Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2015

Open Access 01-12-2015 | Research

Significant neuronal soma volume deficit in the limbic system in subjects with 15q11.2-q13 duplications

Authors: Jerzy Wegiel, Michael Flory, N. Carolyn Schanen, Edwin H. Cook, Krzysztof Nowicki, Izabela Kuchna, Humi Imaki, Shuang Yong Ma, Jarek Wegiel, Eric London, Manuel F. Casanova, Thomas Wisniewski, W. Ted Brown

Published in: Acta Neuropathologica Communications | Issue 1/2015

Login to get access

Abstract

Introduction

Autism is diagnosed in numerous genetic and genomic developmental disorders associated with an overlap in high-risk genes and loci that underlie intellectual disability (ID) and epilepsy. The aim of this stereological study of neuronal soma volume in 25 brain structures and their subdivisions in eight individuals 9 to 26 years of age who were diagnosed with chromosome 15q11.2-13.1 duplication syndrome [dup(15)], autism, ID and epilepsy; eight age-matched subjects diagnosed with autism of unknown etiology (idiopathic autism) and seven control individuals was to establish whether defects of neuronal soma growth are a common denominator of developmental pathology in idiopathic and syndromic autism and how genetic modifications alter the trajectory of neuronal soma growth in dup(15) autism.

Results

Application of the Nucleator software to estimate neuronal size revealed significant neuronal soma volume deficits in 11 of 25 structures and their subregions (44 %) in subjects diagnosed with dup(15) autism, including consistent neuronal soma volume deficits in the limbic system (sectors CA2, 3 and 4 in Ammon’s horn, the second and third layers of the entorhinal cortex and in the amygdala), as well as in the thalamus, nucleus accumbens, external globus pallidus, and Ch3 nucleus in the magnocellular basal complex, and in the inferior olive in the brainstem. The second feature distinguishing dup(15) autism was persistent neuronal soma deficits in adolescents and young adults, whereas in idiopathic autism, neuronal volume deficit is most prominent in 4- to 8-year-old children but affects only a few brain regions in older subjects.

Conclusions

This study demonstrates that alterations in the trajectory of neuronal growth throughout the lifespan are a core pathological features of idiopathic and syndromic autism. However, dup(15) causes persistent neuronal volume deficits in adolescence and adulthood, with prominent neuronal growth deficits in all major compartments of the limbic system. The more severe neuronal nuclear and cytoplasic volume deficits in syndromic autism found in this study and the more severe focal developmental defects in the limbic system in dup(15) previously reported in this cohort may contribute to the high prevalence of early onset intractable epilepsy and sudden unexpected death in epilepsy.
Literature
1.
go back to reference Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.CrossRefPubMed Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.CrossRefPubMed
2.
5.
go back to reference Marshall CR, Scherer SW. Detection and characterization of copy number variation in autism spectrum disorder. Meth Mol Biol. 2012;838:115–35.CrossRef Marshall CR, Scherer SW. Detection and characterization of copy number variation in autism spectrum disorder. Meth Mol Biol. 2012;838:115–35.CrossRef
6.
go back to reference Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, et al. De novo mutations revealed by whole exome sequencing are strongly associated with autism. Nature. 2013;485:237–41.CrossRef Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, et al. De novo mutations revealed by whole exome sequencing are strongly associated with autism. Nature. 2013;485:237–41.CrossRef
7.
go back to reference De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional, and chromatin genes disrupted in autism. Nature. 2015;515:209–15.CrossRef De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional, and chromatin genes disrupted in autism. Nature. 2015;515:209–15.CrossRef
8.
go back to reference Miles JH. Autism spectrum disorders – A genetic review. Genetics Med. 2011;12:278–94.CrossRef Miles JH. Autism spectrum disorders – A genetic review. Genetics Med. 2011;12:278–94.CrossRef
9.
go back to reference Betancur C, Coleman M. Etiological heterogeneity in autism spectrum disorders: role of rare variants. In: Buxbaum JD, Hof PR, editors. The Neuroscience of Autism Spectrum Disorders. Oxford: Academic; 2013. p. 113–44.CrossRef Betancur C, Coleman M. Etiological heterogeneity in autism spectrum disorders: role of rare variants. In: Buxbaum JD, Hof PR, editors. The Neuroscience of Autism Spectrum Disorders. Oxford: Academic; 2013. p. 113–44.CrossRef
10.
go back to reference Cook Jr EH, Lindgren V, Leventhal BL, Courchesne R, Lincoln A, Shulman C, et al. Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet. 1997;60:928–34.PubMedCentralPubMed Cook Jr EH, Lindgren V, Leventhal BL, Courchesne R, Lincoln A, Shulman C, et al. Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet. 1997;60:928–34.PubMedCentralPubMed
11.
go back to reference Veenstra-Vanderweele J, Christian SL, Cook EH. Autism as a paradigmatic complex genetic disorder. Ann Rev Genomics Hum Genetics. 2004;5:379–405.CrossRef Veenstra-Vanderweele J, Christian SL, Cook EH. Autism as a paradigmatic complex genetic disorder. Ann Rev Genomics Hum Genetics. 2004;5:379–405.CrossRef
12.
go back to reference Depienne C, Moreno-De-Luca D, Heron D, Bouteiller D, Gennetier A, Delorme R, et al. Screening for genomic rearrangements and methylation abnormalities of the 15q11-q13 region in autism spectrum disorders. Biol Psychiatry. 2009;66:349–59.CrossRefPubMed Depienne C, Moreno-De-Luca D, Heron D, Bouteiller D, Gennetier A, Delorme R, et al. Screening for genomic rearrangements and methylation abnormalities of the 15q11-q13 region in autism spectrum disorders. Biol Psychiatry. 2009;66:349–59.CrossRefPubMed
13.
go back to reference Moreno-De-Luca D, Sanders SJ, Willsey AJ, Mulle JG, Lowe JK, et al. Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts. Mol Psychiatry. 2012;1–6. Moreno-De-Luca D, Sanders SJ, Willsey AJ, Mulle JG, Lowe JK, et al. Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts. Mol Psychiatry. 2012;1–6.
14.
go back to reference Hogart A, Wu D, LaSallae JM, Schanen N. The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13. Neurobiol Dis. 2010;38:181–91.PubMedCentralCrossRefPubMed Hogart A, Wu D, LaSallae JM, Schanen N. The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13. Neurobiol Dis. 2010;38:181–91.PubMedCentralCrossRefPubMed
15.
go back to reference Clifford S, Dissanayake C, Bui QM, Huggins R, Taylor AK, Loesch DZ. Autism spectrum phenotype in males and females with fragile X full mutation and premutation. J Autism Dev Disord. 2007;37:738–47.CrossRefPubMed Clifford S, Dissanayake C, Bui QM, Huggins R, Taylor AK, Loesch DZ. Autism spectrum phenotype in males and females with fragile X full mutation and premutation. J Autism Dev Disord. 2007;37:738–47.CrossRefPubMed
16.
go back to reference Hall SS, Lightbody AA, Reiss AL. Compulsive, self-injurious, and autistic behavior in children and adolescents with fragile X syndrome. Am J Ment Retard. 2008;113:44–53.CrossRefPubMed Hall SS, Lightbody AA, Reiss AL. Compulsive, self-injurious, and autistic behavior in children and adolescents with fragile X syndrome. Am J Ment Retard. 2008;113:44–53.CrossRefPubMed
18.
go back to reference Baron CA, Tepper CG, Liu SY, Davis RR, Wang NJ, Schanen NC, et al. Genomic and functional profiling of duplicated chromosome 15 cell lines reveal regulatory alterations in UBE3A-associated ubiquitin-proteosome pathway processes. Hum Mol Genetics. 2006;15:853–69.CrossRef Baron CA, Tepper CG, Liu SY, Davis RR, Wang NJ, Schanen NC, et al. Genomic and functional profiling of duplicated chromosome 15 cell lines reveal regulatory alterations in UBE3A-associated ubiquitin-proteosome pathway processes. Hum Mol Genetics. 2006;15:853–69.CrossRef
19.
go back to reference Wisniewski L, Hassold T, Heffelfinger J, Higgins JV. Cytogenetic and clinical studies in five cases of inv dup(15). Hum Genet. 1979;50:259–70.CrossRefPubMed Wisniewski L, Hassold T, Heffelfinger J, Higgins JV. Cytogenetic and clinical studies in five cases of inv dup(15). Hum Genet. 1979;50:259–70.CrossRefPubMed
20.
go back to reference Urraca N, Cleary J, Brewer V, Pivnick EK, McVicar K, Thibert RL, et al. The interstitial duplication15q11.2-q13 syndrome includes autism, mild facial anomalies and a characteristic EEG signature. Autism Res. 2013;6:268–79.PubMedCentralCrossRefPubMed Urraca N, Cleary J, Brewer V, Pivnick EK, McVicar K, Thibert RL, et al. The interstitial duplication15q11.2-q13 syndrome includes autism, mild facial anomalies and a characteristic EEG signature. Autism Res. 2013;6:268–79.PubMedCentralCrossRefPubMed
21.
go back to reference Dawson AJ, Mogk R, Rothenmund H, Bridge PJ. Paternal origin of a small, class I inv dup(15). Am J Med Genet. 2002;107:334–6.CrossRefPubMed Dawson AJ, Mogk R, Rothenmund H, Bridge PJ. Paternal origin of a small, class I inv dup(15). Am J Med Genet. 2002;107:334–6.CrossRefPubMed
22.
go back to reference Schroer RJ, Phelan MC, Michaelis RC, Crawford EC, Skinner SA, Cuccaro M, et al. Autism and maternally derived aberrations of chromosome 15q. Am J Med Genet. 1998;76:327–36.CrossRefPubMed Schroer RJ, Phelan MC, Michaelis RC, Crawford EC, Skinner SA, Cuccaro M, et al. Autism and maternally derived aberrations of chromosome 15q. Am J Med Genet. 1998;76:327–36.CrossRefPubMed
23.
go back to reference Mohandas TK, Park JP, Spellman RA, Filiano JJ, Mamourian AC, Hawk AB, et al. Paternally derived de novo interstitial duplication of proximal 15q in a patient with developmental delay. Am J Med Genet. 1999;82:294–300.CrossRefPubMed Mohandas TK, Park JP, Spellman RA, Filiano JJ, Mamourian AC, Hawk AB, et al. Paternally derived de novo interstitial duplication of proximal 15q in a patient with developmental delay. Am J Med Genet. 1999;82:294–300.CrossRefPubMed
24.
go back to reference Bolton PF, Dennis NR, Browne CE, Thomas NS, Veltman MWM, Thompson RJ, et al. The phenotypic manifestations of interstitial duplications of proximal 15q with special reference to the autistic spectrum disorders. Am J Med Genet. 2001;105:675–85.CrossRefPubMed Bolton PF, Dennis NR, Browne CE, Thomas NS, Veltman MWM, Thompson RJ, et al. The phenotypic manifestations of interstitial duplications of proximal 15q with special reference to the autistic spectrum disorders. Am J Med Genet. 2001;105:675–85.CrossRefPubMed
25.
go back to reference Mao R, Jalal SM, Snow K, Michels VV, Szabo SM, Babovic-Vuksanovic D. Characteristics of two cases with dup(15)(q11.2-q12): One of maternal and one of paternal origin. Genet Med. 2000;2:131–5.CrossRefPubMed Mao R, Jalal SM, Snow K, Michels VV, Szabo SM, Babovic-Vuksanovic D. Characteristics of two cases with dup(15)(q11.2-q12): One of maternal and one of paternal origin. Genet Med. 2000;2:131–5.CrossRefPubMed
26.
go back to reference Bolton PF, Veltman MWM, Weisblatt E, Holmes JR, Thomas NS, Youings SA, et al. Chromosome 15q11-13 abnormalities and other medical conditions in individuals with autism spectrum disorders. Psychiatr Genet. 2004;14:131–7.CrossRefPubMed Bolton PF, Veltman MWM, Weisblatt E, Holmes JR, Thomas NS, Youings SA, et al. Chromosome 15q11-13 abnormalities and other medical conditions in individuals with autism spectrum disorders. Psychiatr Genet. 2004;14:131–7.CrossRefPubMed
27.
go back to reference Schinzel A. Particular behavioral symptomatology in patients with rare autosomal chromosome aberrations. In: Schmidt W, Nielsen J, editors. Human Behavior and Genetics. Amsterdam: Elsevier/North Holland; 1981. p. 195–210. Schinzel A. Particular behavioral symptomatology in patients with rare autosomal chromosome aberrations. In: Schmidt W, Nielsen J, editors. Human Behavior and Genetics. Amsterdam: Elsevier/North Holland; 1981. p. 195–210.
28.
go back to reference Grammatico P, Di Rosa C, Roccella M, Falcolini M, Pelliccia A, Roccella F, et al. l Inv dup(15): Contribution to the clinical definition of the phenotype. Clin Genet. 1994;46:233–7.CrossRefPubMed Grammatico P, Di Rosa C, Roccella M, Falcolini M, Pelliccia A, Roccella F, et al. l Inv dup(15): Contribution to the clinical definition of the phenotype. Clin Genet. 1994;46:233–7.CrossRefPubMed
29.
go back to reference Flejter WL, Bennett-Baker PE, Ghaziuddin M, McDonald M, Sheldon S, Gorsi JL. Cytogenetic and molecular analysis of inv dup(15) chromosomes observed in two patients with autistic disorder and mental retardation. Am J Med Genet. 1996;61:182–7.CrossRefPubMed Flejter WL, Bennett-Baker PE, Ghaziuddin M, McDonald M, Sheldon S, Gorsi JL. Cytogenetic and molecular analysis of inv dup(15) chromosomes observed in two patients with autistic disorder and mental retardation. Am J Med Genet. 1996;61:182–7.CrossRefPubMed
30.
go back to reference American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders DSM-III-R. Washington, DC: American Psychiatric Association; 1987. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders DSM-III-R. Washington, DC: American Psychiatric Association; 1987.
31.
go back to reference Gillberg C, Steffenburg S, Wahlstrom J, Gillberg IC, Sjosteadt A, Martinsson T, et al. Autism associated with marker chromosome. J Am Acad Child Adolesc Psychiatry. 1991;30:489–94.CrossRefPubMed Gillberg C, Steffenburg S, Wahlstrom J, Gillberg IC, Sjosteadt A, Martinsson T, et al. Autism associated with marker chromosome. J Am Acad Child Adolesc Psychiatry. 1991;30:489–94.CrossRefPubMed
32.
go back to reference Ghaziuddin M, Sheldon S, Venkataraman S, Tsai L, Ghaziuddin N. Autism associated with tetrasomy 15: A further report. Eur J Child Adolesc Psychiatry. 1993;2:226–30.CrossRef Ghaziuddin M, Sheldon S, Venkataraman S, Tsai L, Ghaziuddin N. Autism associated with tetrasomy 15: A further report. Eur J Child Adolesc Psychiatry. 1993;2:226–30.CrossRef
33.
go back to reference Baker P, Piven J, Schwartz S, Patil S. Brief report: Duplication of chromosome 15q11-13 in two individuals with autistic disorder. J Autism Develop Dis. 1994;24:529–35.CrossRef Baker P, Piven J, Schwartz S, Patil S. Brief report: Duplication of chromosome 15q11-13 in two individuals with autistic disorder. J Autism Develop Dis. 1994;24:529–35.CrossRef
34.
go back to reference Bundey S, Hardy C, Vickers S, Kilpatrick MW, Corbett JA. Duplication of the 15q11-13 region in a patient with autism, epilepsy and ataxia. Dev Med Child Neurol. 1994;36:736–42.CrossRefPubMed Bundey S, Hardy C, Vickers S, Kilpatrick MW, Corbett JA. Duplication of the 15q11-13 region in a patient with autism, epilepsy and ataxia. Dev Med Child Neurol. 1994;36:736–42.CrossRefPubMed
35.
go back to reference Gilliam J. The Gilliam Autism Rating Scale. Austin, TX: Pro-Ed; 1995. p. 1–31. Gilliam J. The Gilliam Autism Rating Scale. Austin, TX: Pro-Ed; 1995. p. 1–31.
36.
go back to reference Rineer S, Finucane B, Simon EW. Autistic symptoms among children and young adults with isodicentric chromosome 15. Am J Med Genet. 1998;81:428–33.CrossRefPubMed Rineer S, Finucane B, Simon EW. Autistic symptoms among children and young adults with isodicentric chromosome 15. Am J Med Genet. 1998;81:428–33.CrossRefPubMed
37.
go back to reference Betancur C. Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting. Brain Res. 2011;1380:42–77.CrossRefPubMed Betancur C. Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting. Brain Res. 2011;1380:42–77.CrossRefPubMed
38.
go back to reference Tuchman RF, Rapin I. Regression in pervasive developmental disorders: seizures and epileptiform encephalogram correlates. Pediatrics. 1997;99:560–6.CrossRefPubMed Tuchman RF, Rapin I. Regression in pervasive developmental disorders: seizures and epileptiform encephalogram correlates. Pediatrics. 1997;99:560–6.CrossRefPubMed
39.
go back to reference Darby JK, Clark L. Autism syndrome as a final common pathway of behavioral expression for many organic disorders. Am J Psychiatry. 1992;14:146–7.CrossRef Darby JK, Clark L. Autism syndrome as a final common pathway of behavioral expression for many organic disorders. Am J Psychiatry. 1992;14:146–7.CrossRef
40.
go back to reference Casanova MF. Autism as a sequence: From heterochronic germinal cell divisions to abnormalities of cell migration and cortical dysplasias. Med Hypothesis. 2014;83:32–8.CrossRef Casanova MF. Autism as a sequence: From heterochronic germinal cell divisions to abnormalities of cell migration and cortical dysplasias. Med Hypothesis. 2014;83:32–8.CrossRef
41.
go back to reference Casanova EL, Casanova MF. Genetics studies indicate that neural induction and early neuronal maturation are disturbed in autism. Front Cell Neurosci. 2014;8:1–13. Casanova EL, Casanova MF. Genetics studies indicate that neural induction and early neuronal maturation are disturbed in autism. Front Cell Neurosci. 2014;8:1–13.
42.
go back to reference Feinstein A. A history of autism: conversations with the pioneers. New York: Wiley; 2010.CrossRef Feinstein A. A history of autism: conversations with the pioneers. New York: Wiley; 2010.CrossRef
43.
go back to reference Casanova MF, El-Baz AS, Kamat SS, Dombroski BA, Khalifa F, Elnakib A, et al. Focal cortical dysplasia in autism spectrum disorders. Acta Neuropathol Commun. 2013;1:67.PubMedCentralCrossRefPubMed Casanova MF, El-Baz AS, Kamat SS, Dombroski BA, Khalifa F, Elnakib A, et al. Focal cortical dysplasia in autism spectrum disorders. Acta Neuropathol Commun. 2013;1:67.PubMedCentralCrossRefPubMed
44.
go back to reference Avino TA, Hutsler JJ. Abnormal cell patterning at the cortical gray-white matter boundary in autism spectrum disorders. Brain Res. 2010;1360:138–46.CrossRefPubMed Avino TA, Hutsler JJ. Abnormal cell patterning at the cortical gray-white matter boundary in autism spectrum disorders. Brain Res. 2010;1360:138–46.CrossRefPubMed
45.
go back to reference Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E, et al. The neuropathology of autism: Defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropath. 2010;119:755–70.PubMedCentralCrossRefPubMed Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E, et al. The neuropathology of autism: Defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropath. 2010;119:755–70.PubMedCentralCrossRefPubMed
46.
go back to reference Wegiel J, Schanen NC, Cook EH, Sigman M, Brown WT, Kuchna I, et al. Differences between the pattern of developmental abnormalities in autism associated with duplications 15q11.2-q13 and idiopathic autism. J Neuropathol Exp Neurol. 2012;71:382–97.PubMedCentralCrossRefPubMed Wegiel J, Schanen NC, Cook EH, Sigman M, Brown WT, Kuchna I, et al. Differences between the pattern of developmental abnormalities in autism associated with duplications 15q11.2-q13 and idiopathic autism. J Neuropathol Exp Neurol. 2012;71:382–97.PubMedCentralCrossRefPubMed
47.
go back to reference Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Ma SY, et al. Contribution of olivo-floccular circuitry developmental defects to atypical gaze in autism. Brain Res. 2013;1512:106–22.PubMedCentralCrossRefPubMed Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Ma SY, et al. Contribution of olivo-floccular circuitry developmental defects to atypical gaze in autism. Brain Res. 2013;1512:106–22.PubMedCentralCrossRefPubMed
48.
go back to reference Casanova MF, Buxhoeveden DP, Switala AE, Roy E. Minicolumnar pathology in autism. Neurology. 2002;58:428–32.CrossRefPubMed Casanova MF, Buxhoeveden DP, Switala AE, Roy E. Minicolumnar pathology in autism. Neurology. 2002;58:428–32.CrossRefPubMed
49.
go back to reference Casanova MF, Buxhoeveded D, Gomez J. Disruption in the inhibitory architecture of the cell minicolumn: implications for autism. Neuroscientist. 2003;9:496–507.CrossRefPubMed Casanova MF, Buxhoeveded D, Gomez J. Disruption in the inhibitory architecture of the cell minicolumn: implications for autism. Neuroscientist. 2003;9:496–507.CrossRefPubMed
50.
go back to reference Casanova MF, van Kooten IAJ, Switala AE, van Engeland H, Heinsen H, Steinbusch HW, et al. Minicolumnar abnormalities in autism. Acta Neuropathol. 2006;112:287–303.CrossRefPubMed Casanova MF, van Kooten IAJ, Switala AE, van Engeland H, Heinsen H, Steinbusch HW, et al. Minicolumnar abnormalities in autism. Acta Neuropathol. 2006;112:287–303.CrossRefPubMed
51.
go back to reference Schumann CM, Amaral DG. Stereological analysis of amygdala neuron number in autism. J Neurosci. 2006;26:7674–9.CrossRefPubMed Schumann CM, Amaral DG. Stereological analysis of amygdala neuron number in autism. J Neurosci. 2006;26:7674–9.CrossRefPubMed
52.
go back to reference Santos M, Uppal N, Butti C, Wicinski B, Schmeidler J, Giannakopoulos P, et al. Von Economo neurons in autism: a stereologic study of the frontoinsular cortex in children. Brain Res. 2011;1380:206–17.CrossRefPubMed Santos M, Uppal N, Butti C, Wicinski B, Schmeidler J, Giannakopoulos P, et al. Von Economo neurons in autism: a stereologic study of the frontoinsular cortex in children. Brain Res. 2011;1380:206–17.CrossRefPubMed
53.
go back to reference Jacot Descombes S, Uppal N, Wicinski B, Santos M, Schmeidler J, Giannakopoulos P, et al. Decreased pyramidal neuron size in Brodmann areas 44 and 45 in patients with autism. Acta Neuropathol. 2012;124:67–9.CrossRefPubMed Jacot Descombes S, Uppal N, Wicinski B, Santos M, Schmeidler J, Giannakopoulos P, et al. Decreased pyramidal neuron size in Brodmann areas 44 and 45 in patients with autism. Acta Neuropathol. 2012;124:67–9.CrossRefPubMed
54.
go back to reference Van Kooten IAJ, Palmen SJMC, von Cappeln P, Steinbusch HWM, Korr H, Heinsen H, et al. Neurons in the fusiform gyrus are fewer and smaller in autism. Brain. 2008;131:987–99.CrossRefPubMed Van Kooten IAJ, Palmen SJMC, von Cappeln P, Steinbusch HWM, Korr H, Heinsen H, et al. Neurons in the fusiform gyrus are fewer and smaller in autism. Brain. 2008;131:987–99.CrossRefPubMed
55.
go back to reference Simms ML, Kemper TL, Timbie CM, Bauman ML, Blatt GJ. The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathol. 2009;118:673–84.CrossRefPubMed Simms ML, Kemper TL, Timbie CM, Bauman ML, Blatt GJ. The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathol. 2009;118:673–84.CrossRefPubMed
56.
go back to reference Uppal N, Gianatiempo I, Wicinski B, Schmeidler J, Heinsen H, Schmitz C, et al. Neuropathology of the posterior occipitotemporal gyrus in children with autism. Molec Autism. 2014;5:17.CrossRef Uppal N, Gianatiempo I, Wicinski B, Schmeidler J, Heinsen H, Schmitz C, et al. Neuropathology of the posterior occipitotemporal gyrus in children with autism. Molec Autism. 2014;5:17.CrossRef
57.
go back to reference Bauman ML, Kemper TL. Histoanatomic observation s of the brain in early infantile autism. Neurology. 1985;35:866–67.CrossRefPubMed Bauman ML, Kemper TL. Histoanatomic observation s of the brain in early infantile autism. Neurology. 1985;35:866–67.CrossRefPubMed
58.
go back to reference Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism. In: Bauman ML, Kemper TL, editors. The Neurobiology of Autism. Baltimore: John Hopkins Univ Press; 1994. p. 119–45. Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism. In: Bauman ML, Kemper TL, editors. The Neurobiology of Autism. Baltimore: John Hopkins Univ Press; 1994. p. 119–45.
59.
go back to reference Kemper TL, Bauman ML. The contribution of neuropathologic studies to the understanding of autism. Neurol Clin. 1993;11:175–87.PubMed Kemper TL, Bauman ML. The contribution of neuropathologic studies to the understanding of autism. Neurol Clin. 1993;11:175–87.PubMed
60.
go back to reference Wegiel J, Flory M, Kuchna I, Nowicki K, Ma SY, Imaki H, et al. Brain-region-specific alterations of the trajectories of neuronal volume growth throughout the lifespan in autism. Acta Neuropathol Comm. 2014;2:28.CrossRef Wegiel J, Flory M, Kuchna I, Nowicki K, Ma SY, Imaki H, et al. Brain-region-specific alterations of the trajectories of neuronal volume growth throughout the lifespan in autism. Acta Neuropathol Comm. 2014;2:28.CrossRef
61.
go back to reference Wegiel J, Flory M, Kuchna I, Nowicki K, Ma SY, Imaki H, et al. Neuronal nucleus and cytoplasm volume deficit in children with autism and volume increase in adolescents and adults. Acta Neuropathol Comm. 2015;3:2.CrossRef Wegiel J, Flory M, Kuchna I, Nowicki K, Ma SY, Imaki H, et al. Neuronal nucleus and cytoplasm volume deficit in children with autism and volume increase in adolescents and adults. Acta Neuropathol Comm. 2015;3:2.CrossRef
62.
go back to reference Mann SM, Wang NJ, Liu DH, Wang L, Schultz RA, Dorrani N, et al. Supernumerary tricentric derivative chromosome 15 in two boys with intractable epilepsy: Another mechanism for partial hexasomy. Hum Genet. 2004;115:104–11.CrossRefPubMed Mann SM, Wang NJ, Liu DH, Wang L, Schultz RA, Dorrani N, et al. Supernumerary tricentric derivative chromosome 15 in two boys with intractable epilepsy: Another mechanism for partial hexasomy. Hum Genet. 2004;115:104–11.CrossRefPubMed
63.
go back to reference Wang NJ, Liu D, Parokonny AS, Schanen NC. High-resolution molecular characterization of 15q11-q13 rearrangements by array comparative genomic hybridization (array CGH) with detection of gene dosage. Am J Hum Genet. 2004;75:267–81.PubMedCentralCrossRefPubMed Wang NJ, Liu D, Parokonny AS, Schanen NC. High-resolution molecular characterization of 15q11-q13 rearrangements by array comparative genomic hybridization (array CGH) with detection of gene dosage. Am J Hum Genet. 2004;75:267–81.PubMedCentralCrossRefPubMed
65.
go back to reference StataCorp. Stata: Release 13. Statistical Software. College Station, TX: StataCorp LP; 2013. StataCorp. Stata: Release 13. Statistical Software. College Station, TX: StataCorp LP; 2013.
66.
go back to reference Conant KD, Finucane B, Cleary N, Martin A, Muss C, Delany M, et al. A survey of seizures and current treatments in 15q duplication syndrome. Epilepsia. 2014;55:396–402.CrossRefPubMed Conant KD, Finucane B, Cleary N, Martin A, Muss C, Delany M, et al. A survey of seizures and current treatments in 15q duplication syndrome. Epilepsia. 2014;55:396–402.CrossRefPubMed
67.
go back to reference American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: APA Press; 2013. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: APA Press; 2013.
68.
go back to reference Smith IC, Reichow B, Volkmar FR. The effects of DSM-5 criteria on number of individuals diagnosed with autism spectrum disorder: A systematic review. J Autism Dev Disord. 2015;45:2541–52.CrossRefPubMed Smith IC, Reichow B, Volkmar FR. The effects of DSM-5 criteria on number of individuals diagnosed with autism spectrum disorder: A systematic review. J Autism Dev Disord. 2015;45:2541–52.CrossRefPubMed
69.
go back to reference Duvernoy HM. The human hippocampus. München: J.P. Bergman Verlag; 1988. p. 1–166.CrossRef Duvernoy HM. The human hippocampus. München: J.P. Bergman Verlag; 1988. p. 1–166.CrossRef
70.
go back to reference Viscidi EW, Triche EW, Pescosolido MF, McLean RL, Joseph RM, Spence SJ, et al. Clinical characteristics of children with autism spectrum disorder and co-occurring epilepsy. PLoS One. 2013;8(7), e67797.PubMedCentralCrossRefPubMed Viscidi EW, Triche EW, Pescosolido MF, McLean RL, Joseph RM, Spence SJ, et al. Clinical characteristics of children with autism spectrum disorder and co-occurring epilepsy. PLoS One. 2013;8(7), e67797.PubMedCentralCrossRefPubMed
72.
go back to reference Kawasaki Y, Yokota K, Shinomiya M, Schimizu Y, Niwa S. Brief report: electroencephalopgraphic paroxysmal activities in the frontal area emerged in middle childhood and during adolescence in a follow-up study of autism. J Autism Dev Disord. 1997;27:605–20.CrossRefPubMed Kawasaki Y, Yokota K, Shinomiya M, Schimizu Y, Niwa S. Brief report: electroencephalopgraphic paroxysmal activities in the frontal area emerged in middle childhood and during adolescence in a follow-up study of autism. J Autism Dev Disord. 1997;27:605–20.CrossRefPubMed
73.
go back to reference Giovanardi Rossi P, Posar A, Parmeggiani A. Epilepsy in adolescents and young adults with autistic disorder. Brain Dev. 2000;22:102–6.CrossRefPubMed Giovanardi Rossi P, Posar A, Parmeggiani A. Epilepsy in adolescents and young adults with autistic disorder. Brain Dev. 2000;22:102–6.CrossRefPubMed
75.
go back to reference Baird G, Robinson RO, Boyd S, Charman T. Sleep electroencephalograms in young children with autism with and without regression. Develop Med and Child Neurol. 2006;48:604–8.CrossRef Baird G, Robinson RO, Boyd S, Charman T. Sleep electroencephalograms in young children with autism with and without regression. Develop Med and Child Neurol. 2006;48:604–8.CrossRef
76.
go back to reference Kim HL, Donelly JH, Tournay AE, Book TM, Filipek P. Absence of seizures despite high prevalance of epileptiform EEG abnormalities in children with autism monitored in a tertiary care center. Epilepsia. 2006;47:394–8.CrossRefPubMed Kim HL, Donelly JH, Tournay AE, Book TM, Filipek P. Absence of seizures despite high prevalance of epileptiform EEG abnormalities in children with autism monitored in a tertiary care center. Epilepsia. 2006;47:394–8.CrossRefPubMed
77.
go back to reference Thurm A, Manwaring SS, Luckenbaugh DA, Lord C, Swedo SE. Patterns of skill attainment and loss in young children with autism. Dev Psychopathol. 2014;26:203–14.PubMedCentralCrossRefPubMed Thurm A, Manwaring SS, Luckenbaugh DA, Lord C, Swedo SE. Patterns of skill attainment and loss in young children with autism. Dev Psychopathol. 2014;26:203–14.PubMedCentralCrossRefPubMed
78.
go back to reference Brooks-Kayal A. Epilepsy and autism spectrum disorders: Are there common developmental mechanisms? Brain Dev. 2010;32:731–8.CrossRefPubMed Brooks-Kayal A. Epilepsy and autism spectrum disorders: Are there common developmental mechanisms? Brain Dev. 2010;32:731–8.CrossRefPubMed
79.
go back to reference Gabis L, Pomeroy J, Andriola MR. Autism and epilepsy: cause, consequence, comorbidity, or coincidence? Epilepsy Behav. 2005;7:652–6.CrossRefPubMed Gabis L, Pomeroy J, Andriola MR. Autism and epilepsy: cause, consequence, comorbidity, or coincidence? Epilepsy Behav. 2005;7:652–6.CrossRefPubMed
80.
go back to reference Steffenburg S, Steffenburg U, Gillberg C. Autism spectrum disorders in children with active epilepsy and learning disability: comorbidity, pre- and perinatal background, and seizure characteristics. Dev Med Child Neurol. 2003;45:724–30.CrossRefPubMed Steffenburg S, Steffenburg U, Gillberg C. Autism spectrum disorders in children with active epilepsy and learning disability: comorbidity, pre- and perinatal background, and seizure characteristics. Dev Med Child Neurol. 2003;45:724–30.CrossRefPubMed
81.
82.
go back to reference Volkmar FR, Nelson DS. Seizure disorders in autism. J Am Acad Child Adolesc Psychiatry. 1990;29:127–9.CrossRefPubMed Volkmar FR, Nelson DS. Seizure disorders in autism. J Am Acad Child Adolesc Psychiatry. 1990;29:127–9.CrossRefPubMed
83.
go back to reference Amiet C, Gourfinkel-An I, Bouzamondo A, Tordjaman S, Baulac M, Lechat P, et al. Epilepsy in autism is associated with intellectual disability and gender: evidence from a meta-analysis. Biol Psychiatry. 2008;64:577–82.CrossRefPubMed Amiet C, Gourfinkel-An I, Bouzamondo A, Tordjaman S, Baulac M, Lechat P, et al. Epilepsy in autism is associated with intellectual disability and gender: evidence from a meta-analysis. Biol Psychiatry. 2008;64:577–82.CrossRefPubMed
84.
go back to reference Center for Disease Control and Prevention. Prevalence of Autsim Spectrum Disorder Among Children Aged 8 years. Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2010. MMWR. 2014;63:1–21. Center for Disease Control and Prevention. Prevalence of Autsim Spectrum Disorder Among Children Aged 8 years. Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2010. MMWR. 2014;63:1–21.
85.
go back to reference Battaglia A, Parrini B, Tancredi R. The behavioral phenotype of the Idic(15) syndrome. Am J Med Genet C Semin Med Genet. 2010;154C:448–55.CrossRefPubMed Battaglia A, Parrini B, Tancredi R. The behavioral phenotype of the Idic(15) syndrome. Am J Med Genet C Semin Med Genet. 2010;154C:448–55.CrossRefPubMed
86.
go back to reference Thomas JA, Johnson J, Peterson Kraai TL, Wilson R, Tartaglia N, LeRoux J, et al. Genetic and clinical characterization of patients with an interstitial duplication 15q11-q13, emphasizing behavioral phenotype and response to treatment. Am J Med Genet. 2003;119A:111–20.CrossRefPubMed Thomas JA, Johnson J, Peterson Kraai TL, Wilson R, Tartaglia N, LeRoux J, et al. Genetic and clinical characterization of patients with an interstitial duplication 15q11-q13, emphasizing behavioral phenotype and response to treatment. Am J Med Genet. 2003;119A:111–20.CrossRefPubMed
Metadata
Title
Significant neuronal soma volume deficit in the limbic system in subjects with 15q11.2-q13 duplications
Authors
Jerzy Wegiel
Michael Flory
N. Carolyn Schanen
Edwin H. Cook
Krzysztof Nowicki
Izabela Kuchna
Humi Imaki
Shuang Yong Ma
Jarek Wegiel
Eric London
Manuel F. Casanova
Thomas Wisniewski
W. Ted Brown
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2015
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/s40478-015-0241-z

Other articles of this Issue 1/2015

Acta Neuropathologica Communications 1/2015 Go to the issue