Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2014

Open Access 01-12-2014 | Research

Stereological study of the neuronal number and volume of 38 brain subdivisions of subjects diagnosed with autism reveals significant alterations restricted to the striatum, amygdala and cerebellum

Authors: Jerzy Wegiel, Michael Flory, Izabela Kuchna, Krzysztof Nowicki, Shuang Yong Ma, Humi Imaki, Jarek Wegiel, Ira L Cohen, Eric London, Thomas Wisniewski, William Ted Brown

Published in: Acta Neuropathologica Communications | Issue 1/2014

Login to get access

Abstract

Introduction

A total of 38 brain cytoarchitectonic subdivisions, representing subcortical and cortical structures, cerebellum, and brainstem, were examined in 4- to 60-year-old subjects diagnosed with autism and control subjects (a) to detect a global pattern of developmental abnormalities and (b) to establish whether the function of developmentally modified structures matches the behavioral alterations that are diagnostic for autism. The volume of cytoarchitectonic subdivisions, neuronal numerical density, and total number of neurons per region of interest were determined in 14 subjects with autism and 14 age-matched controls by using unbiased stereological methods.

Results

The study revealed that significant differences between the group of subjects with autism and control groups are limited to a few brain regions, including the cerebellum and some striatum and amygdala subdivisions. In the group of individuals with autism, the total number and numerical density of Purkinje cells in the cerebellum were reduced by 25% and 24%, respectively. In the amygdala, significant reduction of neuronal density was limited to the lateral nucleus (by 12%). Another sign of the topographic selectivity of developmental alterations in the brain of individuals with autism was an increase in the volumes of the caudate nucleus and nucleus accumbens by 22% and 34%, respectively, and the reduced numerical density of neurons in the nucleus accumbens and putamen by 15% and 13%, respectively.

Conclusions

The observed pattern of developmental alterations in the cerebellum, amygdala and striatum is consistent with the results of magnetic resonance imaging studies and their clinical correlations, and of some morphometric studies that indicate that detected abnormalities may contribute to the social and communication deficits, and repetitive and stereotypical behaviors observed in individuals with autism.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M: The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000, 30: 205–223.PubMed Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M: The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000, 30: 205–223.PubMed
2.
go back to reference Ozonoff S: Editorial perspective: autism spectrum disorders in DSM-5-an historical perspective and the need for change. J Child Psychol Psychiatry 2012, 53: 1092–1094.PubMed Ozonoff S: Editorial perspective: autism spectrum disorders in DSM-5-an historical perspective and the need for change. J Child Psychol Psychiatry 2012, 53: 1092–1094.PubMed
3.
go back to reference Fombonne E, Roge B, Claverie J, Courty S, Fremolle J: Microcephaly and macrocephaly in autism. J Autism Dev Disord 1999, 29: 113–119.PubMed Fombonne E, Roge B, Claverie J, Courty S, Fremolle J: Microcephaly and macrocephaly in autism. J Autism Dev Disord 1999, 29: 113–119.PubMed
4.
go back to reference Courchesne E, Carper R, Akshoomoff N: Evidence of brain overgrowth in the first year of life in autism. JAMA 2003, 290: 337–344.PubMed Courchesne E, Carper R, Akshoomoff N: Evidence of brain overgrowth in the first year of life in autism. JAMA 2003, 290: 337–344.PubMed
5.
go back to reference Dementieva YA, Vance DD, Donnelly SL, Elston LA, Wolpert CM, Ravan SA, DeLong GR, Abramson RK, Wright HH, Cuccaro ML: Accelerated head growth in early development of individuals with autism. Pediatr Neurol 2005, 32: 102–108.PubMed Dementieva YA, Vance DD, Donnelly SL, Elston LA, Wolpert CM, Ravan SA, DeLong GR, Abramson RK, Wright HH, Cuccaro ML: Accelerated head growth in early development of individuals with autism. Pediatr Neurol 2005, 32: 102–108.PubMed
6.
go back to reference Dissanayake C, Bui QM, Huggins R, Loesch DZ: Growth in stature and head circumference in high-functioning autism and asperger disorder during the first 3 years of life. Dev Psychopathol 2006, 18: 381–393.PubMed Dissanayake C, Bui QM, Huggins R, Loesch DZ: Growth in stature and head circumference in high-functioning autism and asperger disorder during the first 3 years of life. Dev Psychopathol 2006, 18: 381–393.PubMed
7.
go back to reference Dawson G, Munson J, Webb SJ, Nalty T, Abbott R, Toth K: Rate of head growth decelerates and symptoms worsen in the second year of life in autism. Biol Psychiatry 2007, 61: 458–464.PubMed Dawson G, Munson J, Webb SJ, Nalty T, Abbott R, Toth K: Rate of head growth decelerates and symptoms worsen in the second year of life in autism. Biol Psychiatry 2007, 61: 458–464.PubMed
8.
go back to reference Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, Hisum HJ, Moses P, Pierce K, Lord C, Lincoln AJ, Pizzo S, Schreibman L, Hass RH, Akshoomoff NA, Courchesne RY: Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 2001, 57: 245–254.PubMed Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, Hisum HJ, Moses P, Pierce K, Lord C, Lincoln AJ, Pizzo S, Schreibman L, Hass RH, Akshoomoff NA, Courchesne RY: Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 2001, 57: 245–254.PubMed
9.
go back to reference Carper RA, Moses P, Tigue ZD, Courchesne E: Cerebral lobes in autism: early hyperplasia and abnormal age effects. NeuroImage 2002, 16: 1038–1051.PubMed Carper RA, Moses P, Tigue ZD, Courchesne E: Cerebral lobes in autism: early hyperplasia and abnormal age effects. NeuroImage 2002, 16: 1038–1051.PubMed
10.
go back to reference Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, Maravilla KR, Giedd JN, Munson J, Dawson G, Dager SR: Brain structural abnormalities in young children with autism spectrum disorder. Neurology 2002, 59: 184–192.PubMed Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, Maravilla KR, Giedd JN, Munson J, Dawson G, Dager SR: Brain structural abnormalities in young children with autism spectrum disorder. Neurology 2002, 59: 184–192.PubMed
11.
go back to reference Hazlett HC, Poe M, Gerig G, Smith RG, Provenzale J, Ross A, Gilmore J, Piven J: Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch Gen Psychiatry 2005, 62: 1366–1376.PubMed Hazlett HC, Poe M, Gerig G, Smith RG, Provenzale J, Ross A, Gilmore J, Piven J: Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch Gen Psychiatry 2005, 62: 1366–1376.PubMed
12.
go back to reference Redcay E, Courchesne E: When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biol Psychiatry 2005, 58: 1–9.PubMed Redcay E, Courchesne E: When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biol Psychiatry 2005, 58: 1–9.PubMed
13.
go back to reference Kosaka H, Omori M, Munesue T, Ishitobi M, Matsumura Y, Takahashi T, Narita K, Murata T, Saito DN, Uchiyama H, Morita T, Kikuchi M, Mizukami K, Okazawa H, Sadato N, Wada Y: Smaller insula and inferior frontal volumes in young adults with pervasive developmental disorders. NeuroImage 2010, 50: 1357–1363.PubMed Kosaka H, Omori M, Munesue T, Ishitobi M, Matsumura Y, Takahashi T, Narita K, Murata T, Saito DN, Uchiyama H, Morita T, Kikuchi M, Mizukami K, Okazawa H, Sadato N, Wada Y: Smaller insula and inferior frontal volumes in young adults with pervasive developmental disorders. NeuroImage 2010, 50: 1357–1363.PubMed
14.
go back to reference Raznahan A, Wallace GL, Antezana L, Greenstein D, Lenroot R, Thurm A, Gozzi M, Spence S, Martin A, Swedo SE, Giedd JN: Compared to what? Early brain overgrowth in autism and the perils of population norms. Biol Psychiatry 2013, 74: 563–575.PubMedPubMedCentral Raznahan A, Wallace GL, Antezana L, Greenstein D, Lenroot R, Thurm A, Gozzi M, Spence S, Martin A, Swedo SE, Giedd JN: Compared to what? Early brain overgrowth in autism and the perils of population norms. Biol Psychiatry 2013, 74: 563–575.PubMedPubMedCentral
15.
go back to reference Cohen MM Jr: Mental deficiency, alterations in performance, and CNS abnormalities in overgrowth syndromes. Am J Med Genet C: Semin Med Genet 2003, 117C: 49–56. Cohen MM Jr: Mental deficiency, alterations in performance, and CNS abnormalities in overgrowth syndromes. Am J Med Genet C: Semin Med Genet 2003, 117C: 49–56.
16.
go back to reference Betancur C: Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders are still counting. Brain Res 2011, 1380: 42–77.PubMed Betancur C: Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders are still counting. Brain Res 2011, 1380: 42–77.PubMed
17.
go back to reference Wegiel J, Schanen NC, Cook EH, Sigman M, Brown WT, Kuchna I, Nowicki K, Wegiel J, Imaki H, Ma SY, Marchi E, Wierzba Bobrowicz T, Chauhan A, Chauhan V, Cohen IL, London E, Flory M, Lach B, Wisniewski T: Differences between the pattern of developmental abnormalities in autism associated with duplications 15q11.2-q13 and idiopathic autism. J Neuropathol Exp Neurol 2012, 71: 382–397.PubMedPubMedCentral Wegiel J, Schanen NC, Cook EH, Sigman M, Brown WT, Kuchna I, Nowicki K, Wegiel J, Imaki H, Ma SY, Marchi E, Wierzba Bobrowicz T, Chauhan A, Chauhan V, Cohen IL, London E, Flory M, Lach B, Wisniewski T: Differences between the pattern of developmental abnormalities in autism associated with duplications 15q11.2-q13 and idiopathic autism. J Neuropathol Exp Neurol 2012, 71: 382–397.PubMedPubMedCentral
18.
go back to reference Caviness VS Jr, Kennedy DN, Richelme C, Rademacher J, Filipek PA: The human brain age 7-11 years: a volumetric analysis based on magnetic resonance images. Cereb Cortex 1996, 6: 726–736.PubMed Caviness VS Jr, Kennedy DN, Richelme C, Rademacher J, Filipek PA: The human brain age 7-11 years: a volumetric analysis based on magnetic resonance images. Cereb Cortex 1996, 6: 726–736.PubMed
19.
go back to reference Piven J, Arndt S, Bailey J, Andreasen N: Regional brain enlargement in autism: a magnetic resonance imaging study. J Am Acad Child Adolesc Psychiatry 1996, 35: 530–536.PubMed Piven J, Arndt S, Bailey J, Andreasen N: Regional brain enlargement in autism: a magnetic resonance imaging study. J Am Acad Child Adolesc Psychiatry 1996, 35: 530–536.PubMed
20.
go back to reference Herbert MR, Ziegler DA, Deutsch CK, O'Brien LM, Lange N, Bakardjiev A, Hodgson J, Adrien KT, Steele S, Makris N, Kennedy D, Harris GJ, Caviness VS Jr: Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 2003, 126: 1182–1192.PubMed Herbert MR, Ziegler DA, Deutsch CK, O'Brien LM, Lange N, Bakardjiev A, Hodgson J, Adrien KT, Steele S, Makris N, Kennedy D, Harris GJ, Caviness VS Jr: Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 2003, 126: 1182–1192.PubMed
21.
go back to reference Carper RA, Courchesne E: Localized enlargement of the frontal cortex in early autism. Biol Psychiatry 2005, 57: 126–133.PubMed Carper RA, Courchesne E: Localized enlargement of the frontal cortex in early autism. Biol Psychiatry 2005, 57: 126–133.PubMed
22.
go back to reference Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, Barnes CC, Pierce K: Neuron number and size in prefrontal cortex of children with autism. JAMA 2011, 306: 2001–2010.PubMed Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, Barnes CC, Pierce K: Neuron number and size in prefrontal cortex of children with autism. JAMA 2011, 306: 2001–2010.PubMed
23.
go back to reference Santos M, Uppal N, Butti C, Wicinski B, Schmeidler J, Giannakopoulos P, Heinsen H, Schmitz C, Hof PR: Von Economo neurons in autism: a stereologic study of the frontoinsular cortex in children. Brain Res 2011, 1380: 206–217.PubMed Santos M, Uppal N, Butti C, Wicinski B, Schmeidler J, Giannakopoulos P, Heinsen H, Schmitz C, Hof PR: Von Economo neurons in autism: a stereologic study of the frontoinsular cortex in children. Brain Res 2011, 1380: 206–217.PubMed
24.
go back to reference Guerin P, Lyon G, Barthelemy C, Sostak E, Chevrollier V, Garreau B, Lelord G: Neuropathological study of a case of autistic syndrome with severe mental retardation. Dev Med Child Neurol 1996, 38: 203–211.PubMed Guerin P, Lyon G, Barthelemy C, Sostak E, Chevrollier V, Garreau B, Lelord G: Neuropathological study of a case of autistic syndrome with severe mental retardation. Dev Med Child Neurol 1996, 38: 203–211.PubMed
25.
go back to reference Fatemi SH, Halt AR, Realmuto G, Earle J, Kist DA, Thuras P, Merz A: Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol 2002, 22: 171–175.PubMed Fatemi SH, Halt AR, Realmuto G, Earle J, Kist DA, Thuras P, Merz A: Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol 2002, 22: 171–175.PubMed
26.
go back to reference Kennedy DP, Semendeferi K, Courchesne E: No reduction of spindle neuron number in frontoinsular cortex in autism. Brain Cogn 2007, 64: 124–129.PubMed Kennedy DP, Semendeferi K, Courchesne E: No reduction of spindle neuron number in frontoinsular cortex in autism. Brain Cogn 2007, 64: 124–129.PubMed
27.
go back to reference Whitney ER, Kemper TL, Rosene DL, Bauman ML, Blatt GJ: Density of cerebellar basket and stellate cells in autism: evidence for a late developmental loss of Purkinje cells. J Neurosci Res 2009, 87: 2245–2254.PubMedPubMedCentral Whitney ER, Kemper TL, Rosene DL, Bauman ML, Blatt GJ: Density of cerebellar basket and stellate cells in autism: evidence for a late developmental loss of Purkinje cells. J Neurosci Res 2009, 87: 2245–2254.PubMedPubMedCentral
28.
go back to reference Jacot-Descombes S, Uppal N, Wicinski B, Santos M, Schmeidler J, Giannakopoulos P, Heinsen H, Schmitz C, Hof PR: Decreased pyramidal neuron size in brodmann areas 44 and 45 in patients with autism. Acta Neuropathol 2012, 124: 67–79.PubMed Jacot-Descombes S, Uppal N, Wicinski B, Santos M, Schmeidler J, Giannakopoulos P, Heinsen H, Schmitz C, Hof PR: Decreased pyramidal neuron size in brodmann areas 44 and 45 in patients with autism. Acta Neuropathol 2012, 124: 67–79.PubMed
29.
go back to reference Ritvo ER, Freeman BJ, Scheibel AB, Duong T, Robinson H, Guthrie D, Ritvo A: Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC autopsy research report. Am J Psychiatry 1986, 143: 862–866.PubMed Ritvo ER, Freeman BJ, Scheibel AB, Duong T, Robinson H, Guthrie D, Ritvo A: Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC autopsy research report. Am J Psychiatry 1986, 143: 862–866.PubMed
30.
go back to reference Kemper TL, Bauman M: Neuropathology of infantile autism. J Neuropath Exp Neurol 1998, 57: 645–652.PubMed Kemper TL, Bauman M: Neuropathology of infantile autism. J Neuropath Exp Neurol 1998, 57: 645–652.PubMed
31.
go back to reference Schumann CM, Amaral DG: Stereological analysis of amygdala neuron number in autism. J Neurosci 2006, 26: 7674–7679.PubMed Schumann CM, Amaral DG: Stereological analysis of amygdala neuron number in autism. J Neurosci 2006, 26: 7674–7679.PubMed
32.
go back to reference van Kooten IAJ, Palmen SJMC, von Cappeln P, Steinbusch HWM, Korr H, Heinsen H, Hof PR, van Engeland H, Schmitz C: Neurons in the fusiform gyrus are fewer and smaller in autism. Brain 2008, 131: 987–999.PubMed van Kooten IAJ, Palmen SJMC, von Cappeln P, Steinbusch HWM, Korr H, Heinsen H, Hof PR, van Engeland H, Schmitz C: Neurons in the fusiform gyrus are fewer and smaller in autism. Brain 2008, 131: 987–999.PubMed
33.
go back to reference Simms ML, Kemper TL, Timbie CM, Bauman ML, Blatt GJ: The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathol 2009, 118: 673–684.PubMed Simms ML, Kemper TL, Timbie CM, Bauman ML, Blatt GJ: The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathol 2009, 118: 673–684.PubMed
34.
go back to reference Kulesza RJ Jr, Lukose R, Stevens LV: Malformation of the human superior olive in autistic spectrum disorders. Brain Res 2011, 1367: 360–371.PubMed Kulesza RJ Jr, Lukose R, Stevens LV: Malformation of the human superior olive in autistic spectrum disorders. Brain Res 2011, 1367: 360–371.PubMed
35.
go back to reference Wegiel J, Flory M, Kuchna I, Nowicki K, Ma SY, Imaki H, Wegiel J, Cohen IL, London E, Brown WT, Wisniewski T: Brain-region-specific alterations of the trajectories of neuronal volume growth throughout the lifespan in autism. Acta Neuropathol Comm 2014, 2: 28. Wegiel J, Flory M, Kuchna I, Nowicki K, Ma SY, Imaki H, Wegiel J, Cohen IL, London E, Brown WT, Wisniewski T: Brain-region-specific alterations of the trajectories of neuronal volume growth throughout the lifespan in autism. Acta Neuropathol Comm 2014, 2: 28.
36.
go back to reference Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E, Ma SY, Chauhan A, Chauhan V, Wierzba Bobrowicz T, de Leon M, Sain Louis LA, Cohen IL, London E, Brown WR, Wisniewski T: The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 2010, 119: 755–770.PubMedPubMedCentral Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E, Ma SY, Chauhan A, Chauhan V, Wierzba Bobrowicz T, de Leon M, Sain Louis LA, Cohen IL, London E, Brown WR, Wisniewski T: The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 2010, 119: 755–770.PubMedPubMedCentral
37.
go back to reference Heinsen H, Arzberger T, Schmitz C: Celloidin mounting (embedding without infiltration) - a new, simple and reliable method for producing serial sections of high thickness through complete human brains and its application to stereological and immunohistochemical investigations. J Chem Neuroanat 2000, 20: 49–59.PubMed Heinsen H, Arzberger T, Schmitz C: Celloidin mounting (embedding without infiltration) - a new, simple and reliable method for producing serial sections of high thickness through complete human brains and its application to stereological and immunohistochemical investigations. J Chem Neuroanat 2000, 20: 49–59.PubMed
38.
go back to reference Lehéricy S, Hirsch EC, Cervera P, Hersch LB, Hauw J-J, Ruberg M, Agid Y: Selective loss of cholinergic neurons in the ventral striatum of patients with Alzheimer disease. Proc Natl Acad Sci U S A 1989, 86: 8580–8584.PubMedPubMedCentral Lehéricy S, Hirsch EC, Cervera P, Hersch LB, Hauw J-J, Ruberg M, Agid Y: Selective loss of cholinergic neurons in the ventral striatum of patients with Alzheimer disease. Proc Natl Acad Sci U S A 1989, 86: 8580–8584.PubMedPubMedCentral
39.
go back to reference Braak H, Braak E: Neuronal types in the striatum of man. Cell Tissue Res 1982, 227: 319–342.PubMed Braak H, Braak E: Neuronal types in the striatum of man. Cell Tissue Res 1982, 227: 319–342.PubMed
40.
go back to reference Alheid GF, Heimer L, Switzer RC III: Basal Ganglia. In The Human Nervous System. Edited by: Paxinos G. Academic Press, Inc, San Diego; 1990:483–582. Alheid GF, Heimer L, Switzer RC III: Basal Ganglia. In The Human Nervous System. Edited by: Paxinos G. Academic Press, Inc, San Diego; 1990:483–582.
41.
go back to reference Schumann CM, Amaral DG: Stereological estimation of the number of neurons in the human amygdaloid complex. J Comp Neurol 2005, 491: 320–329.PubMedPubMedCentral Schumann CM, Amaral DG: Stereological estimation of the number of neurons in the human amygdaloid complex. J Comp Neurol 2005, 491: 320–329.PubMedPubMedCentral
42.
go back to reference Amaral DG, Insausti R: Hippocampal Formation. In The Human Nervous System. Edited by: Paxinos G. Academic Press, Inc, San Diego; 1990:711–755. Amaral DG, Insausti R: Hippocampal Formation. In The Human Nervous System. Edited by: Paxinos G. Academic Press, Inc, San Diego; 1990:711–755.
43.
go back to reference Braak H: Architectonics of the Human Telencephalic Cortex. Springer Verlag, New York; 1980. Braak H: Architectonics of the Human Telencephalic Cortex. Springer Verlag, New York; 1980.
44.
go back to reference Duvernoy HM: The Human Hippocampus. J.P. Bergman Verlag, München; 1988. Duvernoy HM: The Human Hippocampus. J.P. Bergman Verlag, München; 1988.
45.
go back to reference Gaffney GR, Tsai LY, Kuperman S, Minchin S: Cerebellar structure in autism. Am J Dis Child 1987, 141: 1330–1332.PubMed Gaffney GR, Tsai LY, Kuperman S, Minchin S: Cerebellar structure in autism. Am J Dis Child 1987, 141: 1330–1332.PubMed
46.
go back to reference Murakami JW, Courchesne E, Press GA, Yeung-Courchesne R, Hesselink JR: Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Arch Neurol 1989, 46: 689–694.PubMed Murakami JW, Courchesne E, Press GA, Yeung-Courchesne R, Hesselink JR: Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Arch Neurol 1989, 46: 689–694.PubMed
47.
go back to reference Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL: Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med 1988, 318: 1349–1354.PubMed Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL: Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med 1988, 318: 1349–1354.PubMed
48.
go back to reference Hashimoto T, Tayama M, Murakawa K, Yoshimoto T, Miyazaki M, Harada M, Kuroda Y: Development of the brainstem and cerebellum in autistic patients. J Autism Dev Disord 1995, 25: 1–18.PubMed Hashimoto T, Tayama M, Murakawa K, Yoshimoto T, Miyazaki M, Harada M, Kuroda Y: Development of the brainstem and cerebellum in autistic patients. J Autism Dev Disord 1995, 25: 1–18.PubMed
49.
go back to reference Ciesielski KT, Harris RJ, Hart BL, Pabst HF: Cerebellar hypoplasia and frontal lobe cognitive deficits in disorders of early childhood. Neuropsychologia 1997, 35: 643–655.PubMed Ciesielski KT, Harris RJ, Hart BL, Pabst HF: Cerebellar hypoplasia and frontal lobe cognitive deficits in disorders of early childhood. Neuropsychologia 1997, 35: 643–655.PubMed
50.
go back to reference Piven J, Saliba K, Bailey J, Arndt S: An MRI study of autism: the cerebellum revisited. Neurology 1997, 49: 546–551.PubMed Piven J, Saliba K, Bailey J, Arndt S: An MRI study of autism: the cerebellum revisited. Neurology 1997, 49: 546–551.PubMed
51.
go back to reference Harris NS, Courchesne E, Townsend J, Carper RA, Lord C: Neuroanatomic contributions to slowed orienting of attention in children with autism. Brain Res. Cogn Brain Res 1999, 8: 61–71. Harris NS, Courchesne E, Townsend J, Carper RA, Lord C: Neuroanatomic contributions to slowed orienting of attention in children with autism. Brain Res. Cogn Brain Res 1999, 8: 61–71.
52.
go back to reference Townsend J, Courchesne E, Covington J, Westerfield M, Harris NS, Lyden P, Lowry TP, Press GA: Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J Neurosci 1999, 19: 5632–5643.PubMed Townsend J, Courchesne E, Covington J, Westerfield M, Harris NS, Lyden P, Lowry TP, Press GA: Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J Neurosci 1999, 19: 5632–5643.PubMed
53.
go back to reference Pierce K, Courchesne E: Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol Psychiatry 2001, 49: 655–664.PubMed Pierce K, Courchesne E: Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol Psychiatry 2001, 49: 655–664.PubMed
54.
go back to reference Andersen BB, Pakkenberg B: Stereological quantitation in cerebella from people with schizophrenia. Brit J Psychiatry 2003, 182: 354–361. Andersen BB, Pakkenberg B: Stereological quantitation in cerebella from people with schizophrenia. Brit J Psychiatry 2003, 182: 354–361.
55.
go back to reference Andersen BB, Gundersen HJ, Pakkenberg B: Aging of the human cerebellum: a stereological study. J Comp Neurol 2003, 466: 356–365.PubMed Andersen BB, Gundersen HJ, Pakkenberg B: Aging of the human cerebellum: a stereological study. J Comp Neurol 2003, 466: 356–365.PubMed
56.
go back to reference Andersen BB: Reduction of Purkinje cell volume in cerebellum of alcoholics. Brain Res 2004, 1007: 10–18.PubMed Andersen BB: Reduction of Purkinje cell volume in cerebellum of alcoholics. Brain Res 2004, 1007: 10–18.PubMed
57.
go back to reference Agashiwala RM, Louis ED, Hof PR, Perl DP: A novel approach to non-biased systemic random sampling: a stereologic estimate of Purkinje cells in the human cerebellum. Brain Res 2008, 1236: 73–78.PubMedPubMedCentral Agashiwala RM, Louis ED, Hof PR, Perl DP: A novel approach to non-biased systemic random sampling: a stereologic estimate of Purkinje cells in the human cerebellum. Brain Res 2008, 1236: 73–78.PubMedPubMedCentral
58.
go back to reference Palmen SJMC, Van Engeland H, Hof SC: Neuropathological findings in autism. Brain 2004, 127: 2572–2583.PubMed Palmen SJMC, Van Engeland H, Hof SC: Neuropathological findings in autism. Brain 2004, 127: 2572–2583.PubMed
59.
go back to reference Skefos J, Cummings C, Enzer K, Holiday J, Weed K, Levy E, Yuce T, Kemper T, Bauman M: Regional alterations in Purkinje cell density in patients with autism. PLoS One 2014, 9: e81255.PubMedPubMedCentral Skefos J, Cummings C, Enzer K, Holiday J, Weed K, Levy E, Yuce T, Kemper T, Bauman M: Regional alterations in Purkinje cell density in patients with autism. PLoS One 2014, 9: e81255.PubMedPubMedCentral
60.
go back to reference Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Ma SY, Azmitia EC, Banerjee P, Flory M, Cohen IL, London E, Brown WT, Komich Hare C, Wisniewski T: Contribution of olivofloccular circuitry developmental defects to atypical gaze in autism. Brain Res 2013, 1512: 106–122.PubMedPubMedCentral Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Ma SY, Azmitia EC, Banerjee P, Flory M, Cohen IL, London E, Brown WT, Komich Hare C, Wisniewski T: Contribution of olivofloccular circuitry developmental defects to atypical gaze in autism. Brain Res 2013, 1512: 106–122.PubMedPubMedCentral
61.
go back to reference Ghatak NR, Santoso RA, McKinney WM: Cerebellar degeneration following long-term phenytoin therapy. Neurology 1976, 26: 818–820.PubMed Ghatak NR, Santoso RA, McKinney WM: Cerebellar degeneration following long-term phenytoin therapy. Neurology 1976, 26: 818–820.PubMed
62.
go back to reference Rapport RL, Shaw CM: Phenytoin-related cerebellar degeneration without seizures. Ann Neurol 1977, 2: 437–439.PubMed Rapport RL, Shaw CM: Phenytoin-related cerebellar degeneration without seizures. Ann Neurol 1977, 2: 437–439.PubMed
63.
go back to reference McLain LW Jr, Martin JT, Allen JH: Cerebellar degeneration due to chronic phenytoin therapy. Ann Neurol 1980, 7: 18–23.PubMed McLain LW Jr, Martin JT, Allen JH: Cerebellar degeneration due to chronic phenytoin therapy. Ann Neurol 1980, 7: 18–23.PubMed
64.
go back to reference Whitney ER, Kemper TL, Bauman ML, Rosene DL, Blatt GJ: Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: a stereological experiment using calbindin-D28k. Cerebellum 2008, 7: 406–416.PubMed Whitney ER, Kemper TL, Bauman ML, Rosene DL, Blatt GJ: Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: a stereological experiment using calbindin-D28k. Cerebellum 2008, 7: 406–416.PubMed
65.
go back to reference Yip J, Soghomonian JJ, Nguyen L, Blatt GJ: GAD 67 mRNA decrease in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol 2007, 113: 559–568.PubMed Yip J, Soghomonian JJ, Nguyen L, Blatt GJ: GAD 67 mRNA decrease in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol 2007, 113: 559–568.PubMed
66.
go back to reference Kreczmanski P, Heinsen H, Mantua V, Woltersdorf F, Masson T, Ulfig N, Schmidt-Kastner R, Korr H, Steinbusch HWM, Hof PR, Schmitz C: Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. Brain 2007, 130: 678–692.PubMed Kreczmanski P, Heinsen H, Mantua V, Woltersdorf F, Masson T, Ulfig N, Schmidt-Kastner R, Korr H, Steinbusch HWM, Hof PR, Schmitz C: Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. Brain 2007, 130: 678–692.PubMed
67.
go back to reference Bogerts B: Zur Neuropathologie der Schizophrenien. Fortschr Neurol Psychiatr 1984, 52: 428–437.PubMed Bogerts B: Zur Neuropathologie der Schizophrenien. Fortschr Neurol Psychiatr 1984, 52: 428–437.PubMed
68.
go back to reference Lauer M, Senitz D, Beckmann H: Increased volume of the nucleus accumbens in schizophrenia. J Neural Transm 2001, 108: 645–660.PubMed Lauer M, Senitz D, Beckmann H: Increased volume of the nucleus accumbens in schizophrenia. J Neural Transm 2001, 108: 645–660.PubMed
69.
go back to reference Pakkenberg B: Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 1990, 47: 1023–1028.PubMed Pakkenberg B: Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 1990, 47: 1023–1028.PubMed
70.
go back to reference Sears LL, Vest C, Mohamed S, Bailey J, Ranson BJ, Piven J: An MRI study of the basal ganglia in autism. Progr Neuropsychopharmacol Biol Psychiatry 1999, 23: 613–624. Sears LL, Vest C, Mohamed S, Bailey J, Ranson BJ, Piven J: An MRI study of the basal ganglia in autism. Progr Neuropsychopharmacol Biol Psychiatry 1999, 23: 613–624.
71.
go back to reference Hollander E, Anagnostou E, Chaplin W, Esposito K, Haznedar MM, Licalzi E, Wasserman S, Soorya L, Buchsbaum M: Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biol Psychiatry 2005, 58: 226–232.PubMed Hollander E, Anagnostou E, Chaplin W, Esposito K, Haznedar MM, Licalzi E, Wasserman S, Soorya L, Buchsbaum M: Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biol Psychiatry 2005, 58: 226–232.PubMed
72.
go back to reference Langen M, Durston S, Staal WG, Palmen SJ, van Engeland H: Caudate nucleus is enlarged in high-functioning medication-naive subjects with autism. Biol Psychiatry 2007, 62: 262–266.PubMed Langen M, Durston S, Staal WG, Palmen SJ, van Engeland H: Caudate nucleus is enlarged in high-functioning medication-naive subjects with autism. Biol Psychiatry 2007, 62: 262–266.PubMed
73.
go back to reference Hardan AY, Kilpatrick M, Keshavan MS, Minshew NJ: Motor performance and anatomic magnetic resonance imaging (MRI) of the basal ganglia in autism. J Child Neurol 2003, 18: 317–324.PubMed Hardan AY, Kilpatrick M, Keshavan MS, Minshew NJ: Motor performance and anatomic magnetic resonance imaging (MRI) of the basal ganglia in autism. J Child Neurol 2003, 18: 317–324.PubMed
74.
go back to reference Thompson PM, Giedd JN, Woods RP, MacDonald D, Evans AC, Toga AW: Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 2000, 404: 190–193.PubMed Thompson PM, Giedd JN, Woods RP, MacDonald D, Evans AC, Toga AW: Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 2000, 404: 190–193.PubMed
75.
go back to reference Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW: In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci 1999, 2: 859–861.PubMed Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW: In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci 1999, 2: 859–861.PubMed
76.
go back to reference Voelbel GT, Bates ME, Buckman JF, Pandina G, Hendren RL: Caudate nucleus volume and cognitive performance: are they related in childhood psychopathology? Biol Psychiatry 2006, 60: 942–950.PubMedPubMedCentral Voelbel GT, Bates ME, Buckman JF, Pandina G, Hendren RL: Caudate nucleus volume and cognitive performance: are they related in childhood psychopathology? Biol Psychiatry 2006, 60: 942–950.PubMedPubMedCentral
77.
go back to reference Heimer L, Alheid GF, de Olmos JS, Groenewegen HJ, Haber SN, Harlan RE, Zahm DS: The accumbens: beyond the core-shell dichotomy. J Neuropsychiatry Clin Neurosci 1997, 9: 354–381.PubMed Heimer L, Alheid GF, de Olmos JS, Groenewegen HJ, Haber SN, Harlan RE, Zahm DS: The accumbens: beyond the core-shell dichotomy. J Neuropsychiatry Clin Neurosci 1997, 9: 354–381.PubMed
78.
79.
go back to reference Mogenson GJ, Jones DL, Yim CY: From motivation to action: functional interface between the limbic system and the motor system. Progr Neurobiol 1980, 14: 69–97. Mogenson GJ, Jones DL, Yim CY: From motivation to action: functional interface between the limbic system and the motor system. Progr Neurobiol 1980, 14: 69–97.
80.
go back to reference Bailey DB Jr, Hatton DD, Mesibov G, Ament N, Skinner M: Early development, temperament, and functional impairment in autism and fragile X syndrome. J Autism Dev Disord 2000, 30: 49–59.PubMed Bailey DB Jr, Hatton DD, Mesibov G, Ament N, Skinner M: Early development, temperament, and functional impairment in autism and fragile X syndrome. J Autism Dev Disord 2000, 30: 49–59.PubMed
81.
go back to reference Kaufmann WE, Cortell R, Kau AS, Bukelis I, Tierney E, Gray RM, Cox C, Capone GT, Stanard P: Autism spectrum disorder in fragile X syndrome: communication, social interaction, and specific behaviors. Am J Med Gen Part A 2004, 129A: 225–234. Kaufmann WE, Cortell R, Kau AS, Bukelis I, Tierney E, Gray RM, Cox C, Capone GT, Stanard P: Autism spectrum disorder in fragile X syndrome: communication, social interaction, and specific behaviors. Am J Med Gen Part A 2004, 129A: 225–234.
82.
go back to reference Hatton DD, Sideris J, Skinner M, Mankowski J, Bailey DB, Roberts J, Mirrett P: Autistic behavior in children with fragile X syndrome: prevalence, stability, and the impact of FMRP. Am J Med Gen Part A 2006, 140A: 1804–1813. Hatton DD, Sideris J, Skinner M, Mankowski J, Bailey DB, Roberts J, Mirrett P: Autistic behavior in children with fragile X syndrome: prevalence, stability, and the impact of FMRP. Am J Med Gen Part A 2006, 140A: 1804–1813.
83.
go back to reference Harris SW, Hessl D, Goodlin-Jones B, Ferranti J, Bacalman S, Barbato I, Tassone F, Hagerman PJ, Herman H, Hagerman RJ: Autism profiles of males with fragile X syndrome. Am J Ment Retard 2008, 113: 427–438.PubMedPubMedCentral Harris SW, Hessl D, Goodlin-Jones B, Ferranti J, Bacalman S, Barbato I, Tassone F, Hagerman PJ, Herman H, Hagerman RJ: Autism profiles of males with fragile X syndrome. Am J Ment Retard 2008, 113: 427–438.PubMedPubMedCentral
84.
go back to reference Brown WT, Cohen IL: Fragile X syndrome and autism spectrum disorders. In The Neuroscience of Autism Spectrum Disorders. Edited by: Buxbaum JD, Hof PH. Elsevier, Inc, Amsterdam; 2013:409–419. Brown WT, Cohen IL: Fragile X syndrome and autism spectrum disorders. In The Neuroscience of Autism Spectrum Disorders. Edited by: Buxbaum JD, Hof PH. Elsevier, Inc, Amsterdam; 2013:409–419.
85.
go back to reference Gothelf D, Furfaro JA, Hoeft F, Eckert MA, Hall SS, O'Hara R, Erba HW, Ringel J, Hayashi KH, Patnaik S, Golianu B, Kraemer HC, Thompson PM, Piven J, Reiss AL: Neuroanatomy of fragile X syndrome is associated with aberrant behavior and the fragile X mental retardation protein (FMRP). Ann Neurol 2008, 63: 40–51.PubMedPubMedCentral Gothelf D, Furfaro JA, Hoeft F, Eckert MA, Hall SS, O'Hara R, Erba HW, Ringel J, Hayashi KH, Patnaik S, Golianu B, Kraemer HC, Thompson PM, Piven J, Reiss AL: Neuroanatomy of fragile X syndrome is associated with aberrant behavior and the fragile X mental retardation protein (FMRP). Ann Neurol 2008, 63: 40–51.PubMedPubMedCentral
86.
go back to reference Fatemi SH, Folsom TD: Dysregulation of fragile X mental retardation protein and metabotropic glutamate receptor 5 in superior frontal cortex of individuals with autism: a postmortem brains study. Mol Autism 2011, 2: 6. doi:10.1186/2040–2392–2-6PubMedPubMedCentral Fatemi SH, Folsom TD: Dysregulation of fragile X mental retardation protein and metabotropic glutamate receptor 5 in superior frontal cortex of individuals with autism: a postmortem brains study. Mol Autism 2011, 2: 6. doi:10.1186/2040–2392–2-6PubMedPubMedCentral
87.
go back to reference Kemper TL, Bauman ML: The contribution of neuropathologic studies to the understanding of autism. Neurol Clin 1993, 11: 175–187.PubMed Kemper TL, Bauman ML: The contribution of neuropathologic studies to the understanding of autism. Neurol Clin 1993, 11: 175–187.PubMed
88.
go back to reference Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH, Lammers CR, Reiss AL, Amaral DG: The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci 2004, 24: 6392–6401.PubMed Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH, Lammers CR, Reiss AL, Amaral DG: The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci 2004, 24: 6392–6401.PubMed
89.
go back to reference Baron-Cohen S, Ring HA, Bullmore ET, Wheelwright S, Ashwin C, Williams SC: The amygdala theory of autism. Neurosci Biobehav Rev 2000, 24: 355–364.PubMed Baron-Cohen S, Ring HA, Bullmore ET, Wheelwright S, Ashwin C, Williams SC: The amygdala theory of autism. Neurosci Biobehav Rev 2000, 24: 355–364.PubMed
90.
go back to reference Ahlsen G, Rosengren L, Belfrage M, Palm A, Haglid K, Hamberger A, Gillberg C: Glial fibrillary acidic protein in the cerebrospinal fluid of children with autism and other neuropsychiatric disorders. Biol Psychiatry 1993, 33: 734–743.PubMed Ahlsen G, Rosengren L, Belfrage M, Palm A, Haglid K, Hamberger A, Gillberg C: Glial fibrillary acidic protein in the cerebrospinal fluid of children with autism and other neuropsychiatric disorders. Biol Psychiatry 1993, 33: 734–743.PubMed
91.
go back to reference Laurence JA, Fatemi SH: Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum 2005, 4: 206–210.PubMed Laurence JA, Fatemi SH: Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum 2005, 4: 206–210.PubMed
92.
go back to reference Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA: Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005, 57: 67–81.PubMed Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA: Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005, 57: 67–81.PubMed
93.
go back to reference Perea G, Navarrete M, Araque A: Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 2009, 32: 421–431.PubMed Perea G, Navarrete M, Araque A: Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 2009, 32: 421–431.PubMed
94.
go back to reference Alexander GE, DeLong MR, Strick PL: Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 1986, 9: 357–381.PubMed Alexander GE, DeLong MR, Strick PL: Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 1986, 9: 357–381.PubMed
95.
go back to reference Muris P, Steerneman P, Merckelbach H, Holdrinet I, Meesters C: Comorbid anxiety symptoms in children with pervasive developmental disorders. J Anxiety Disord 1998, 12: 387–393.PubMed Muris P, Steerneman P, Merckelbach H, Holdrinet I, Meesters C: Comorbid anxiety symptoms in children with pervasive developmental disorders. J Anxiety Disord 1998, 12: 387–393.PubMed
96.
go back to reference Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR, Roy S, Wynshaw-Boris A, Colamarino SA, Lein ES, Courchesne E: Patches of disorganization in the neocortex of children with autism. N Engl J Med 2014, 370: 1209–1219.PubMedPubMedCentral Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR, Roy S, Wynshaw-Boris A, Colamarino SA, Lein ES, Courchesne E: Patches of disorganization in the neocortex of children with autism. N Engl J Med 2014, 370: 1209–1219.PubMedPubMedCentral
97.
go back to reference Coleman PD, Romano J, Lapham L, Simon W: Cell counts in cerebral cortex of an autistic patient. J Autism Dev Disord 1985, 15: 245–255.PubMed Coleman PD, Romano J, Lapham L, Simon W: Cell counts in cerebral cortex of an autistic patient. J Autism Dev Disord 1985, 15: 245–255.PubMed
98.
go back to reference Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P: A clinicopathological study of autism. Brain 1998, 121: 889–905.PubMed Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P: A clinicopathological study of autism. Brain 1998, 121: 889–905.PubMed
99.
go back to reference Duvernoy HM: The human hippocampus. JF Bergmann Verlag, München; 1988. Duvernoy HM: The human hippocampus. JF Bergmann Verlag, München; 1988.
100.
go back to reference Honer WG, Bassett AS, Falkai P, Beach TG, Lapointe JS: A case study of temporal lobe development in familial schizophrenia. Psychol Med 1996, 26: 191–195.PubMedPubMedCentral Honer WG, Bassett AS, Falkai P, Beach TG, Lapointe JS: A case study of temporal lobe development in familial schizophrenia. Psychol Med 1996, 26: 191–195.PubMedPubMedCentral
101.
go back to reference Falkai P, Schneider-Axmann T, Honer WG: Entorhinal cortex pre-alpha cell clusters in schizophrenia: quantitative evidence of a developmental abnormality. Biol Psychiatry 2000, 47: 937–943.PubMed Falkai P, Schneider-Axmann T, Honer WG: Entorhinal cortex pre-alpha cell clusters in schizophrenia: quantitative evidence of a developmental abnormality. Biol Psychiatry 2000, 47: 937–943.PubMed
102.
go back to reference DiCiccio-Bloom E, Lord C, Zwaigenbaum L, Courchesne E, Dager SR, Schmitz C, Schultz RT, Crawley J, Young LJ: The developmental neurobiology of autism spectrum disorder. J Neurosci 2006, 26: 6897–6906. DiCiccio-Bloom E, Lord C, Zwaigenbaum L, Courchesne E, Dager SR, Schmitz C, Schultz RT, Crawley J, Young LJ: The developmental neurobiology of autism spectrum disorder. J Neurosci 2006, 26: 6897–6906.
103.
go back to reference Kern JK, Geier DA, Sykes LK, Geier MR: Evidence for neurodegeneration in autism spectrum disorder. Transl Neurodegener 2013, 2: 17.PubMedPubMedCentral Kern JK, Geier DA, Sykes LK, Geier MR: Evidence for neurodegeneration in autism spectrum disorder. Transl Neurodegener 2013, 2: 17.PubMedPubMedCentral
104.
go back to reference Hof PR, Knabe R, Bovier P, Bouras C: Neuropathological observations in a case of autism presenting with self-injury behavior. Acta Neuropathol 1991, 82: 321–326.PubMed Hof PR, Knabe R, Bovier P, Bouras C: Neuropathological observations in a case of autism presenting with self-injury behavior. Acta Neuropathol 1991, 82: 321–326.PubMed
105.
go back to reference Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V, Dager SR, Dickson PE, Estes AM, Goldovitz D, Heck DH, Kemper TL, King BH, Martin LA, Millen KJ, Mittleman G, Mosconi MW, Persico AM, Sweeney JA, Webb SJ, Welsh JP: Consensus paper: pathological role of the cerebellum in autism. Cerebellum 2013, 11: 777–807. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V, Dager SR, Dickson PE, Estes AM, Goldovitz D, Heck DH, Kemper TL, King BH, Martin LA, Millen KJ, Mittleman G, Mosconi MW, Persico AM, Sweeney JA, Webb SJ, Welsh JP: Consensus paper: pathological role of the cerebellum in autism. Cerebellum 2013, 11: 777–807.
106.
go back to reference Korbo L, West M: No loss of hippocampal neurons in AIDS patients. Acta Neuropathol 2000, 99: 529–533.PubMed Korbo L, West M: No loss of hippocampal neurons in AIDS patients. Acta Neuropathol 2000, 99: 529–533.PubMed
107.
go back to reference West MJ, Gundersen HJG: Unbiased stereological estimation of the number of neurons in the human hippocampus. J Comp Neurol 1990, 296: 1–22.PubMed West MJ, Gundersen HJG: Unbiased stereological estimation of the number of neurons in the human hippocampus. J Comp Neurol 1990, 296: 1–22.PubMed
108.
go back to reference West MJ, Kawas CH, Stewart WF, Rudow GL, Troncoso JC: Hippocampal neurons in pre-clinical Alzheimer’s disease. Neurobiol Aging 2004, 25: 1205–1212.PubMed West MJ, Kawas CH, Stewart WF, Rudow GL, Troncoso JC: Hippocampal neurons in pre-clinical Alzheimer’s disease. Neurobiol Aging 2004, 25: 1205–1212.PubMed
109.
go back to reference Pakkenberg B, Møller A, Gundersen HJ, Mouritzen Dam A, Pakkenberg H: The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 1991, 54: 30–33.PubMedPubMedCentral Pakkenberg B, Møller A, Gundersen HJ, Mouritzen Dam A, Pakkenberg H: The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 1991, 54: 30–33.PubMedPubMedCentral
110.
go back to reference Chauhan A, Gu F, Essa MM, Wegiel J, Kaur K, Brown WT, Chauhan V: Brain region-specific deficit in mitochondrial electron transport chain complex in children with autism. J Neurochem 2011, 117: 209–220.PubMedPubMedCentral Chauhan A, Gu F, Essa MM, Wegiel J, Kaur K, Brown WT, Chauhan V: Brain region-specific deficit in mitochondrial electron transport chain complex in children with autism. J Neurochem 2011, 117: 209–220.PubMedPubMedCentral
111.
go back to reference Gu F, Chauhan V, Kaur K, Brown WT, LaFauci G, Wegiel J, Chauhan A: Alterations in mitochondrial DNA copy number and the activities of electron transport chain complexes and pyruvate dehydrogenase in the frontal cortex from subjects with autism. Transl Psychiatry 2013, 3: e299. doi:10.1038/tp.2013.68PubMedPubMedCentral Gu F, Chauhan V, Kaur K, Brown WT, LaFauci G, Wegiel J, Chauhan A: Alterations in mitochondrial DNA copy number and the activities of electron transport chain complexes and pyruvate dehydrogenase in the frontal cortex from subjects with autism. Transl Psychiatry 2013, 3: e299. doi:10.1038/tp.2013.68PubMedPubMedCentral
112.
go back to reference Tang G, Rios PG, Kuo S-H, Akman HO, Rosoklija G, Tnji K, Dwork A, Schon EA, DiMauro S, Goldman J, Sulzer D: Mitochondrial abnormalities in temporal lobe of autistic brain. Neurobiol Dis 2013, 54: 349–361.PubMedPubMedCentral Tang G, Rios PG, Kuo S-H, Akman HO, Rosoklija G, Tnji K, Dwork A, Schon EA, DiMauro S, Goldman J, Sulzer D: Mitochondrial abnormalities in temporal lobe of autistic brain. Neurobiol Dis 2013, 54: 349–361.PubMedPubMedCentral
113.
go back to reference Sajdel-Sulkowska EM, Lipinsk B, Windom H, Audhya T, McGinnis W: Oxidative stress in autism: elevated cerebellar 3-nitrotyrosine levels. Am J Bioch Biotechnol 2008, 4: 73–84. Sajdel-Sulkowska EM, Lipinsk B, Windom H, Audhya T, McGinnis W: Oxidative stress in autism: elevated cerebellar 3-nitrotyrosine levels. Am J Bioch Biotechnol 2008, 4: 73–84.
114.
go back to reference Chauhan A, Audhya T, Chauhan V: Brain region-specific glutathione redox imbalance in autism. Neurochem Res 2012, 37: 1681–1689.PubMed Chauhan A, Audhya T, Chauhan V: Brain region-specific glutathione redox imbalance in autism. Neurochem Res 2012, 37: 1681–1689.PubMed
115.
go back to reference Wegiel J, Frackowiak J, Mazur-Kolecka B, Schanen NC, Cook EH Jr, Sigman M, Brown WT, Kuchna I, Wegiel J, Nowicki K, Imaki H, Ma SY, Chauhan A, Chauhan V, Miller DL, Mehta PD, Flory M, Cohen IL, London E, Reisberg B, de Leon MJ, Wisniewski T: Abnormal intracellular accumulation and extracellular Aβ deposition in idiopathic and Dup15q11.2-q13 autism spectrum disorders. PLoS One 2012, 7(5):e35414. doi:10,1731/journal.pone.0035414PubMedPubMedCentral Wegiel J, Frackowiak J, Mazur-Kolecka B, Schanen NC, Cook EH Jr, Sigman M, Brown WT, Kuchna I, Wegiel J, Nowicki K, Imaki H, Ma SY, Chauhan A, Chauhan V, Miller DL, Mehta PD, Flory M, Cohen IL, London E, Reisberg B, de Leon MJ, Wisniewski T: Abnormal intracellular accumulation and extracellular Aβ deposition in idiopathic and Dup15q11.2-q13 autism spectrum disorders. PLoS One 2012, 7(5):e35414. doi:10,1731/journal.pone.0035414PubMedPubMedCentral
116.
go back to reference Frackowiak J, Mazur-Kolecka B, Schanen NC, Brown WT, Wegiel J: The link between intraneuronal N-truncated amyloid b-peptide and oxidatively modified lipids in idiopathic autism and dup(15q11.2-q13)/autism. Acta Neuropathol Comm 2013, 1: 61. Frackowiak J, Mazur-Kolecka B, Schanen NC, Brown WT, Wegiel J: The link between intraneuronal N-truncated amyloid b-peptide and oxidatively modified lipids in idiopathic autism and dup(15q11.2-q13)/autism. Acta Neuropathol Comm 2013, 1: 61.
Metadata
Title
Stereological study of the neuronal number and volume of 38 brain subdivisions of subjects diagnosed with autism reveals significant alterations restricted to the striatum, amygdala and cerebellum
Authors
Jerzy Wegiel
Michael Flory
Izabela Kuchna
Krzysztof Nowicki
Shuang Yong Ma
Humi Imaki
Jarek Wegiel
Ira L Cohen
Eric London
Thomas Wisniewski
William Ted Brown
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2014
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/s40478-014-0141-7

Other articles of this Issue 1/2014

Acta Neuropathologica Communications 1/2014 Go to the issue