Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2016

Open Access 01-12-2016 | Research

Low autophagy capacity implicated in motor system vulnerability to mutant superoxide dismutase

Authors: Eiichi Tokuda, Thomas Brännström, Peter M. Andersen, Stefan L. Marklund

Published in: Acta Neuropathologica Communications | Issue 1/2016

Login to get access

Abstract

Introduction

The motor system is selectively vulnerable to mutations in the ubiquitously expressed aggregation-prone enzyme superoxide dismutase-1 (SOD1).

Results

Autophagy clears aggregates, and factors involved in the process were analyzed in multiple areas of the CNS from human control subjects (n = 10) and amyotrophic lateral sclerosis (ALS) patients (n = 18) with or without SOD1 mutations. In control subjects, the key regulatory protein Beclin 1 and downstream factors were remarkably scarce in spinal motor areas. In ALS patients, there was evidence of moderate autophagy activation and also dysregulation. These changes were largest in SOD1 mutation carriers. To explore consequences of low autophagy capacity, effects of a heterozygous deletion of Beclin 1 were examined in ALS mouse models expressing mutant SOD1s. This caused earlier SOD1 aggregation, onset of symptoms, motor neuron loss, and a markedly shortened survival. In contrast, the levels of soluble misfolded SOD1 species were reduced.

Conclusions

The findings suggest that an inherent low autophagy capacity might cause the vulnerability of the motor system, and that SOD1 aggregation plays a crucial role in the pathogenesis.
Appendix
Available only for authorised users
Literature
2.
4.
go back to reference Bergemalm D, Jonsson PA, Graffmo KS, Andersen PM, Brannstrom T, Rehnmark A, et al. Overloading of stable and exclusion of unstable human superoxide dismutase-1 variants in mitochondria of murine amyotrophic lateral sclerosis models. J Neurosci. 2006;26:4147–54. doi:10.1523/jneurosci.5461-05.2006.CrossRefPubMed Bergemalm D, Jonsson PA, Graffmo KS, Andersen PM, Brannstrom T, Rehnmark A, et al. Overloading of stable and exclusion of unstable human superoxide dismutase-1 variants in mitochondria of murine amyotrophic lateral sclerosis models. J Neurosci. 2006;26:4147–54. doi:10.​1523/​jneurosci.​5461-05.​2006.CrossRefPubMed
11.
go back to reference Burke R, Marks W. Some Approaches to Quantitative Dendritic Morphology. In: Ascoli G, editor. Computational Neuroanatomy. City: Humana Press; 2002. p. 27–48.CrossRef Burke R, Marks W. Some Approaches to Quantitative Dendritic Morphology. In: Ascoli G, editor. Computational Neuroanatomy. City: Humana Press; 2002. p. 27–48.CrossRef
18.
go back to reference Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Muller K, et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci. 2015;18:631–6. doi:10.1038/nn.4000.CrossRefPubMed Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Muller K, et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci. 2015;18:631–6. doi:10.​1038/​nn.​4000.CrossRefPubMed
21.
go back to reference Grad LI, Yerbury JJ, Turner BJ, Guest WC, Pokrishevsky E, O'Neill MA, et al. Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc Natl Acad Sci USA. 2014;111:3620–5. doi:10.1073/pnas.1312245111. Grad LI, Yerbury JJ, Turner BJ, Guest WC, Pokrishevsky E, O'Neill MA, et al. Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc Natl Acad Sci USA. 2014;111:3620–5. doi:10.​1073/​pnas.​1312245111.
22.
go back to reference Graffmo KS, Forsberg K, Bergh J, Birve A, Zetterstrom P, Andersen PM, et al. Expression of wild-type human superoxide dismutase-1 in mice causes amyotrophic lateral sclerosis. Hum Mol Genet. 2013;22:51–60. doi:10.1093/hmg/dds399.CrossRefPubMed Graffmo KS, Forsberg K, Bergh J, Birve A, Zetterstrom P, Andersen PM, et al. Expression of wild-type human superoxide dismutase-1 in mice causes amyotrophic lateral sclerosis. Hum Mol Genet. 2013;22:51–60. doi:10.​1093/​hmg/​dds399.CrossRefPubMed
23.
27.
go back to reference Jonsson PA, Bergemalm D, Andersen PM, Gredal O, Brannstrom T, Marklund SL. Inclusions of amyotrophic lateral sclerosis-linked superoxide dismutase in ventral horns, liver, and kidney. Ann Neurol. 2008;63:671–5. doi:10.1002/ana.21356.CrossRefPubMed Jonsson PA, Bergemalm D, Andersen PM, Gredal O, Brannstrom T, Marklund SL. Inclusions of amyotrophic lateral sclerosis-linked superoxide dismutase in ventral horns, liver, and kidney. Ann Neurol. 2008;63:671–5. doi:10.​1002/​ana.​21356.CrossRefPubMed
28.
go back to reference Jonsson PA, Ernhill K, Andersen PM, Bergemalm D, Brannstrom T, Gredal O, et al. Minute quantities of misfolded mutant superoxide dismutase-1 cause amyotrophic lateral sclerosis. Brain. 2004;127:73–88. doi:10.1093/brain/awh005.CrossRefPubMed Jonsson PA, Ernhill K, Andersen PM, Bergemalm D, Brannstrom T, Gredal O, et al. Minute quantities of misfolded mutant superoxide dismutase-1 cause amyotrophic lateral sclerosis. Brain. 2004;127:73–88. doi:10.​1093/​brain/​awh005.CrossRefPubMed
29.
go back to reference Jonsson PA, Graffmo KS, Andersen PM, Brannstrom T, Lindberg M, Oliveberg M, et al. Disulphide-reduced superoxide dismutase-1 in CNS of transgenic amyotrophic lateral sclerosis models. Brain. 2006;129:451–64. doi:10.1093/brain/awh704.CrossRefPubMed Jonsson PA, Graffmo KS, Andersen PM, Brannstrom T, Lindberg M, Oliveberg M, et al. Disulphide-reduced superoxide dismutase-1 in CNS of transgenic amyotrophic lateral sclerosis models. Brain. 2006;129:451–64. doi:10.​1093/​brain/​awh704.CrossRefPubMed
31.
go back to reference Kato S, Takikawa M, Nakashima K, Hirano A, Cleveland DW, Kusaka H, et al. New consensus research on neuropathological aspects of familial amyotrophic lateral sclerosis with superoxide dismutase 1 (SOD1) gene mutations: inclusions containing SOD1 in neurons and astrocytes. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1:163–84. doi:10.1080/14660820050515160.CrossRefPubMed Kato S, Takikawa M, Nakashima K, Hirano A, Cleveland DW, Kusaka H, et al. New consensus research on neuropathological aspects of familial amyotrophic lateral sclerosis with superoxide dismutase 1 (SOD1) gene mutations: inclusions containing SOD1 in neurons and astrocytes. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1:163–84. doi:10.​1080/​1466082005051516​0.CrossRefPubMed
34.
go back to reference Lang L, Kurnik M, Danielsson J, Oliveberg M. Fibrillation precursor of superoxide dismutase 1 revealed by gradual tuning of the protein-folding equilibrium. Proc Natl Acad Sci USA. 2012;109:17868–73. doi:10.1073/pnas.1201795109. Lang L, Kurnik M, Danielsson J, Oliveberg M. Fibrillation precursor of superoxide dismutase 1 revealed by gradual tuning of the protein-folding equilibrium. Proc Natl Acad Sci USA. 2012;109:17868–73. doi:10.​1073/​pnas.​1201795109.
35.
go back to reference Lang L, Zetterstrom P, Brannstrom T, Marklund SL, Danielsson J, Oliveberg M. SOD1 aggregation in ALS mice shows simplistic test tube behavior. Proc Natl Acad Sci USA. 2015;112:9878–83. doi:10.1073/pnas.1503328112. Lang L, Zetterstrom P, Brannstrom T, Marklund SL, Danielsson J, Oliveberg M. SOD1 aggregation in ALS mice shows simplistic test tube behavior. Proc Natl Acad Sci USA. 2015;112:9878–83. doi:10.​1073/​pnas.​1503328112.
37.
go back to reference Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol. 2009;11:385–96. doi:10.1038/ncb1846.CrossRefPubMed Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol. 2009;11:385–96. doi:10.​1038/​ncb1846.CrossRefPubMed
41.
go back to reference Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest. 2008;118:2190–9. doi:10.1172/jci33585.PubMedCentralPubMed Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest. 2008;118:2190–9. doi:10.​1172/​jci33585.PubMedCentralPubMed
42.
go back to reference Price JC, Guan S, Burlingame A, Prusiner SB, Ghaemmaghami S. Analysis of proteome dynamics in the mouse brain. Proc Natl Acad Sci USA. 2010;107:14508–13. doi:10.1073/pnas.1006551107. Price JC, Guan S, Burlingame A, Prusiner SB, Ghaemmaghami S. Analysis of proteome dynamics in the mouse brain. Proc Natl Acad Sci USA. 2010;107:14508–13. doi:10.​1073/​pnas.​1006551107.
48.
go back to reference Stewart HG, Mackenzie IR, Eisen A, Brannstrom T, Marklund SL, Andersen PM. Clinicopathological phenotype of ALS with a novel G72C SOD1 gene mutation mimicking a myopathy. Muscle Nerve. 2006;33:701–6. doi:10.1002/mus.20495.CrossRefPubMed Stewart HG, Mackenzie IR, Eisen A, Brannstrom T, Marklund SL, Andersen PM. Clinicopathological phenotype of ALS with a novel G72C SOD1 gene mutation mimicking a myopathy. Muscle Nerve. 2006;33:701–6. doi:10.​1002/​mus.​20495.CrossRefPubMed
50.
go back to reference Tan JM, Wong ES, Kirkpatrick DS, Pletnikova O, Ko HS, Tay SP, et al. Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum Mol Genet. 2008;17:431–9. doi:10.1093/hmg/ddm320.CrossRefPubMed Tan JM, Wong ES, Kirkpatrick DS, Pletnikova O, Ko HS, Tay SP, et al. Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum Mol Genet. 2008;17:431–9. doi:10.​1093/​hmg/​ddm320.CrossRefPubMed
51.
go back to reference Tokuda E, Okawa E, Watanabe S, Ono S, Marklund SL. Dysregulation of intracellular copper homeostasis is common to transgenic mice expressing human mutant superoxide dismutase-1 s regardless of their copper-binding abilities. Neurobiol Dis. 2013;54:308–19. doi:10.1016/j.nbd.2013.01.001.CrossRefPubMed Tokuda E, Okawa E, Watanabe S, Ono S, Marklund SL. Dysregulation of intracellular copper homeostasis is common to transgenic mice expressing human mutant superoxide dismutase-1 s regardless of their copper-binding abilities. Neurobiol Dis. 2013;54:308–19. doi:10.​1016/​j.​nbd.​2013.​01.​001.CrossRefPubMed
54.
go back to reference Zetterstrom P, Graffmo KS, Andersen PM, Brannstrom T, Marklund SL. Composition of soluble misfolded superoxide dismutase-1 in murine models of amyotrophic lateral sclerosis. Neuromolecular Med. 2013;15:147–58. doi:10.1007/s12017-012-8204-z.CrossRefPubMed Zetterstrom P, Graffmo KS, Andersen PM, Brannstrom T, Marklund SL. Composition of soluble misfolded superoxide dismutase-1 in murine models of amyotrophic lateral sclerosis. Neuromolecular Med. 2013;15:147–58. doi:10.​1007/​s12017-012-8204-z.CrossRefPubMed
55.
go back to reference Zetterstrom P, Stewart HG, Bergemalm D, Jonsson PA, Graffmo KS, Andersen PM, et al. Soluble misfolded subfractions of mutant superoxide dismutase-1 s are enriched in spinal cords throughout life in murine ALS models. Proc Natl Acad Sci U S A. 2007;104:14157–62. doi:10.1073/pnas.0700477104.PubMedCentralCrossRefPubMed Zetterstrom P, Stewart HG, Bergemalm D, Jonsson PA, Graffmo KS, Andersen PM, et al. Soluble misfolded subfractions of mutant superoxide dismutase-1 s are enriched in spinal cords throughout life in murine ALS models. Proc Natl Acad Sci U S A. 2007;104:14157–62. doi:10.​1073/​pnas.​0700477104.PubMedCentralCrossRefPubMed
Metadata
Title
Low autophagy capacity implicated in motor system vulnerability to mutant superoxide dismutase
Authors
Eiichi Tokuda
Thomas Brännström
Peter M. Andersen
Stefan L. Marklund
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2016
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/s40478-016-0274-y

Other articles of this Issue 1/2016

Acta Neuropathologica Communications 1/2016 Go to the issue