Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2018

Open Access 01-12-2018 | Research

Membrane binding, internalization, and sorting of alpha-synuclein in the cell

Authors: Caterina Masaracchia, Marilena Hnida, Ellen Gerhardt, Tomás Lopes da Fonseca, Anna Villar-Pique, Tiago Branco, Markus A. Stahlberg, Camin Dean, Claudio O. Fernández, Ira Milosevic, Tiago F. Outeiro

Published in: Acta Neuropathologica Communications | Issue 1/2018

Login to get access

Abstract

Alpha-synuclein (aSyn) plays a crucial role in Parkinson’s disease (PD) and other synucleinopathies, since it misfolds and accumulates in typical proteinaceous inclusions. While the function of aSyn is thought to be related to vesicle binding and trafficking, the precise molecular mechanisms linking aSyn with synucleinopathies are still obscure. aSyn can spread in a prion-like manner between interconnected neurons, contributing to the propagation of the pathology and to the progressive nature of synucleinopathies. Here, we investigated the interaction of aSyn with membranes and trafficking machinery pathways using cellular models of PD that are amenable to detailed molecular analyses. We found that different species of aSyn can enter cells and form high molecular weight species, and that membrane binding properties are important for the internalization of aSyn. Once internalized, aSyn accumulates in intracellular inclusions. Interestingly, we found that internalization is blocked in the presence of dynamin inhibitors (blocked membrane scission), suggesting the involvement of the endocytic pathway in the internalization of aSyn. By screening a pool of small Rab-GTPase proteins (Rabs) which regulate membrane trafficking, we found that internalized aSyn partially colocalized with Rab5A and Rab7. Initially, aSyn accumulated in Rab4A-labelled vesicles and, at later stages, it reached the autophagy-lysosomal pathway (ALP) where it gets degraded. In total, our study emphasizes the importance of membrane binding, not only as part of the normal function but also as an important step in the internalization and subsequent accumulation of aSyn. Importantly, we identified a fundamental role for Rab proteins in the modulation of aSyn processing, clearance and spreading, suggesting that targeting Rab proteins may hold important therapeutic value in PD and other synucleinopathies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ahn KJ, Paik SR, Chung KC, Kim J (2006) Amino acid sequence motifs and mechanistic features of the membrane translocation of a-synuclein. J Neurochem 97:265–279CrossRefPubMed Ahn KJ, Paik SR, Chung KC, Kim J (2006) Amino acid sequence motifs and mechanistic features of the membrane translocation of a-synuclein. J Neurochem 97:265–279CrossRefPubMed
2.
go back to reference Appel-Cresswell S, Vilarino-Guell C, Encarnacion M, Sherman H, Yu I, Shah B et al (2013) Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov. Disord 28:811–813CrossRef Appel-Cresswell S, Vilarino-Guell C, Encarnacion M, Sherman H, Yu I, Shah B et al (2013) Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov. Disord 28:811–813CrossRef
4.
go back to reference Bertoncini CW, Fernández CO, Griesinger C, Jovin TM, Zweckstetter M (2005) Familial mutants of α-synuclein with increased neurotoxicity have a destabilized conformation. J Biol Chem 280:30649–30652CrossRefPubMed Bertoncini CW, Fernández CO, Griesinger C, Jovin TM, Zweckstetter M (2005) Familial mutants of α-synuclein with increased neurotoxicity have a destabilized conformation. J Biol Chem 280:30649–30652CrossRefPubMed
5.
go back to reference Breda C, Nugent ML, Estranero JG, Kyriacou CP, Outeiro TF, Steinert JR et al (2015) Rab11 modulates α-synuclein-mediated defects in synaptic transmission and behaviour. Hum Mol Genet 24:1077–1091CrossRefPubMed Breda C, Nugent ML, Estranero JG, Kyriacou CP, Outeiro TF, Steinert JR et al (2015) Rab11 modulates α-synuclein-mediated defects in synaptic transmission and behaviour. Hum Mol Genet 24:1077–1091CrossRefPubMed
7.
go back to reference Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 11:301–307CrossRefPubMedPubMedCentral Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 11:301–307CrossRefPubMedPubMedCentral
8.
go back to reference Burré J, Sharma M, Südhof TC (2012) Systematic mutagenesis of aSyn reveals distinct sequence requirements for physiological and pathological activities. J Neurochem 15227:15242 Burré J, Sharma M, Südhof TC (2012) Systematic mutagenesis of aSyn reveals distinct sequence requirements for physiological and pathological activities. J Neurochem 15227:15242
11.
go back to reference Burré J, Sharma M, Tsetsenis T, Buchman V, Südhof TC (2010) α -Synuclein Promotes SNARE-Complex Assembly in vivo and in vitro. Science (80-.) 329:1663–1667CrossRef Burré J, Sharma M, Tsetsenis T, Buchman V, Südhof TC (2010) α -Synuclein Promotes SNARE-Complex Assembly in vivo and in vitro. Science (80-.) 329:1663–1667CrossRef
12.
go back to reference Bussell R, Eliezer D (2001) Residual structure and dynamics in Parkinson’s disease-associated mutants of a-Synuclein. J Biol Chem 276:45996–46003CrossRefPubMed Bussell R, Eliezer D (2001) Residual structure and dynamics in Parkinson’s disease-associated mutants of a-Synuclein. J Biol Chem 276:45996–46003CrossRefPubMed
13.
go back to reference Bussell RJ, Eliezer D (2003) A structural and functional role for 11-mer repeats in a -Synuclein and other exchangeable lipid binding proteins. J Mol Biol 2836:763–778CrossRef Bussell RJ, Eliezer D (2003) A structural and functional role for 11-mer repeats in a -Synuclein and other exchangeable lipid binding proteins. J Mol Biol 2836:763–778CrossRef
14.
go back to reference Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11:50–61CrossRefPubMed Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11:50–61CrossRefPubMed
15.
go back to reference Chandra S, Chen X, Rizo J, Jahn R, Su TC (2003) A broken a-helix in folded a-Synuclein. J Biol Chem 278:15313–15318CrossRefPubMed Chandra S, Chen X, Rizo J, Jahn R, Su TC (2003) A broken a-helix in folded a-Synuclein. J Biol Chem 278:15313–15318CrossRefPubMed
16.
go back to reference Chartier-Harlin M-C, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S et al (2004) α-Synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1169–1171CrossRef Chartier-Harlin M-C, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S et al (2004) α-Synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1169–1171CrossRef
17.
go back to reference Chutna O, Gonçalves S, Villar-Piqué A, Guerreiro P, Marijanovic Z, Mendes T et al (2014) The small GTPase Rab11 co-localizes with α-synuclein in intracellular inclusions and modulates its aggregation, secretion and toxicity. Hum Mol Genet 23:6732–6745CrossRefPubMed Chutna O, Gonçalves S, Villar-Piqué A, Guerreiro P, Marijanovic Z, Mendes T et al (2014) The small GTPase Rab11 co-localizes with α-synuclein in intracellular inclusions and modulates its aggregation, secretion and toxicity. Hum Mol Genet 23:6732–6745CrossRefPubMed
18.
go back to reference D’Souza RS, Semus R, Billings EA, Meyer CB, Conger K, Casanova JE (2014) Rab4 orchestrates a small GTPase cascade for recruitment of adaptor proteins to early endosomes. Curr Biol 24:1187–1198CrossRefPubMedPubMedCentral D’Souza RS, Semus R, Billings EA, Meyer CB, Conger K, Casanova JE (2014) Rab4 orchestrates a small GTPase cascade for recruitment of adaptor proteins to early endosomes. Curr Biol 24:1187–1198CrossRefPubMedPubMedCentral
19.
go back to reference Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L et al (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7:42CrossRefPubMedPubMedCentral Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L et al (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7:42CrossRefPubMedPubMedCentral
20.
go back to reference Elia G (2008) Biotinylation reagents for the study of cell surface proteins. Proteomics 8:4012–4024CrossRefPubMed Elia G (2008) Biotinylation reagents for the study of cell surface proteins. Proteomics 8:4012–4024CrossRefPubMed
21.
go back to reference Ferreon ACM, Gambin Y, Lemke EA, Deniz AA (2009) Interplay of a-synuclein binding and conformational switching probed by single-molecule fluorescence. Proc Natl Acad Sci 106:5645–5650CrossRefPubMed Ferreon ACM, Gambin Y, Lemke EA, Deniz AA (2009) Interplay of a-synuclein binding and conformational switching probed by single-molecule fluorescence. Proc Natl Acad Sci 106:5645–5650CrossRefPubMed
22.
go back to reference Fonseca-Ornelas L, Eisbach SE, Paulat M, Giller K, Fernández CO, Outeiro TF et al (2014) Small molecule-mediated stabilization of vesicle-associated helical α-synuclein inhibits pathogenic misfolding and aggregation. [Internet]. Nat. Commun 5:5857. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25524885 Fonseca-Ornelas L, Eisbach SE, Paulat M, Giller K, Fernández CO, Outeiro TF et al (2014) Small molecule-mediated stabilization of vesicle-associated helical α-synuclein inhibits pathogenic misfolding and aggregation. [Internet]. Nat. Commun 5:5857. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25524885
23.
go back to reference Giasson BI, Murray IVJ, Trojanowski JQ, Lee VM (2001) A hydrophobic stretch of 12 amino acid residues in the middle of a-Synuclein is essential for filament assembly. J Biol Chem 276:2380–2386CrossRefPubMed Giasson BI, Murray IVJ, Trojanowski JQ, Lee VM (2001) A hydrophobic stretch of 12 amino acid residues in the middle of a-Synuclein is essential for filament assembly. J Biol Chem 276:2380–2386CrossRefPubMed
24.
25.
go back to reference Gonçalves SA, Macedo D, Raquel H, Simões PD, Giorgini F, Ramalho JS et al (2016) shRNA-based screen identifies endocytic recycling pathway components that act as genetic modifiers of alpha-Synuclein aggregation, secretion and toxicity. PLoS Genet 12:1–26CrossRef Gonçalves SA, Macedo D, Raquel H, Simões PD, Giorgini F, Ramalho JS et al (2016) shRNA-based screen identifies endocytic recycling pathway components that act as genetic modifiers of alpha-Synuclein aggregation, secretion and toxicity. PLoS Genet 12:1–26CrossRef
26.
go back to reference Hoyer W, Cherny D, Subramaniam V, Jovin TM (2004) Impact of the Acidic C-Terminal Region Comprising Amino Acids 109–140 on a-Synuclein Aggregation in Vitro. Biochemistry:16233–16242 Hoyer W, Cherny D, Subramaniam V, Jovin TM (2004) Impact of the Acidic C-Terminal Region Comprising Amino Acids 109–140 on a-Synuclein Aggregation in Vitro. Biochemistry:16233–16242
28.
go back to reference Jao CC, Hegde BG, Chen J, Haworth IS, Langen R (2008) Structure of membrane-bound alpha-synuclein from site-directed spin labeling and computational refinement. Proc Natl Acad Sci U S A 105:19666–19671CrossRefPubMedPubMedCentral Jao CC, Hegde BG, Chen J, Haworth IS, Langen R (2008) Structure of membrane-bound alpha-synuclein from site-directed spin labeling and computational refinement. Proc Natl Acad Sci U S A 105:19666–19671CrossRefPubMedPubMedCentral
29.
go back to reference Jensen PH, Nielsen MS, Jakes R, Dotti G, Goedert M (1998) Binding of alpha-synuclein to brain vesicles is abolished by familial parkinsons-disease mutation. J Biol Chem 273:26292–26294CrossRefPubMed Jensen PH, Nielsen MS, Jakes R, Dotti G, Goedert M (1998) Binding of alpha-synuclein to brain vesicles is abolished by familial parkinsons-disease mutation. J Biol Chem 273:26292–26294CrossRefPubMed
30.
go back to reference Jo E, Fuller N, Rand RP, St George-Hyslop P, Fraser PE (2002) Defective membrane interactions of familial Parkinson’s disease mutant A30P α-synuclein 1 1Edited by I. B Holland J Mol Biol 315:799–807CrossRef Jo E, Fuller N, Rand RP, St George-Hyslop P, Fraser PE (2002) Defective membrane interactions of familial Parkinson’s disease mutant A30P α-synuclein 1 1Edited by I. B Holland J Mol Biol 315:799–807CrossRef
31.
go back to reference Kim TD, Paik SR, Yang C-H (2002) Structural and functional implications of C-terminal regions of alpha-synuclein. Biochemistry 41:13782–13790CrossRefPubMed Kim TD, Paik SR, Yang C-H (2002) Structural and functional implications of C-terminal regions of alpha-synuclein. Biochemistry 41:13782–13790CrossRefPubMed
32.
go back to reference Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Epplen JT et al (1998) Ala30Pro mutation in the gene encoding a-synuclein in Parkinson’s. Nat Genet 18:231–236CrossRef Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Epplen JT et al (1998) Ala30Pro mutation in the gene encoding a-synuclein in Parkinson’s. Nat Genet 18:231–236CrossRef
33.
go back to reference Lamberto GR, Binolfi A, Orcellet ML, Bertoncini CW, Zweckstetter M, Griesinger C et al (2009) Structural and mechanistic basis behind the inhibitory interaction of PcTS on alpha-synuclein amyloid fibril formation. Proc Natl Acad Sci U S A 106:21057–21062CrossRefPubMedPubMedCentral Lamberto GR, Binolfi A, Orcellet ML, Bertoncini CW, Zweckstetter M, Griesinger C et al (2009) Structural and mechanistic basis behind the inhibitory interaction of PcTS on alpha-synuclein amyloid fibril formation. Proc Natl Acad Sci U S A 106:21057–21062CrossRefPubMedPubMedCentral
34.
go back to reference Lee JH, Ying J, Bax A (2016) Nuclear magnetic resonance observation of a-Synuclein membrane interaction by monitoring the acetylation reactivity of its lysine side chains. Biochemistry 55:4949–4959CrossRefPubMedPubMedCentral Lee JH, Ying J, Bax A (2016) Nuclear magnetic resonance observation of a-Synuclein membrane interaction by monitoring the acetylation reactivity of its lysine side chains. Biochemistry 55:4949–4959CrossRefPubMedPubMedCentral
35.
go back to reference Lesage S, Anheim M, Letournel F, Bousset L, Honoré A, Rozas N et al (2013) G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol 73:459–471CrossRefPubMed Lesage S, Anheim M, Letournel F, Bousset L, Honoré A, Rozas N et al (2013) G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol 73:459–471CrossRefPubMed
36.
go back to reference Lesage S, Bras J, Cormier-Dequaire F, Condroyer C, Nicolas A, Darwent L et al (2015) Loss-of-function mutations in RAB39B are associated with typical early-onset Parkinson disease. Neurol Genet 1:e9CrossRefPubMedPubMedCentral Lesage S, Bras J, Cormier-Dequaire F, Condroyer C, Nicolas A, Darwent L et al (2015) Loss-of-function mutations in RAB39B are associated with typical early-onset Parkinson disease. Neurol Genet 1:e9CrossRefPubMedPubMedCentral
37.
go back to reference Luk KC, Kehm V, Carroll J, Zhang B, Brien PO, John Q et al (2013) Pathological a-synuclein transmission initiates parkinson-like Neurodegeneration in non-transgenic mice. Science (80-) 338:949–953CrossRef Luk KC, Kehm V, Carroll J, Zhang B, Brien PO, John Q et al (2013) Pathological a-synuclein transmission initiates parkinson-like Neurodegeneration in non-transgenic mice. Science (80-) 338:949–953CrossRef
38.
go back to reference Luk KC, Song C, O’Brien P, Stieber A, Branch JR, Brunden KR et al (2009) Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci U S A 106:20051–20056CrossRefPubMedPubMedCentral Luk KC, Song C, O’Brien P, Stieber A, Branch JR, Brunden KR et al (2009) Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci U S A 106:20051–20056CrossRefPubMedPubMedCentral
39.
go back to reference Maltsev AS, Ying J, Bax A (2012) Impact of N-terminal acetylation of a-synuclein on its random coil and lipid binding properties. Biochemistry 51:5004–5013CrossRefPubMedPubMedCentral Maltsev AS, Ying J, Bax A (2012) Impact of N-terminal acetylation of a-synuclein on its random coil and lipid binding properties. Biochemistry 51:5004–5013CrossRefPubMedPubMedCentral
40.
go back to reference Mccluskey A, Daniel JA, Hadzic G, Chau N, Clayton EL, Mariana A et al (2013) Building a better dynasore: the dyngo compounds potently inhibit dynamin and endocytosis. Traffic 14:1272–1289CrossRefPubMedPubMedCentral Mccluskey A, Daniel JA, Hadzic G, Chau N, Clayton EL, Mariana A et al (2013) Building a better dynasore: the dyngo compounds potently inhibit dynamin and endocytosis. Traffic 14:1272–1289CrossRefPubMedPubMedCentral
41.
go back to reference Michel CH, Kumar S, Pinotsi D, Tunnacliffe A, George-Hyslop PS, Mandelkow E et al (2014) Extracellular monomeric tau protein is sufficient to initiate the spread of tau protein pathology. J Biol Chem 289:956–967CrossRefPubMed Michel CH, Kumar S, Pinotsi D, Tunnacliffe A, George-Hyslop PS, Mandelkow E et al (2014) Extracellular monomeric tau protein is sufficient to initiate the spread of tau protein pathology. J Biol Chem 289:956–967CrossRefPubMed
42.
go back to reference Miotto MC, Valiente-Gabioud AA, Rossetti G, Zweckstetter M, Carloni P, Selenko P et al (2015) Copper binding to the N-terminally acetylated, naturally occurring form of alpha-Synuclein induces local helical folding. J Am Chem Soc 137:6444–6447CrossRefPubMed Miotto MC, Valiente-Gabioud AA, Rossetti G, Zweckstetter M, Carloni P, Selenko P et al (2015) Copper binding to the N-terminally acetylated, naturally occurring form of alpha-Synuclein induces local helical folding. J Am Chem Soc 137:6444–6447CrossRefPubMed
43.
go back to reference Park SM, Jung HY, Kim TD, Park JH, Yang C, Kim J. Distinct Roles of the N-terminal-binding Domain and the C-terminal-solubilizing Domain of A-Synuclein , a Molecular Chaperone. J Biol Chem 2002; 277: 28512–28520 Park SM, Jung HY, Kim TD, Park JH, Yang C, Kim J. Distinct Roles of the N-terminal-binding Domain and the C-terminal-solubilizing Domain of A-Synuclein , a Molecular Chaperone. J Biol Chem 2002; 277: 28512–28520
44.
go back to reference Pasanen P, Myllykangas L, Siitonen M, Raunio A, Kaakkola S, Lyytinen J et al (2014) A novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology. Neurobiol Aging 35:1–5CrossRef Pasanen P, Myllykangas L, Siitonen M, Raunio A, Kaakkola S, Lyytinen J et al (2014) A novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology. Neurobiol Aging 35:1–5CrossRef
45.
go back to reference Polymeropoulos MH (1997) Mutation in the -synuclein gene identified in families with Parkinson’s disease. Science (80-. ) 276:2045–2047CrossRef Polymeropoulos MH (1997) Mutation in the -synuclein gene identified in families with Parkinson’s disease. Science (80-. ) 276:2045–2047CrossRef
46.
go back to reference Scheurer SB, Rybak JN, Roesli C, Brunisholz RA, Potthast F, Schlapbach R et al (2005) Identification and relative quantification of membrane proteins by surface biotinylation and two-dimensional peptide mapping. Proteomics 5:2718–2728CrossRefPubMed Scheurer SB, Rybak JN, Roesli C, Brunisholz RA, Potthast F, Schlapbach R et al (2005) Identification and relative quantification of membrane proteins by surface biotinylation and two-dimensional peptide mapping. Proteomics 5:2718–2728CrossRefPubMed
47.
go back to reference Scott DA, Tabarean I, Tang Y, Cartier A, Masliah E (2010) A pathologic cascade leading to synaptic dysfunction in a-synuclein induced neurodegeneration. J Neurosci 30:8083–8095CrossRefPubMedPubMedCentral Scott DA, Tabarean I, Tang Y, Cartier A, Masliah E (2010) A pathologic cascade leading to synaptic dysfunction in a-synuclein induced neurodegeneration. J Neurosci 30:8083–8095CrossRefPubMedPubMedCentral
48.
go back to reference Shi M, Shi C, Xu Y (2017) Rab GTPases: the key players in the molecular pathway of Parkinson’s disease. Front Cell Neurosci 11:1–8 Shi M, Shi C, Xu Y (2017) Rab GTPases: the key players in the molecular pathway of Parkinson’s disease. Front Cell Neurosci 11:1–8
49.
go back to reference Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J et al (2003) a-Synuclein locus triplication causes Parkinson ’ s Disease. Science (80-. ) 302:841CrossRef Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J et al (2003) a-Synuclein locus triplication causes Parkinson ’ s Disease. Science (80-. ) 302:841CrossRef
50.
go back to reference Smith CM, Haucke V, McCluskey A, Robinson PJ, Chircop M (2013) Inhibition of clathrin by pitstop 2 activates the spindle assembly checkpoint and induces cell death in dividing HeLa cancer cells. Mol Cancer 12:1–15CrossRef Smith CM, Haucke V, McCluskey A, Robinson PJ, Chircop M (2013) Inhibition of clathrin by pitstop 2 activates the spindle assembly checkpoint and induces cell death in dividing HeLa cancer cells. Mol Cancer 12:1–15CrossRef
52.
go back to reference Sönnichsen B, De Renzis S, Nielsen E, Rietdorf J, Zerial M (2000) Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol 149:901–913CrossRefPubMedPubMedCentral Sönnichsen B, De Renzis S, Nielsen E, Rietdorf J, Zerial M (2000) Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol 149:901–913CrossRefPubMedPubMedCentral
53.
54.
go back to reference Souza MY, Giasson BI, Lee VM, HI Y (2000) Chaperone-like activity of synucleins 474:116–119 Souza MY, Giasson BI, Lee VM, HI Y (2000) Chaperone-like activity of synucleins 474:116–119
55.
go back to reference Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci U S A 95:6469–6473CrossRefPubMedPubMedCentral Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci U S A 95:6469–6473CrossRefPubMedPubMedCentral
56.
go back to reference Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowski JQ, Goedert M (1997) a-Synuclein in Lewy bodies. Nature. 1997;388(6645):839–840 Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowski JQ, Goedert M (1997) a-Synuclein in Lewy bodies. Nature. 1997;388(6645):839–840
57.
go back to reference Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525CrossRefPubMed Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525CrossRefPubMed
58.
go back to reference Sung JY, Kim J, Paik SR, Park JH, Ahn YS, Chung KC (2001) Induction of neuronal cell death by Rab5A-dependent endocytosis of a-Synuclein. J Biol Chem 276:27441–27448CrossRefPubMed Sung JY, Kim J, Paik SR, Park JH, Ahn YS, Chung KC (2001) Induction of neuronal cell death by Rab5A-dependent endocytosis of a-Synuclein. J Biol Chem 276:27441–27448CrossRefPubMed
59.
go back to reference Takeda A, Mallory M, Sundsmo M, Honer W, Hansen L, Masliah E (1998) Abnormal accumulation of NACP/α-synuclein in neurodegenerative disorders. Am J Pathol 152:367–372PubMedPubMedCentral Takeda A, Mallory M, Sundsmo M, Honer W, Hansen L, Masliah E (1998) Abnormal accumulation of NACP/α-synuclein in neurodegenerative disorders. Am J Pathol 152:367–372PubMedPubMedCentral
60.
go back to reference Trojanowski JQ, Goedert M, Iwatsubo T, Lee VM (1998) Fatal attractions: abnormal protein aggregation and neuron death in Parkinson’s disease and Lewy body dementia. Cell Death Differ 5:832–837CrossRefPubMed Trojanowski JQ, Goedert M, Iwatsubo T, Lee VM (1998) Fatal attractions: abnormal protein aggregation and neuron death in Parkinson’s disease and Lewy body dementia. Cell Death Differ 5:832–837CrossRefPubMed
61.
go back to reference Tsigelny IF, Sharikov Y, Kouznetsova VL, Greenberg JP, Wrasidlo W, Overk C et al (2015) Molecular determinants of α-synuclein mutants’ oligomerization and membrane interactions. ACS Chem Neurosci 6:403–416CrossRefPubMedPubMedCentral Tsigelny IF, Sharikov Y, Kouznetsova VL, Greenberg JP, Wrasidlo W, Overk C et al (2015) Molecular determinants of α-synuclein mutants’ oligomerization and membrane interactions. ACS Chem Neurosci 6:403–416CrossRefPubMedPubMedCentral
63.
go back to reference Volpicelli-daley L a, Luk KC, Patel TP, Tanik SA, Dawn M, Stieber A et al (2011) Exogenous aSynuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:57–71CrossRefPubMedPubMedCentral Volpicelli-daley L a, Luk KC, Patel TP, Tanik SA, Dawn M, Stieber A et al (2011) Exogenous aSynuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:57–71CrossRefPubMedPubMedCentral
64.
go back to reference Wakabayashi K, Yoshimoto M, Tsuji S, Takahashi H (1998) A-Synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neurosci. Lett 249:180–182CrossRef Wakabayashi K, Yoshimoto M, Tsuji S, Takahashi H (1998) A-Synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neurosci. Lett 249:180–182CrossRef
65.
go back to reference Wang W, Perovic I, Chittuluru J, Kaganovich A, Nguyen LTT, Liao J et al (2011) A soluble a-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci 108:17797–17802CrossRefPubMed Wang W, Perovic I, Chittuluru J, Kaganovich A, Nguyen LTT, Liao J et al (2011) A soluble a-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci 108:17797–17802CrossRefPubMed
66.
go back to reference Wilson GR, Sim JCH, McLean C, Giannandrea M, Galea CA, Riseley JR et al (2014) Mutations in RAB39B cause X-linked intellectual disability and early-onset parkinson disease with α-synuclein pathology. Am J Hum Genet 95:729–735CrossRefPubMedPubMedCentral Wilson GR, Sim JCH, McLean C, Giannandrea M, Galea CA, Riseley JR et al (2014) Mutations in RAB39B cause X-linked intellectual disability and early-onset parkinson disease with α-synuclein pathology. Am J Hum Genet 95:729–735CrossRefPubMedPubMedCentral
67.
go back to reference Zarranz JJ, Alegre J, Gómez-Esteban JC, Lezcano E, Ros R, Ampuero I et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173CrossRefPubMed Zarranz JJ, Alegre J, Gómez-Esteban JC, Lezcano E, Ros R, Ampuero I et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173CrossRefPubMed
Metadata
Title
Membrane binding, internalization, and sorting of alpha-synuclein in the cell
Authors
Caterina Masaracchia
Marilena Hnida
Ellen Gerhardt
Tomás Lopes da Fonseca
Anna Villar-Pique
Tiago Branco
Markus A. Stahlberg
Camin Dean
Claudio O. Fernández
Ira Milosevic
Tiago F. Outeiro
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2018
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/s40478-018-0578-1

Other articles of this Issue 1/2018

Acta Neuropathologica Communications 1/2018 Go to the issue