Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2017

Open Access 01-12-2017 | Research

Characterizing temporal genomic heterogeneity in pediatric high-grade gliomas

Authors: Ralph Salloum, Melissa K. McConechy, Leonie G. Mikael, Christine Fuller, Rachid Drissi, Mariko DeWire, Hamid Nikbakht, Nicolas De Jay, Xiaodan Yang, Daniel Boue, Lionel M. L. Chow, Jonathan L. Finlay, Tenzin Gayden, Jason Karamchandani, Trent R. Hummel, Randal Olshefski, Diana S. Osorio, Charles Stevenson, Claudia L. Kleinman, Jacek Majewski, Maryam Fouladi, Nada Jabado

Published in: Acta Neuropathologica Communications | Issue 1/2017

Login to get access

Abstract

Pediatric high-grade gliomas (pHGGs) are aggressive neoplasms representing approximately 20% of brain tumors in children. Current therapies offer limited disease control, and patients have a poor prognosis. Empiric use of targeted therapy, especially at progression, is increasingly practiced despite a paucity of data regarding temporal and therapy-driven genomic evolution in pHGGs. To study the genetic landscape of pHGGs at recurrence, we performed whole exome and methylation analyses on matched primary and recurrent pHGGs from 16 patients. Tumor mutational profiles identified three distinct subgroups. Group 1 (n = 7) harbored known hotspot mutations in Histone 3 (H3) (K27M or G34V) or IDH1 (H3/IDH1 mutants) and co-occurring TP53 or ACVR1 mutations in tumor pairs across the disease course. Group 2 (n = 7), H3/IDH1 wildtype tumor pairs, harbored novel mutations in chromatin modifiers (ZMYND11, EP300 n = 2), all associated with TP53 alterations, or had BRAF V600E mutations (n = 2) conserved across tumor pairs. Group 3 included 2 tumors with NF1 germline mutations. Pairs from primary and relapsed pHGG samples clustered within the same DNA methylation subgroup. ATRX mutations were clonal and retained in H3G34V and H3/IDH1 wildtype tumors, while different genetic alterations in this gene were observed at diagnosis and recurrence in IDH1 mutant tumors. Mutations in putative drug targets (EGFR, ERBB2, PDGFRA, PI3K) were not always shared between primary and recurrence samples, indicating evolution during progression. Our findings indicate that specific key driver mutations in pHGGs are conserved at recurrence and are prime targets for therapeutic development and clinical trials (e.g. H3 post-translational modifications, IDH1, BRAF V600E). Other actionable mutations are acquired or lost, indicating that re-biopsy at recurrence will provide better guidance for effective targeted therapy of pHGGs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bai H, Harmanci AS, Erson-Omay EZ, Li J, Coskun S, Simon M et al (2016) Integrated genomic characterization of IDH1-mutant glioma malignant progression. Nat Genet 48:59–66. doi: 10.1038/ng.3457 CrossRefPubMed Bai H, Harmanci AS, Erson-Omay EZ, Li J, Coskun S, Simon M et al (2016) Integrated genomic characterization of IDH1-mutant glioma malignant progression. Nat Genet 48:59–66. doi: 10.​1038/​ng.​3457 CrossRefPubMed
4.
go back to reference Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M et al (2016) Immune checkpoint inhibition for Hypermutant Glioblastoma Multiforme resulting from Germline Biallelic mismatch repair deficiency. J Clin Oncol 34:2206–2211. doi: 10.1200/jco.2016.66.6552 CrossRefPubMed Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M et al (2016) Immune checkpoint inhibition for Hypermutant Glioblastoma Multiforme resulting from Germline Biallelic mismatch repair deficiency. J Clin Oncol 34:2206–2211. doi: 10.​1200/​jco.​2016.​66.​6552 CrossRefPubMed
6.
8.
go back to reference Delvecchio M, Gaucher J, Aguilar-Gurrieri C, Ortega E, Panne D (2013) Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation. Nat Struct Mol Biol 20:1040–1046. doi: 10.1038/nsmb.2642 CrossRefPubMed Delvecchio M, Gaucher J, Aguilar-Gurrieri C, Ortega E, Panne D (2013) Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation. Nat Struct Mol Biol 20:1040–1046. doi: 10.​1038/​nsmb.​2642 CrossRefPubMed
11.
16.
go back to reference Gaubatz S, Imhof A, Dosch R, Werner O, Mitchell P, Buettner R et al (1995) Transcriptional activation by Myc is under negative control by the transcription factor AP-2. EMBO J 14:1508–1519PubMedPubMedCentral Gaubatz S, Imhof A, Dosch R, Werner O, Mitchell P, Buettner R et al (1995) Transcriptional activation by Myc is under negative control by the transcription factor AP-2. EMBO J 14:1508–1519PubMedPubMedCentral
18.
20.
go back to reference Jones C, Karajannis MA, Jones DTW, Kieran MW, Monje M, Baker SJ et al (2017) Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro-Oncology 19:153–161. doi: 10.1093/neuonc/now101 PubMed Jones C, Karajannis MA, Jones DTW, Kieran MW, Monje M, Baker SJ et al (2017) Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro-Oncology 19:153–161. doi: 10.​1093/​neuonc/​now101 PubMed
21.
25.
go back to reference Liu X, Wang L, Zhao K, Thompson PR, Hwang Y, Marmorstein R et al (2008) The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 451:846–850. doi: 10.1038/nature06546 CrossRefPubMed Liu X, Wang L, Zhao K, Thompson PR, Hwang Y, Marmorstein R et al (2008) The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 451:846–850. doi: 10.​1038/​nature06546 CrossRefPubMed
26.
go back to reference Liu XY, Gerges N, Korshunov A, Sabha N, Khuong-Quang DA, Fontebasso AM et al (2012) Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol 124:615–625. doi: 10.1007/s00401-012-1031-3 CrossRefPubMed Liu XY, Gerges N, Korshunov A, Sabha N, Khuong-Quang DA, Fontebasso AM et al (2012) Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol 124:615–625. doi: 10.​1007/​s00401-012-1031-3 CrossRefPubMed
27.
go back to reference Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139. doi: 10.1056/NEJMoa040938 CrossRefPubMed Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139. doi: 10.​1056/​NEJMoa040938 CrossRefPubMed
31.
33.
go back to reference Pasini D, Malatesta M, Jung HR, Walfridsson J, Willer A, Olsson L et al (2010) Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res 38:4958–4969. doi: 10.1093/nar/gkq244 CrossRefPubMedPubMedCentral Pasini D, Malatesta M, Jung HR, Walfridsson J, Willer A, Olsson L et al (2010) Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res 38:4958–4969. doi: 10.​1093/​nar/​gkq244 CrossRefPubMedPubMedCentral
37.
go back to reference Schwartzentruber J, Korshunov A, Liu X-Y, Jones DTW, Pfaff E, Jacob K et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231. doi: 10.1038/nature10833 CrossRefPubMed Schwartzentruber J, Korshunov A, Liu X-Y, Jones DTW, Pfaff E, Jacob K et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231. doi: 10.​1038/​nature10833 CrossRefPubMed
41.
43.
go back to reference Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A et al (2013) From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10.1–11.1033. doi: 10.1002/0471250953.bi1110s43 Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A et al (2013) From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10.1–11.1033. doi: 10.​1002/​0471250953.​bi1110s43
53.
go back to reference Yuan L, Chi Y, Chen W, Chen X, Wei P, Sheng W et al (2015) Immunohistochemistry and microsatellite instability analysis in molecular subtyping of colorectal carcinoma based on mismatch repair competency. Int J Clin Exp Med 8:20988–21000PubMedPubMedCentral Yuan L, Chi Y, Chen W, Chen X, Wei P, Sheng W et al (2015) Immunohistochemistry and microsatellite instability analysis in molecular subtyping of colorectal carcinoma based on mismatch repair competency. Int J Clin Exp Med 8:20988–21000PubMedPubMedCentral
Metadata
Title
Characterizing temporal genomic heterogeneity in pediatric high-grade gliomas
Authors
Ralph Salloum
Melissa K. McConechy
Leonie G. Mikael
Christine Fuller
Rachid Drissi
Mariko DeWire
Hamid Nikbakht
Nicolas De Jay
Xiaodan Yang
Daniel Boue
Lionel M. L. Chow
Jonathan L. Finlay
Tenzin Gayden
Jason Karamchandani
Trent R. Hummel
Randal Olshefski
Diana S. Osorio
Charles Stevenson
Claudia L. Kleinman
Jacek Majewski
Maryam Fouladi
Nada Jabado
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2017
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/s40478-017-0479-8

Other articles of this Issue 1/2017

Acta Neuropathologica Communications 1/2017 Go to the issue