbfleisch JD, Prentice RL: The Statistical Analysis of Failure Time Data. 2002, New York: WileyCrossRef Kalbfleisch JD, Prentice RL: The Statistical Analysis of Failure Time Data. 2002, New York: WileyCrossRef
19.
go back to reference Lim HJ, Zhang X, Dyck R, Osgood N: Methods of competing risks analysis of end-stage renal disease and mortality among people with diabetes. BMC Medical Research Methodology. 2010, 10: 97-10.1186/1471-2288-10-97.CrossRefPubMedPubMedCentral Lim HJ, Zhang X, Dyck R, Osgood N: Methods of competing risks analysis of end-stage renal disease and mortality among people with diabetes. BMC Medical Research Methodology. 2010, 10: 97-10.1186/1471-2288-10-97.CrossRefPubMedPubMedCentral
20.
go back to reference Belot A, Abrahamowicz M, Remontet L, Giorgi R: Flexible modeling of competing risks in survival analysis. Statistics in Medicine. 2010, 29: 2453-2468.PubMed Belot A, Abrahamowicz M, Remontet L, Giorgi R: Flexible modeling of competing risks in survival analysis. Statistics in Medicine. 2010, 29: 2453-2468.PubMed
21.
go back to reference Giorgi R, Abrahamowicz M, Quantin C, Bolard P, Esteve J, Gouvernet J, Faivre J: A relative survival regression model using B-spline functions to model non-proportional hazards. Statistics in Medicine. 2003, 22: 2767-2784. 10.1002/sim.1484.CrossRefPubMed Giorgi R, Abrahamowicz M, Quantin C, Bolard P, Esteve J, Gouvernet J, Faivre J: A relative survival regression model using B-spline functions to model non-proportional hazards. Statistics in Medicine. 2003, 22: 2767-2784. 10.1002/sim.1484.CrossRefPubMed
22.
go back to reference Lambert PC, Smith LK, Jones DR, Botha JL: Additive and multiplicative covariate regression models for relative survival incorporating fractional polynomials for time-dependent effects. Statistics in Medicine. 2005, 24: 3871-3885. 10.1002/sim.2399.CrossRefPubMed Lambert PC, Smith LK, Jones DR, Botha JL: Additive and multiplicative covariate regression models for relative survival incorporating fractional polynomials for time-dependent effects. Statistics in Medicine. 2005, 24: 3871-3885. 10.1002/sim.2399.CrossRefPubMed
23.
go back to reference Remontet L, Bossard N, Belot A, Esteve J: An overall strategy based on regression models to estimate relative survival and model the effects of prognostic factors in cancer survival studies. Statistics in Medicine. 2007, 26: 2214-2228. 10.1002/sim.2656.CrossRefPubMed Remontet L, Bossard N, Belot A, Esteve J: An overall strategy based on regression models to estimate relative survival and model the effects of prognostic factors in cancer survival studies. Statistics in Medicine. 2007, 26: 2214-2228. 10.1002/sim.2656.CrossRefPubMed
24.
go back to reference Durrleman S, Simon R: Flexible regression models with cubic splines. Statistics in Medicine. 1989, 8: 551-561. 10.1002/sim.4780080504.CrossRefPubMed Durrleman S, Simon R: Flexible regression models with cubic splines. Statistics in Medicine. 1989, 8: 551-561. 10.1002/sim.4780080504.CrossRefPubMed
25.
go back to reference Abrahamowicz M, MacKenzie T, Esdaile JM: Time-Dependent Hazard Ratio:Modeling and Hypothesis Testing With Application in Lupus Nephritis. Journal of the American Statistical Association. 1996, 91: 1432-1439. 10.2307/2291569.CrossRef Abrahamowicz M, MacKenzie T, Esdaile JM: Time-Dependent Hazard Ratio:Modeling and Hypothesis Testing With Application in Lupus Nephritis. Journal of the American Statistical Association. 1996, 91: 1432-1439. 10.2307/2291569.CrossRef
26.
go back to reference Ramsay JO: Monotone Regression Splines in Action. Statistical Science. 1988, 3: 425-441. 10.1214/ss/1177012761.CrossRef Ramsay JO: Monotone Regression Splines in Action. Statistical Science. 1988, 3: 425-441. 10.1214/ss/1177012761.CrossRef
27.
go back to reference Tai BC, Machin D, White I, Gebski V: Competing risks analysis of patients with osteosarcoma: a comparison of four different approaches. Statistics in Medicine. 2001, 20: 661-684. 10.1002/sim.711.CrossRefPubMed Tai BC, Machin D, White I, Gebski V: Competing risks analysis of patients with osteosarcoma: a comparison of four different approaches. Statistics in Medicine. 2001, 20: 661-684. 10.1002/sim.711.CrossRefPubMed
29.
go back to reference Dickman PW, Sloggett A, Hills M, Hakulinen T: Regression models for relative survival. Statistics in Medicine. 2004, 23: 51-64. 10.1002/sim.1597.CrossRefPubMed Dickman PW, Sloggett A, Hills M, Hakulinen T: Regression models for relative survival. Statistics in Medicine. 2004, 23: 51-64. 10.1002/sim.1597.CrossRefPubMed
30.
go back to reference Therneau TM, Grambsch PM: Modeling Survival Data: extending the Cox Model. 2000, New York: Springer-VerlagCrossRef Therneau TM, Grambsch PM: Modeling Survival Data: extending the Cox Model. 2000, New York: Springer-VerlagCrossRef
31.
go back to reference Akaike H: Information theory and an extension of the maximum likekihood principle. 2nd International Symposium on Information Theory. Edited by: Petrov BN, Csaki F. 1973, Budapest, 268-281. Akaike H: Information theory and an extension of the maximum likekihood principle. 2nd International Symposium on Information Theory. Edited by: Petrov BN, Csaki F. 1973, Budapest, 268-281.
32.
go back to reference Tsiatis A: A nonidentifiability aspect of the problem of competing risks. Proceedings of the National Academy of Sciences of the United States of America. 1975, 72: 20-22. 10.1073/pnas.72.1.20.CrossRefPubMedPubMedCentral Tsiatis A: A nonidentifiability aspect of the problem of competing risks. Proceedings of the National Academy of Sciences of the United States of America. 1975, 72: 20-22. 10.1073/pnas.72.1.20.CrossRefPubMedPubMedCentral
33.
34.
go back to reference Sleeper LA, Harrington DP: Regression Splines in the Cox Model With Application to Covariate Effects in Liver Disease. Journal of the American Statistical Association. 1990, 85: 941-949. 10.2307/2289591.CrossRef Sleeper LA, Harrington DP: Regression Splines in the Cox Model With Application to Covariate Effects in Liver Disease. Journal of the American Statistical Association. 1990, 85: 941-949. 10.2307/2289591.CrossRef
35.
go back to reference Hess KR: Assessing time-by-covariate interactions in proportional hazards regression models using cubic spline functions. Statistics in Medicine. 1994, 13: 1045-1062. 10.1002/sim.4780131007.CrossRefPubMed Hess KR: Assessing time-by-covariate interactions in proportional hazards regression models using cubic spline functions. Statistics in Medicine. 1994, 13: 1045-1062. 10.1002/sim.4780131007.CrossRefPubMed
36.
go back to reference Kooperberg C, Stone CJ, Truong YK: Hazard Regression. Journal of the American Statistical Association. 1995, 90: 78-94. 10.2307/2291132.CrossRef Kooperberg C, Stone CJ, Truong YK: Hazard Regression. Journal of the American Statistical Association. 1995, 90: 78-94. 10.2307/2291132.CrossRef
37.
go back to reference Bolard P, Quantin C, Abrahamowicz M, Esteve J, Giorgi R, Chadha-Boreham H, Binquet C, Faivre J: Assessing time-by-covariate interactions in relative survival models using restrictive cubic spline functions. Journal of Cancer Epidemiology and Prevention. 2002, 7: 113-122.PubMed Bolard P, Quantin C, Abrahamowicz M, Esteve J, Giorgi R, Chadha-Boreham H, Binquet C, Faivre J: Assessing time-by-covariate interactions in relative survival models using restrictive cubic spline functions. Journal of Cancer Epidemiology and Prevention. 2002, 7: 113-122.PubMed
38.
go back to reference Sadahiro S, Suzuki T, Ishikawa K, Nakamura T, Tanaka Y, Masuda T, Mukoyama S, Yasuda S, Tajima T, Makuuchi H, et al: Recurrence patterns after curative resection of colorectal cancer in patients followed for a minimum of ten years. Hepatogastroenterology. 2003, 50: 1362-1366.PubMed Sadahiro S, Suzuki T, Ishikawa K, Nakamura T, Tanaka Y, Masuda T, Mukoyama S, Yasuda S, Tajima T, Makuuchi H, et al: Recurrence patterns after curative resection of colorectal cancer in patients followed for a minimum of ten years. Hepatogastroenterology. 2003, 50: 1362-1366.PubMed
39.
go back to reference Yun HR, Lee LJ, Park JH, Cho YK, Cho YB, Lee WY, Kim HC, Chun HK, Yun SH: Local recurrence after curative resection in patients with colon and rectal cancers. International Journal of Colorectal Disease. 2008, 23: 1081-1087. 10.1007/s00384-008-0530-0.CrossRefPubMed Yun HR, Lee LJ, Park JH, Cho YK, Cho YB, Lee WY, Kim HC, Chun HK, Yun SH: Local recurrence after curative resection in patients with colon and rectal cancers. International Journal of Colorectal Disease. 2008, 23: 1081-1087. 10.1007/s00384-008-0530-0.CrossRefPubMed
40.
go back to reference Liu L, Wolfe RA, Huang X: Shared frailty models for recurrent events and a terminal event. Biometrics. 2004, 60: 747-756. 10.1111/j.0006-341X.2004.00225.x.CrossRefPubMed Liu L, Wolfe RA, Huang X: Shared frailty models for recurrent events and a terminal event. Biometrics. 2004, 60: 747-756. 10.1111/j.0006-341X.2004.00225.x.CrossRefPubMed
41.
go back to reference Rondeau V, Mathoulin-Pelissier S, Jacqmin-Gadda H, Brouste V, Soubeyran P: Joint frailty models for recurring events and death using maximum penalized likelihood estimation: application on cancer events. Biostatistics. 2007, 8: 708-721.CrossRefPubMed Rondeau V, Mathoulin-Pelissier S, Jacqmin-Gadda H, Brouste V, Soubeyran P: Joint frailty models for recurring events and death using maximum penalized likelihood estimation: application on cancer events. Biostatistics. 2007, 8: 708-721.CrossRefPubMed
42.
go back to reference Le Teuff G, Abrahamowicz M, Bolard P, Quantin C: Comparison of Cox's and relative survival models when estimating the effects of prognostic factors on disease-specific mortality: a simulation study under proportional excess hazards. Statistics in Medicine. 2005, 24: 3887-3909. 10.1002/sim.2392.CrossRefPubMed Le Teuff G, Abrahamowicz M, Bolard P, Quantin C: Comparison of Cox's and relative survival models when estimating the effects of prognostic factors on disease-specific mortality: a simulation study under proportional excess hazards. Statistics in Medicine. 2005, 24: 3887-3909. 10.1002/sim.2392.CrossRefPubMed
43.
go back to reference Mudholkar GS, Srivastava DK, Kollia GD: A Generalization of the Weibull Distribution with Application to the Analysis of Survival Data. Journal of the American Statistical Association. 1996, 91: 1575-1583. 10.2307/2291583.CrossRef Mudholkar GS, Srivastava DK, Kollia GD: A Generalization of the Weibull Distribution with Application to the Analysis of Survival Data. Journal of the American Statistical Association. 1996, 91: 1575-1583. 10.2307/2291583.CrossRef
44.
go back to reference Jeong JH: A new parametric family for modelling cumulative incidence functions: application to breast cancer data. Journal of the Royal Statistical Society: Series A (Statistics in Society). 2006, 169: 289-303. 10.1111/j.1467-985X.2006.00409.x.CrossRef Jeong JH: A new parametric family for modelling cumulative incidence functions: application to breast cancer data. Journal of the Royal Statistical Society: Series A (Statistics in Society). 2006, 169: 289-303. 10.1111/j.1467-985X.2006.00409.x.CrossRef
45.
go back to reference Ross SM: Simulation. 2006, Elsevier Academic Press, Fourth Ross SM: Simulation. 2006, Elsevier Academic Press, Fourth
Metadata
Title
Competing risk models to estimate the excess mortality and the first recurrent-event hazards
Authors
Aurélien Belot
Laurent Remontet
Guy Launoy
Valérie Jooste
Roch Giorgi
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2011
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/1471-2288-11-78

Other articles of this Issue 1/2011

BMC Medical Research Methodology 1/2011 Go to the issue