Skip to main content
Top
Published in: Critical Care 5/2013

Open Access 01-10-2013 | Commentary

Metabolic changes in cardiomyocytes during sepsis

Authors: James J Douglas, Keith R Walley

Published in: Critical Care | Issue 5/2013

Login to get access

Abstract

Different types of shock induce distinct metabolic changes. The myocardium at rest utilizes free fatty acids as its primary energy source, a mechanism that changes to aerobic glycolysis during sepsis and is in contrast to hemorrhagic shock. The immune system also uses this mechanism, changing its substrate utilization to activate innate and adaptive cells. Cardiomyocytes share a number of features similar to antigen-presenting cells and may use this mechanism to augment the immune response at the reversible expense of cardiac function.
Literature
1.
go back to reference Chew MS, Shekare K, Brand BA, Norin C, Barnett AG: Depletion of myocardial glucose is observed during endotoxaemic but not haemorrhagic shock in a porcine model. Crit Care 2013, 17: R164. 10.1186/cc12843PubMedCentralCrossRefPubMed Chew MS, Shekare K, Brand BA, Norin C, Barnett AG: Depletion of myocardial glucose is observed during endotoxaemic but not haemorrhagic shock in a porcine model. Crit Care 2013, 17: R164. 10.1186/cc12843PubMedCentralCrossRefPubMed
2.
go back to reference Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE: The coronary circulation in human septic shock. Circulation 1986, 73: 637-644. 10.1161/01.CIR.73.4.637CrossRefPubMed Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE: The coronary circulation in human septic shock. Circulation 1986, 73: 637-644. 10.1161/01.CIR.73.4.637CrossRefPubMed
3.
go back to reference Dhainaut JF, Huyghebaert MF, Monsallier JF, Lefevre G, Dall'Ava-Santucci J, Brunet F, Villemant D, Carli A, Raichvarg D: Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 1987, 75: 533-541. 10.1161/01.CIR.75.3.533CrossRefPubMed Dhainaut JF, Huyghebaert MF, Monsallier JF, Lefevre G, Dall'Ava-Santucci J, Brunet F, Villemant D, Carli A, Raichvarg D: Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 1987, 75: 533-541. 10.1161/01.CIR.75.3.533CrossRefPubMed
5.
go back to reference Tian R, Abel ED: Responses of GLUT4-deficient hearts to ischemia underscore the importance of glycolysis. Circulation 2001, 103: 2961-2966. 10.1161/01.CIR.103.24.2961CrossRefPubMed Tian R, Abel ED: Responses of GLUT4-deficient hearts to ischemia underscore the importance of glycolysis. Circulation 2001, 103: 2961-2966. 10.1161/01.CIR.103.24.2961CrossRefPubMed
6.
go back to reference Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, Cross JR, Jung E, Thompson CB, Jones RG, Pearce EJ: Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 2010, 115: 4742-4749. 10.1182/blood-2009-10-249540PubMedCentralCrossRefPubMed Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, Cross JR, Jung E, Thompson CB, Jones RG, Pearce EJ: Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 2010, 115: 4742-4749. 10.1182/blood-2009-10-249540PubMedCentralCrossRefPubMed
7.
go back to reference Rodriguez-Prados JC, Traves PG, Cuenca J, Rico D, Aragones J, Martin-Sanz P, Cascante M, Bosca L: Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 2010, 185: 605-614. 10.4049/jimmunol.0901698CrossRefPubMed Rodriguez-Prados JC, Traves PG, Cuenca J, Rico D, Aragones J, Martin-Sanz P, Cascante M, Bosca L: Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 2010, 185: 605-614. 10.4049/jimmunol.0901698CrossRefPubMed
8.
go back to reference Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, Chi H: HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 2011, 208: 1367-1376. 10.1084/jem.20110278PubMedCentralCrossRefPubMed Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, Chi H: HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 2011, 208: 1367-1376. 10.1084/jem.20110278PubMedCentralCrossRefPubMed
9.
go back to reference van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, Pearce EJ, Pearce EL: Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 2012, 36: 68-78. 10.1016/j.immuni.2011.12.007PubMedCentralCrossRefPubMed van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, Pearce EJ, Pearce EL: Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 2012, 36: 68-78. 10.1016/j.immuni.2011.12.007PubMedCentralCrossRefPubMed
10.
go back to reference Greiner EF, Guppy M, Brand K: Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J Biol Chem 1994, 269: 31484-31490.PubMed Greiner EF, Guppy M, Brand K: Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J Biol Chem 1994, 269: 31484-31490.PubMed
11.
go back to reference Fox CJ, Hammerman PS, Thompson CB: Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 2005, 5: 844-852. 10.1038/nri1710CrossRefPubMed Fox CJ, Hammerman PS, Thompson CB: Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 2005, 5: 844-852. 10.1038/nri1710CrossRefPubMed
12.
go back to reference Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS: TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006, 116: 3015-3025. 10.1172/JCI28898PubMedCentralCrossRefPubMed Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS: TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006, 116: 3015-3025. 10.1172/JCI28898PubMedCentralCrossRefPubMed
13.
go back to reference Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O'Sullivan D, Huang SC, van der Windt GJ, Blagih J, Qiu J, Weber JD, Pearce EJ, Jones RG, Pearce EL: Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 2013, 153: 1239-1251. 10.1016/j.cell.2013.05.016PubMedCentralCrossRefPubMed Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O'Sullivan D, Huang SC, van der Windt GJ, Blagih J, Qiu J, Weber JD, Pearce EJ, Jones RG, Pearce EL: Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 2013, 153: 1239-1251. 10.1016/j.cell.2013.05.016PubMedCentralCrossRefPubMed
14.
go back to reference Brown MA, Jones WK: NF-kappaB action in sepsis: the innate immune system and the heart. Front Biosci 2004, 9: 1201-1217. 10.2741/1304CrossRefPubMed Brown MA, Jones WK: NF-kappaB action in sepsis: the innate immune system and the heart. Front Biosci 2004, 9: 1201-1217. 10.2741/1304CrossRefPubMed
15.
go back to reference Boyd JH, Mathur S, Wang Y, Bateman RM, Walley KR: Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc Res 2006, 72: 384-393. 10.1016/j.cardiores.2006.09.011CrossRefPubMed Boyd JH, Mathur S, Wang Y, Bateman RM, Walley KR: Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc Res 2006, 72: 384-393. 10.1016/j.cardiores.2006.09.011CrossRefPubMed
16.
go back to reference Davani EY, Dorscheid DR, Lee CH, van Breemen C, Walley KR: Novel regulatory mechanism of cardiomyocyte contractility involving ICAM-1 and the cytoskeleton. Am J Physiol Heart Circ Physiol 2004, 287: H1013-H1022. 10.1152/ajpheart.01177.2003CrossRefPubMed Davani EY, Dorscheid DR, Lee CH, van Breemen C, Walley KR: Novel regulatory mechanism of cardiomyocyte contractility involving ICAM-1 and the cytoskeleton. Am J Physiol Heart Circ Physiol 2004, 287: H1013-H1022. 10.1152/ajpheart.01177.2003CrossRefPubMed
17.
go back to reference Boyd JH, Kan B, Roberts H, Wang Y, Walley KR: S100A8 and S100A9 mediate endotoxin-induced cardiomyocyte dysfunction via the receptor for advanced glycation end products. Circ Res 2008, 102: 1239-1246. 10.1161/CIRCRESAHA.107.167544CrossRefPubMed Boyd JH, Kan B, Roberts H, Wang Y, Walley KR: S100A8 and S100A9 mediate endotoxin-induced cardiomyocyte dysfunction via the receptor for advanced glycation end products. Circ Res 2008, 102: 1239-1246. 10.1161/CIRCRESAHA.107.167544CrossRefPubMed
18.
go back to reference Mathur S, Walley KR, Wang Y, Indrambarya T, Boyd JH: Extracellular heat shock protein 70 induces cardiomyocyte inflammation and contractile dysfunction via TLR2. Circ J 2011, 75: 2445-2452. 10.1253/circj.CJ-11-0194CrossRefPubMed Mathur S, Walley KR, Wang Y, Indrambarya T, Boyd JH: Extracellular heat shock protein 70 induces cardiomyocyte inflammation and contractile dysfunction via TLR2. Circ J 2011, 75: 2445-2452. 10.1253/circj.CJ-11-0194CrossRefPubMed
Metadata
Title
Metabolic changes in cardiomyocytes during sepsis
Authors
James J Douglas
Keith R Walley
Publication date
01-10-2013
Publisher
BioMed Central
Published in
Critical Care / Issue 5/2013
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/1364-8535-17-186

Other articles of this Issue 5/2013

Critical Care 5/2013 Go to the issue