Skip to main content
Top
Published in: International Journal of Implant Dentistry 1/2021

Open Access 01-12-2021 | Research

In vitro validation of Digital Image Analysis Sequence (DIAS) for the assessment of the marginal fit of cement-retained implant-supported experimental crowns

Authors: Aristeidis A. Villias, Stefanos G. Kourtis, Hercules C. Karkazis, Gregory L. Polyzois

Published in: International Journal of Implant Dentistry | Issue 1/2021

Login to get access

Abstract

Background

The replica technique with its modifications (negative replica) has been used for the assessment of marginal fit (MF). However, identification of the boundaries between prosthesis, cement, and abutment is challenging. The recently developed Digital Image Analysis Sequence (DIAS) addresses this limitation. Although DIAS is applicable, its reliability has not yet been proven.
The purpose of this study was to verify the DIAS as an acceptable method for the quantitative assessment of MF at cemented crowns, by conducting statistical tests of agreement between different examiners.

Methods

One hundred fifty-one implant-supported experimental crowns were cemented. Equal negative replicas were produced from the assemblies. Each replica was sectioned in six parts, which were photographed under an optical microscope. From the 906 standardized digital photomicrographs (0.65 μm/pixel), 130 were randomly selected for analysis. DIAS included tracing the profile of the crown and the abutment and marking the margin definition points before cementation. Next, the traced and marked outlines were superimposed on each digital image, highlighting the components’ boundaries and enabling MF measurements.
One researcher ran the analysis twice and three others once, independently. Five groups of 130 measurements were formed. Intra- and interobserver reliability was evaluated with intraclass correlation coefficient (ICC). Agreement was estimated with the standard error of measurement (SEM), the smallest detectable change at the 95% confidence level (SDC95%), and the Bland and Altman method of limits of agreement (LoA).

Results

Measured MF ranged between 22.83 and 286.58 pixels. Both the intra- and interobserver reliability were excellent, ICC = 1 at 95% confidence level. The intra- and interobserver SEM and SDC95% were less than 1 and 3 pixels, respectively. The Bland–Altman analysis presented graphically high level of agreement between the mean measurement of the first observer and each of the three other observers’ measurements. Differences between observers were normally distributed. In all three cases, the mean difference was less than 1 pixel and within ± 3 pixels LoA laid at least 95% of differences. T tests of the differences did not reveal any fixed bias (P > .05, not significant).

Conclusion

The DIAS is an objective and reliable method able to detect and quantify MF at ranges observed in clinical practice.
Literature
1.
go back to reference Teichmann M, Göckler F, Rückbeil M, Weber V, Edelhoff D, Wolfart S. Periodontal outcome and additional clinical quality criteria of lithium-disilicate restorations (Empress 2) after 14 years. Clin Oral Investig. 2019;23:2153–64.PubMedCrossRef Teichmann M, Göckler F, Rückbeil M, Weber V, Edelhoff D, Wolfart S. Periodontal outcome and additional clinical quality criteria of lithium-disilicate restorations (Empress 2) after 14 years. Clin Oral Investig. 2019;23:2153–64.PubMedCrossRef
2.
go back to reference Laurent M, Scheer P, Dejou J, Laborde G. Clinical evaluation of the marginal fit of cast crowns--validation of the silicone replica method. J Oral Rehabil. 2008;35:116–22.PubMedCrossRef Laurent M, Scheer P, Dejou J, Laborde G. Clinical evaluation of the marginal fit of cast crowns--validation of the silicone replica method. J Oral Rehabil. 2008;35:116–22.PubMedCrossRef
3.
go back to reference Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent. 1989;62:405–8.PubMedCrossRef Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent. 1989;62:405–8.PubMedCrossRef
4.
go back to reference Pimenta MA, Frasca LC, Lopes R, Rivaldo E. Evaluation of marginal and internal fit of ceramic and metallic crown copings using x-ray microtomography (micro-CT) technology. J Prosthet Dent. 2015;114:223–8.PubMedCrossRef Pimenta MA, Frasca LC, Lopes R, Rivaldo E. Evaluation of marginal and internal fit of ceramic and metallic crown copings using x-ray microtomography (micro-CT) technology. J Prosthet Dent. 2015;114:223–8.PubMedCrossRef
5.
go back to reference Wadhwani C, Goodwin S, Chung KH. Cementing an implant crown: a novel measurement system using computational fluid dynamics approach. Clin Implant Dent Relat Res. 2016;18:97–106.PubMedCrossRef Wadhwani C, Goodwin S, Chung KH. Cementing an implant crown: a novel measurement system using computational fluid dynamics approach. Clin Implant Dent Relat Res. 2016;18:97–106.PubMedCrossRef
6.
go back to reference Jacobs MS, Windeler AS. An investigation of dental luting cement solubility as a function of the marginal gap. J Prosthet Dent. 1991;65:436–42.PubMedCrossRef Jacobs MS, Windeler AS. An investigation of dental luting cement solubility as a function of the marginal gap. J Prosthet Dent. 1991;65:436–42.PubMedCrossRef
7.
go back to reference Oyagüe RC, Sánchez-Turrión A, López-Lozano JF, Suárez-García MJ. Vertical discrepancy and microleakage of laser-sintered and vacuum-cast implant-supported structures luted with different cement types. J Dent. 2012;40:123–30.PubMedCrossRef Oyagüe RC, Sánchez-Turrión A, López-Lozano JF, Suárez-García MJ. Vertical discrepancy and microleakage of laser-sintered and vacuum-cast implant-supported structures luted with different cement types. J Dent. 2012;40:123–30.PubMedCrossRef
8.
go back to reference Gonzalo E, Suárez MJ, Serrano B, Lozano JF. A comparison of the marginal vertical discrepancies of zirconium and metal ceramic posterior fixed dental prostheses before and after cementation. J Prosthet Dent. 2009;102:378–84.PubMedCrossRef Gonzalo E, Suárez MJ, Serrano B, Lozano JF. A comparison of the marginal vertical discrepancies of zirconium and metal ceramic posterior fixed dental prostheses before and after cementation. J Prosthet Dent. 2009;102:378–84.PubMedCrossRef
9.
go back to reference Linkevicius T, Vindasiute E, Puisys A, Peciuliene V. The influence of margin location on the amount of undetected cement excess after delivery of cement-retained implant restorations. Clin Oral Implants Res. 2011;22(12):1379–84.PubMedCrossRef Linkevicius T, Vindasiute E, Puisys A, Peciuliene V. The influence of margin location on the amount of undetected cement excess after delivery of cement-retained implant restorations. Clin Oral Implants Res. 2011;22(12):1379–84.PubMedCrossRef
10.
go back to reference Kim EH, Lee DH, Kwon SM, Kwon TY. A Microcomputed tomography evaluation of the marginal fit of cobalt-chromium alloy copings fabricated by new manufacturing techniques and alloy systems. J Prosthet Dent. 2017;117:393–9.PubMedCrossRef Kim EH, Lee DH, Kwon SM, Kwon TY. A Microcomputed tomography evaluation of the marginal fit of cobalt-chromium alloy copings fabricated by new manufacturing techniques and alloy systems. J Prosthet Dent. 2017;117:393–9.PubMedCrossRef
11.
go back to reference Tosches NA, Brägger U, Lang NP. Marginal fit of cemented and screw-retained crowns incorporated on the Straumann (ITI) Dental Implant System: an in vitro study. Clin Oral Implants Res. 2009;20:79–86.PubMedCrossRef Tosches NA, Brägger U, Lang NP. Marginal fit of cemented and screw-retained crowns incorporated on the Straumann (ITI) Dental Implant System: an in vitro study. Clin Oral Implants Res. 2009;20:79–86.PubMedCrossRef
12.
go back to reference Bronson MR, Lindquist TJ, Dawson DV. Clinical acceptability of crown margins versus marginal gaps as determined by pre-doctoral students and prosthodontists. J Prosthodont. 2005;14:226–32.PubMedCrossRef Bronson MR, Lindquist TJ, Dawson DV. Clinical acceptability of crown margins versus marginal gaps as determined by pre-doctoral students and prosthodontists. J Prosthodont. 2005;14:226–32.PubMedCrossRef
13.
go back to reference Oyagüe RC, Turrión AS, Toledano M, Monticelli F, Osorio R. In vitro vertical misfit evaluation of cast frameworks for cement-retained implant-supported partial prostheses. J Dent. 2009;37:52–8.PubMedCrossRef Oyagüe RC, Turrión AS, Toledano M, Monticelli F, Osorio R. In vitro vertical misfit evaluation of cast frameworks for cement-retained implant-supported partial prostheses. J Dent. 2009;37:52–8.PubMedCrossRef
14.
15.
go back to reference Mello CC, Lemos CAA, de Luna Gomes JM, Verri FR, Pellizzer EPCAD. CAM vs conventional technique for fabrication of implant-supported frameworks: a systematic review and meta-analysis of in vitro studies. Int J Prosthodont. 2019;32(2):182–92.PubMedCrossRef Mello CC, Lemos CAA, de Luna Gomes JM, Verri FR, Pellizzer EPCAD. CAM vs conventional technique for fabrication of implant-supported frameworks: a systematic review and meta-analysis of in vitro studies. Int J Prosthodont. 2019;32(2):182–92.PubMedCrossRef
16.
go back to reference Sadid-Zadeh R, Katsavochristou A, Squires T, Simon M. Accuracy of marginal fit and axial wall contour for lithium disilicate crowns fabricated using three digital workflows. J Prosthet Dent. 2020;123(1):121–7.PubMedCrossRef Sadid-Zadeh R, Katsavochristou A, Squires T, Simon M. Accuracy of marginal fit and axial wall contour for lithium disilicate crowns fabricated using three digital workflows. J Prosthet Dent. 2020;123(1):121–7.PubMedCrossRef
17.
go back to reference Keith SE, Miller BH, Woody RD, Higginbottom FL. Marginal discrepancy of screw-retained and cemented metal-ceramic crowns on implants abutments. Int J Oral Maxillofac Implants. 1999;14:369–78.PubMed Keith SE, Miller BH, Woody RD, Higginbottom FL. Marginal discrepancy of screw-retained and cemented metal-ceramic crowns on implants abutments. Int J Oral Maxillofac Implants. 1999;14:369–78.PubMed
18.
go back to reference Heckmann SM, Karl M, Wichmann MG, Winter W, Graef F, Taylor TD. Cement fixation and screw retention: parameters of passive fit. An in vitro study of three-unit implant-supported fixed partial dentures. Clin Oral Implants Res. 2004;15:466–73.PubMedCrossRef Heckmann SM, Karl M, Wichmann MG, Winter W, Graef F, Taylor TD. Cement fixation and screw retention: parameters of passive fit. An in vitro study of three-unit implant-supported fixed partial dentures. Clin Oral Implants Res. 2004;15:466–73.PubMedCrossRef
19.
go back to reference Board of Trustees of the American Academy of Periodontology. Peri-implant mucositis and peri-implantitis: a current understanding of their diagnoses and clinical implications. J Periodontol. 2013;84:436–43.CrossRef Board of Trustees of the American Academy of Periodontology. Peri-implant mucositis and peri-implantitis: a current understanding of their diagnoses and clinical implications. J Periodontol. 2013;84:436–43.CrossRef
20.
go back to reference Korsch M, Marten SM, Walther W, Vital M, Pieper DH, Dötsch A. Impact of dental cement on the peri-implant biofilm-microbial comparison of two different cements in an in vivo observational study. Clin Implant Dent Relat Res. 2018;20:806–13.PubMedCrossRef Korsch M, Marten SM, Walther W, Vital M, Pieper DH, Dötsch A. Impact of dental cement on the peri-implant biofilm-microbial comparison of two different cements in an in vivo observational study. Clin Implant Dent Relat Res. 2018;20:806–13.PubMedCrossRef
21.
go back to reference Gehrke P, Bleuel K, Fischer C, Sader R. Influence of margin location and luting material on the amount of undetected cement excess on CAD/CAM implant abutments and cement-retained zirconia crowns: an in-vitro study. BMC Oral Health. 2019;19(1):111.PubMedPubMedCentralCrossRef Gehrke P, Bleuel K, Fischer C, Sader R. Influence of margin location and luting material on the amount of undetected cement excess on CAD/CAM implant abutments and cement-retained zirconia crowns: an in-vitro study. BMC Oral Health. 2019;19(1):111.PubMedPubMedCentralCrossRef
22.
go back to reference García-Minguillán G, Del Río J, Preciado A, D Lynch C, Castillo-Oyagüe R. Impact of the retention system of implant fixed dental restorations on the peri-implant health, state of the prosthesis, and patients' oral health-related quality of life. J Dent. 2020;103298:94. García-Minguillán G, Del Río J, Preciado A, D Lynch C, Castillo-Oyagüe R. Impact of the retention system of implant fixed dental restorations on the peri-implant health, state of the prosthesis, and patients' oral health-related quality of life. J Dent. 2020;103298:94.
23.
go back to reference Hermann JS, Buser D, Schenk RK, Schoolfield JD, Cochran DL. Biologic width around one- and two-piece titanium implants. Clin Oral Implants Res. 2001;12:559–71.PubMedCrossRef Hermann JS, Buser D, Schenk RK, Schoolfield JD, Cochran DL. Biologic width around one- and two-piece titanium implants. Clin Oral Implants Res. 2001;12:559–71.PubMedCrossRef
24.
go back to reference Tan K, Pjetursson BE, Lang NP, Chan ES. A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. Clin Oral Implants Res. 2004;15:654–66.PubMedCrossRef Tan K, Pjetursson BE, Lang NP, Chan ES. A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. Clin Oral Implants Res. 2004;15:654–66.PubMedCrossRef
25.
go back to reference Reich S, Uhlen S, Gozdowski S, Lohbauer U. Measurement of cement thickness under lithium disilicate crowns using an impression material technique. Clin Oral Investig. 2011;15:521–6.PubMedCrossRef Reich S, Uhlen S, Gozdowski S, Lohbauer U. Measurement of cement thickness under lithium disilicate crowns using an impression material technique. Clin Oral Investig. 2011;15:521–6.PubMedCrossRef
26.
go back to reference Alqutaibi AY. Cement- and screw-retained implant-supported restorations showed comparable marginal bone loss and implant survival rate. J Evid Based Dent Pract. 2017;17(2):107–9.PubMedCrossRef Alqutaibi AY. Cement- and screw-retained implant-supported restorations showed comparable marginal bone loss and implant survival rate. J Evid Based Dent Pract. 2017;17(2):107–9.PubMedCrossRef
27.
go back to reference Weigl P, Saarepera K, Hinrikus K, Wu Y, Trimpou G, Lorenz J. Screw-retained monolithic zirconia vs. cemented porcelain-fused-to-metal implant crowns: a prospective randomized clinical trial in split-mouth design. Clin Oral Investig. 2019;23(3):1067–75.PubMedCrossRef Weigl P, Saarepera K, Hinrikus K, Wu Y, Trimpou G, Lorenz J. Screw-retained monolithic zirconia vs. cemented porcelain-fused-to-metal implant crowns: a prospective randomized clinical trial in split-mouth design. Clin Oral Investig. 2019;23(3):1067–75.PubMedCrossRef
28.
go back to reference Taylor TD, Agar JR. Twenty years of progress in implant prosthodontics. J Prosthet Dent. 2002;88:89–95.PubMedCrossRef Taylor TD, Agar JR. Twenty years of progress in implant prosthodontics. J Prosthet Dent. 2002;88:89–95.PubMedCrossRef
29.
go back to reference Gómez-Polo M, Ortega R, Gómez-Polo C, Celemin A, Del Rio Highsmith J. Factors affecting the decision to use cemented or screw-retained fixed implant-supported prostheses: a critical review. Int J Prosthodont. 2018;31(1):43–54.PubMedCrossRef Gómez-Polo M, Ortega R, Gómez-Polo C, Celemin A, Del Rio Highsmith J. Factors affecting the decision to use cemented or screw-retained fixed implant-supported prostheses: a critical review. Int J Prosthodont. 2018;31(1):43–54.PubMedCrossRef
30.
go back to reference Hamed MT, Abdullah Mously H, Khalid Alamoudi S, Hossam Hashem AB, Hussein NG. A systematic review of screw versus cement-retained fixed implant supported reconstructions. Clin Cosmet Investig Dent. 2020;12:9–16.PubMedPubMedCentralCrossRef Hamed MT, Abdullah Mously H, Khalid Alamoudi S, Hossam Hashem AB, Hussein NG. A systematic review of screw versus cement-retained fixed implant supported reconstructions. Clin Cosmet Investig Dent. 2020;12:9–16.PubMedPubMedCentralCrossRef
31.
go back to reference Boitelle P, Tapie L, Mawussi B, Fromentin O. Evaluation of the marginal fit of CAD-CAM zirconia copings: comparison of 2D and 3D measurement methods. J Prosthet Dent. 2018;119:75–81.PubMedCrossRef Boitelle P, Tapie L, Mawussi B, Fromentin O. Evaluation of the marginal fit of CAD-CAM zirconia copings: comparison of 2D and 3D measurement methods. J Prosthet Dent. 2018;119:75–81.PubMedCrossRef
32.
go back to reference Boitelle P, Mawussi B, Tapie L, Fromentin O. A systematic review of CAD/CAM fit restoration evaluations. J Oral Rehabil. 2014;41:853–74.PubMedCrossRef Boitelle P, Mawussi B, Tapie L, Fromentin O. A systematic review of CAD/CAM fit restoration evaluations. J Oral Rehabil. 2014;41:853–74.PubMedCrossRef
33.
go back to reference Nawafleh NA, Mack F, Evans J, Mackay J, Hatamleh MM. Accuracy and reliability of methods to measure marginal adaptation of crowns and FDPs: a literature review. J Prosthodont. 2013;22:419–28.PubMedCrossRef Nawafleh NA, Mack F, Evans J, Mackay J, Hatamleh MM. Accuracy and reliability of methods to measure marginal adaptation of crowns and FDPs: a literature review. J Prosthodont. 2013;22:419–28.PubMedCrossRef
34.
go back to reference Gassino G, Barone Monfrin S, Scanu M, Spina G, Preti G. Marginal adaptation of fixed prosthodontics: a new in vitro 360-degree external examination procedure. Int J Prosthodont. 2004;17(2):218–23.PubMed Gassino G, Barone Monfrin S, Scanu M, Spina G, Preti G. Marginal adaptation of fixed prosthodontics: a new in vitro 360-degree external examination procedure. Int J Prosthodont. 2004;17(2):218–23.PubMed
36.
go back to reference Rudolph H, Ostertag S, Ostertag M, Walter MH, Luthardt RG, Kuhn K. Reliability of light microscopy and a computer-assisted replica measurement technique for evaluating the fit of dental copings. J Appl Oral Sci. 2018;26:e20160590.PubMedPubMedCentralCrossRef Rudolph H, Ostertag S, Ostertag M, Walter MH, Luthardt RG, Kuhn K. Reliability of light microscopy and a computer-assisted replica measurement technique for evaluating the fit of dental copings. J Appl Oral Sci. 2018;26:e20160590.PubMedPubMedCentralCrossRef
37.
go back to reference Att W, Komine F, Gerds T, Strub JR. Marginal adaptation of three different zirconium dioxide three-unit fixed dental prostheses. J Prosthet Dent. 2009;101(4):239–47.PubMedCrossRef Att W, Komine F, Gerds T, Strub JR. Marginal adaptation of three different zirconium dioxide three-unit fixed dental prostheses. J Prosthet Dent. 2009;101(4):239–47.PubMedCrossRef
38.
go back to reference Wolfart S, Wegner SM, Halabi AA, Kern M. Clinical evaluation of marginal fit of a new experimental all-ceramic system before and after cementation. Int J Prosthodont. 2003;16:587–92.PubMed Wolfart S, Wegner SM, Halabi AA, Kern M. Clinical evaluation of marginal fit of a new experimental all-ceramic system before and after cementation. Int J Prosthodont. 2003;16:587–92.PubMed
39.
go back to reference Coli P, Karlsson S. Fit of a new pressure-sintered zirconium dioxide coping. Int J Prosthodont. 2004;17:59–64.PubMed Coli P, Karlsson S. Fit of a new pressure-sintered zirconium dioxide coping. Int J Prosthodont. 2004;17:59–64.PubMed
40.
go back to reference Mai HM, Lee KE, Ha JH, Lee DH. Effects of image and education on the precision of the measurement method for evaluating prosthesis misfit. J Prosthet Dent. 2018;119:600–5.PubMedCrossRef Mai HM, Lee KE, Ha JH, Lee DH. Effects of image and education on the precision of the measurement method for evaluating prosthesis misfit. J Prosthet Dent. 2018;119:600–5.PubMedCrossRef
41.
go back to reference Villias A, Niedermeier W. Finishing effects on cement surfaces at different marginal fit levels. [abstract]. J Dent Res. 2014;93(Spec Iss C):442 (www.iadr.org). Villias A, Niedermeier W. Finishing effects on cement surfaces at different marginal fit levels. [abstract]. J Dent Res. 2014;93(Spec Iss C):442 (www.​iadr.​org).
42.
go back to reference Villias A, Niedermeier W. Influence of three factors on cement profile. [abstract]. J Dent Res. 2014;93(Spec Iss B):763 (www.iadr.org). Villias A, Niedermeier W. Influence of three factors on cement profile. [abstract]. J Dent Res. 2014;93(Spec Iss B):763 (www.​iadr.​org).
43.
go back to reference Colpani JT, Borba M, Bona AD. Evaluation of marginal and internal fit of ceramic crown copings. Dent Mater. 2013;29:174–80.PubMedCrossRef Colpani JT, Borba M, Bona AD. Evaluation of marginal and internal fit of ceramic crown copings. Dent Mater. 2013;29:174–80.PubMedCrossRef
44.
go back to reference Rahme HY, Tehini GE, Adib SM, Ardo AS, Rifai KT. In vitro evaluation of the "replica technique" in the measurement of the fit of Procera crowns. J Contemp Dent Pract. 2008;9:25–32.PubMed Rahme HY, Tehini GE, Adib SM, Ardo AS, Rifai KT. In vitro evaluation of the "replica technique" in the measurement of the fit of Procera crowns. J Contemp Dent Pract. 2008;9:25–32.PubMed
45.
go back to reference Segerström S, Wiking-Lima de Faria J, Braian M, Ameri A, Ahlgren C. A validation study of the impression replica technique. J Prosthodont. 2019;28:e609–e16.PubMedCrossRef Segerström S, Wiking-Lima de Faria J, Braian M, Ameri A, Ahlgren C. A validation study of the impression replica technique. J Prosthodont. 2019;28:e609–e16.PubMedCrossRef
46.
go back to reference Falk A, Vult von Steyern P, Fransson H, Thorén MM. Reliability of the impression replica technique. Int J Prosthodont. 2015;28:179–80.PubMedCrossRef Falk A, Vult von Steyern P, Fransson H, Thorén MM. Reliability of the impression replica technique. Int J Prosthodont. 2015;28:179–80.PubMedCrossRef
47.
go back to reference Mai HN, Lee KE, Lee KB, Jeong SM, Lee SJ, Lee CH, An SY, Lee DH. Verification of a computer-aided replica technique for evaluating prosthesis adaptation using statistical agreement analysis. J Adv Prosthodont. 2017;9:358–63.PubMedPubMedCentralCrossRef Mai HN, Lee KE, Lee KB, Jeong SM, Lee SJ, Lee CH, An SY, Lee DH. Verification of a computer-aided replica technique for evaluating prosthesis adaptation using statistical agreement analysis. J Adv Prosthodont. 2017;9:358–63.PubMedPubMedCentralCrossRef
49.
50.
go back to reference Lin L, Hedayat AS, Sinha B, Yang M. Statistical methods in assessing agreement. Models, Issues, and Tools. J Am Stat Assoc. 2002;97:257–70.CrossRef Lin L, Hedayat AS, Sinha B, Yang M. Statistical methods in assessing agreement. Models, Issues, and Tools. J Am Stat Assoc. 2002;97:257–70.CrossRef
51.
go back to reference Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420–8.PubMedCrossRef Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420–8.PubMedCrossRef
52.
go back to reference Field A. Discovering Statistics Using SPSS. 3rd ed. London: Sage Publication; 2009. Field A. Discovering Statistics Using SPSS. 3rd ed. London: Sage Publication; 2009.
53.
go back to reference Whitley E, Ball J. Statistics review 1: presenting and summarising data. Crit Care. 2002;6:66–71.PubMedCrossRef Whitley E, Ball J. Statistics review 1: presenting and summarising data. Crit Care. 2002;6:66–71.PubMedCrossRef
54.
go back to reference Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8:135–60.PubMedCrossRef Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8:135–60.PubMedCrossRef
55.
go back to reference Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.PubMedCrossRef Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.PubMedCrossRef
56.
go back to reference de Vet HC, Terwee CB, Knol DL, Bouter LM. When to use agreement versus reliability measures. J Clin Epidemiol. 2006;59:1033–9.PubMedCrossRef de Vet HC, Terwee CB, Knol DL, Bouter LM. When to use agreement versus reliability measures. J Clin Epidemiol. 2006;59:1033–9.PubMedCrossRef
57.
go back to reference Tighe J, McManus IC, Dewhurst NG, Chis L, Mucklow J. The standard error of measurement is a more appropriate measure of quality for postgraduate medical assessments than is reliability: an analysis of MRCP(UK) examinations. BMC Med Educ. 2010;10:40.PubMedPubMedCentralCrossRef Tighe J, McManus IC, Dewhurst NG, Chis L, Mucklow J. The standard error of measurement is a more appropriate measure of quality for postgraduate medical assessments than is reliability: an analysis of MRCP(UK) examinations. BMC Med Educ. 2010;10:40.PubMedPubMedCentralCrossRef
58.
go back to reference Nakagawa S, Johnson PCD, Schielzeth H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J R Soc Interface. 2017;14:20170213.PubMedPubMedCentralCrossRef Nakagawa S, Johnson PCD, Schielzeth H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J R Soc Interface. 2017;14:20170213.PubMedPubMedCentralCrossRef
59.
go back to reference Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91.PubMedCrossRef Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91.PubMedCrossRef
60.
go back to reference Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):1149–60.PubMedCrossRef Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):1149–60.PubMedCrossRef
Metadata
Title
In vitro validation of Digital Image Analysis Sequence (DIAS) for the assessment of the marginal fit of cement-retained implant-supported experimental crowns
Authors
Aristeidis A. Villias
Stefanos G. Kourtis
Hercules C. Karkazis
Gregory L. Polyzois
Publication date
01-12-2021
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Implant Dentistry / Issue 1/2021
Electronic ISSN: 2198-4034
DOI
https://doi.org/10.1186/s40729-021-00290-6

Other articles of this Issue 1/2021

International Journal of Implant Dentistry 1/2021 Go to the issue