Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2018

Open Access 01-12-2018 | Review

Combination systemic therapies with immune checkpoint inhibitors in pancreatic cancer: overcoming resistance to single-agent checkpoint blockade

Authors: Jun Gong, Andrew Hendifar, Richard Tuli, Jeremy Chuang, May Cho, Vincent Chung, Daneng Li, Ravi Salgia

Published in: Clinical and Translational Medicine | Issue 1/2018

Login to get access

Abstract

Immune checkpoint inhibitors have demonstrated broad single-agent antitumor activity and a favorable safety profile that render them attractive agents to combine with other systemic anticancer therapies. Pancreatic cancer has been fairly resistant to monotherapy blockade of programmed cell death protein 1 receptor, programmed death ligand 1, and cytotoxic T-lymphocyte associated protein 4. However, there is a growing body of preclinical evidence to support the rational combination of checkpoint inhibitors and various systemic therapies in pancreatic cancer. Furthermore, early clinical evidence has begun to support the feasibility and efficacy of checkpoint inhibitor-based combination therapy in advanced pancreatic cancer. Despite accumulating preclinical and clinical data, there remains several questions as to the optimal dosing and timing of administration of respective agents, toxicity of combination strategies, and mechanisms by which immune resistance to single-agent checkpoint blockade are overcome. Further development of biomarkers is also important in the advancement of combination systemic therapies incorporating checkpoint blockade in pancreatic cancer. Results from an impressive number of ongoing prospective clinical trials are eagerly anticipated and will seek to validate the viability of combination immuno-oncology strategies in pancreatic cancer.
Literature
1.
go back to reference Gong J, Chehrazi-Raffle A, Reddi S, Salgia R (2018) Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer 6:8CrossRef Gong J, Chehrazi-Raffle A, Reddi S, Salgia R (2018) Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer 6:8CrossRef
2.
go back to reference Geng L, Huang D, Liu J, Qian Y, Deng J, Li D et al (2008) B7-H1 up-regulated expression in human pancreatic carcinoma tissue associates with tumor progression. J Cancer Res Clin Oncol 134:1021–1027CrossRef Geng L, Huang D, Liu J, Qian Y, Deng J, Li D et al (2008) B7-H1 up-regulated expression in human pancreatic carcinoma tissue associates with tumor progression. J Cancer Res Clin Oncol 134:1021–1027CrossRef
3.
go back to reference Loos M, Giese NA, Kleeff J, Giese T, Gaida MM, Bergmann F et al (2008) Clinical significance and regulation of the costimulatory molecule B7-H1 in pancreatic cancer. Cancer Lett 268:98–109CrossRef Loos M, Giese NA, Kleeff J, Giese T, Gaida MM, Bergmann F et al (2008) Clinical significance and regulation of the costimulatory molecule B7-H1 in pancreatic cancer. Cancer Lett 268:98–109CrossRef
4.
go back to reference Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H et al (2007) Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13:2151–2157CrossRef Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H et al (2007) Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13:2151–2157CrossRef
5.
go back to reference Okudaira K, Hokari R, Tsuzuki Y, Okada Y, Komoto S, Watanabe C et al (2009) Blockade of B7-H1 or B7-DC induces an anti-tumor effect in a mouse pancreatic cancer model. Int J Oncol 35:741–749PubMed Okudaira K, Hokari R, Tsuzuki Y, Okada Y, Komoto S, Watanabe C et al (2009) Blockade of B7-H1 or B7-DC induces an anti-tumor effect in a mouse pancreatic cancer model. Int J Oncol 35:741–749PubMed
6.
go back to reference Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465CrossRef Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465CrossRef
7.
go back to reference Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567CrossRef Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567CrossRef
8.
go back to reference Patnaik A, Kang SP, Rasco D, Papadopoulos KP, Elassaiss-Schaap J, Beeram M et al (2015) Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res 21:4286–4293CrossRef Patnaik A, Kang SP, Rasco D, Papadopoulos KP, Elassaiss-Schaap J, Beeram M et al (2015) Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res 21:4286–4293CrossRef
9.
go back to reference Royal RE, Levy C, Turner K, Mathur A, Hughes M, Kammula US et al (2010) Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother 33:828–833CrossRef Royal RE, Levy C, Turner K, Mathur A, Hughes M, Kammula US et al (2010) Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother 33:828–833CrossRef
10.
go back to reference Jenkins RW, Barbie DA, Flaherty KT (2018) Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer 118:9–16CrossRef Jenkins RW, Barbie DA, Flaherty KT (2018) Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer 118:9–16CrossRef
11.
go back to reference Foley K, Kim V, Jaffee E, Zheng L (2016) Current progress in immunotherapy for pancreatic cancer. Cancer Lett 381:244–251CrossRef Foley K, Kim V, Jaffee E, Zheng L (2016) Current progress in immunotherapy for pancreatic cancer. Cancer Lett 381:244–251CrossRef
12.
go back to reference Knudsen ES, Vail P, Balaji U, Ngo H, Botros IW, Makarov V et al (2017) Stratification of pancreatic ductal adenocarcinoma: combinatorial genetic, stromal, and immunologic markers. Clin Cancer Res 23:4429–4440CrossRef Knudsen ES, Vail P, Balaji U, Ngo H, Botros IW, Makarov V et al (2017) Stratification of pancreatic ductal adenocarcinoma: combinatorial genetic, stromal, and immunologic markers. Clin Cancer Res 23:4429–4440CrossRef
13.
go back to reference Sahin IH, Askan G, Hu ZI, O’Reilly EM (2017) Immunotherapy in pancreatic ductal adenocarcinoma: an emerging entity? Ann Oncol 28:2950–2961CrossRef Sahin IH, Askan G, Hu ZI, O’Reilly EM (2017) Immunotherapy in pancreatic ductal adenocarcinoma: an emerging entity? Ann Oncol 28:2950–2961CrossRef
14.
go back to reference Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168:707–723CrossRef Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168:707–723CrossRef
15.
go back to reference Brooks J, Fleischmann-Mundt B, Woller N, Niemann J, Ribback S, Peters K et al (2018) Perioperative, spatiotemporally coordinated activation of T and NK cells prevents recurrence of pancreatic cancer. Cancer Res 78:475–488CrossRef Brooks J, Fleischmann-Mundt B, Woller N, Niemann J, Ribback S, Peters K et al (2018) Perioperative, spatiotemporally coordinated activation of T and NK cells prevents recurrence of pancreatic cancer. Cancer Res 78:475–488CrossRef
16.
go back to reference Bozeman EN, Gao N, Qian W, Wang A, Yang L (2015) Synergistic effect of targeted chemotherapy delivery using theranostic nanoparticles and PD-L1 blockade in an orthotopic mouse pancreatic cancer model [abstract]. Cancer Immunol Res 3:Abstr nr A60CrossRef Bozeman EN, Gao N, Qian W, Wang A, Yang L (2015) Synergistic effect of targeted chemotherapy delivery using theranostic nanoparticles and PD-L1 blockade in an orthotopic mouse pancreatic cancer model [abstract]. Cancer Immunol Res 3:Abstr nr A60CrossRef
17.
go back to reference Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J et al (2014) CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 74:5057–5069CrossRef Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J et al (2014) CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 74:5057–5069CrossRef
18.
go back to reference Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM, Meyer MA et al (2016) Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med 22:851–860CrossRef Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM, Meyer MA et al (2016) Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med 22:851–860CrossRef
20.
go back to reference Iorio V, Rosati A, D’Auria R, De Marco M, Marzullo L, Basile A et al (2018) Combined effect of anti-BAG3 and anti-PD-1 treatment on macrophage infiltrate, CD8+ T cell number and tumour growth in pancreatic cancer. Gut 67:780–782PubMed Iorio V, Rosati A, D’Auria R, De Marco M, Marzullo L, Basile A et al (2018) Combined effect of anti-BAG3 and anti-PD-1 treatment on macrophage infiltrate, CD8+ T cell number and tumour growth in pancreatic cancer. Gut 67:780–782PubMed
21.
go back to reference Lu C, Talukder A, Savage NM, Singh N, Liu K (2017) JAK-STAT-mediated chronic inflammation impairs cytotoxic T lymphocyte activation to decrease anti-PD-1 immunotherapy efficacy in pancreatic cancer. Oncoimmunology 6:e1291106CrossRef Lu C, Talukder A, Savage NM, Singh N, Liu K (2017) JAK-STAT-mediated chronic inflammation impairs cytotoxic T lymphocyte activation to decrease anti-PD-1 immunotherapy efficacy in pancreatic cancer. Oncoimmunology 6:e1291106CrossRef
22.
go back to reference Zhang Y, Velez-Delgado A, Mathew E, Li D, Mendez FM, Flannagan K et al (2017) Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut 66:124–136CrossRef Zhang Y, Velez-Delgado A, Mathew E, Li D, Mendez FM, Flannagan K et al (2017) Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut 66:124–136CrossRef
23.
go back to reference Smith JP, Wang S, Nadella S, Jablonski SA, Weiner LM (2018) Cholecystokinin receptor antagonist alters pancreatic cancer microenvironment and increases efficacy of immune checkpoint antibody therapy in mice. Cancer Immunol Immunother 67:195–207CrossRef Smith JP, Wang S, Nadella S, Jablonski SA, Weiner LM (2018) Cholecystokinin receptor antagonist alters pancreatic cancer microenvironment and increases efficacy of immune checkpoint antibody therapy in mice. Cancer Immunol Immunother 67:195–207CrossRef
24.
go back to reference Gonda TA, Tycko B, Salas MC, Do C, Fang J, Olive KP (2017) Combination therapy with a hypomethylating drug (decitabine) plus an immune checkpoint inhibitor (anti-PD-1H) in the KPC mouse model of pancreatic cancer [abstract]. Gastroenterology 152:Abstr nr 149CrossRef Gonda TA, Tycko B, Salas MC, Do C, Fang J, Olive KP (2017) Combination therapy with a hypomethylating drug (decitabine) plus an immune checkpoint inhibitor (anti-PD-1H) in the KPC mouse model of pancreatic cancer [abstract]. Gastroenterology 152:Abstr nr 149CrossRef
25.
go back to reference Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, Russell S, Weber AM, Luddy K et al (2016) Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res 76:1381–1390CrossRef Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, Russell S, Weber AM, Luddy K et al (2016) Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res 76:1381–1390CrossRef
26.
go back to reference Ibrahim-Hashim AA, Abrahams D, Xu L, Centeno B, Sunassee E, Abddelgader R et al (2017) Targeting tumor acidity with the LDHA inhibitor (FX11) and CAIX inhibitor (DH348) overcomes resistance to PD-1 blockade and inhibits metastasis in a pancreatic cancer model [abstract]. Cancer Res 77:Abstr nr 5932CrossRef Ibrahim-Hashim AA, Abrahams D, Xu L, Centeno B, Sunassee E, Abddelgader R et al (2017) Targeting tumor acidity with the LDHA inhibitor (FX11) and CAIX inhibitor (DH348) overcomes resistance to PD-1 blockade and inhibits metastasis in a pancreatic cancer model [abstract]. Cancer Res 77:Abstr nr 5932CrossRef
27.
go back to reference Rosengren S, Clift R, Zimmerman SJ, Souratha J, Thompson BJ, Blouw B et al (2016) PEGylated recombinant hyaluronidase PH20 (PEGPH20) enhances checkpoint inhibitor efficacy in syngeneic mouse models of cancer [abstract]. Cancer Res 76:Abstr nr 4886CrossRef Rosengren S, Clift R, Zimmerman SJ, Souratha J, Thompson BJ, Blouw B et al (2016) PEGylated recombinant hyaluronidase PH20 (PEGPH20) enhances checkpoint inhibitor efficacy in syngeneic mouse models of cancer [abstract]. Cancer Res 76:Abstr nr 4886CrossRef
28.
go back to reference Soares KC, Rucki AA, Wu AA, Olino K, Xiao Q, Chai Y et al (2015) PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J Immunother 38:1–11CrossRef Soares KC, Rucki AA, Wu AA, Olino K, Xiao Q, Chai Y et al (2015) PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J Immunother 38:1–11CrossRef
29.
go back to reference Kim V, Foley K, Soares K, Rucki A, Lauer P, Brockstedt D et al (2016) Sequential treatment with a listeria-based vaccine and PD-1 blockade antibody improves survival in a murine model of pancreatic ductal adenocarcinoma [abstract]. HPB 18:Abstr nr FP13-06CrossRef Kim V, Foley K, Soares K, Rucki A, Lauer P, Brockstedt D et al (2016) Sequential treatment with a listeria-based vaccine and PD-1 blockade antibody improves survival in a murine model of pancreatic ductal adenocarcinoma [abstract]. HPB 18:Abstr nr FP13-06CrossRef
30.
go back to reference Zheng W, Skowron KB, Namm JP, Burnette B, Fernandez C, Arina A et al (2016) Combination of radiotherapy and vaccination overcomes checkpoint blockade resistance. Oncotarget 7:43039–43051PubMedPubMedCentral Zheng W, Skowron KB, Namm JP, Burnette B, Fernandez C, Arina A et al (2016) Combination of radiotherapy and vaccination overcomes checkpoint blockade resistance. Oncotarget 7:43039–43051PubMedPubMedCentral
31.
go back to reference Joyce JA, Fearon DT (2015) T cell exclusion, immune privilege, and the tumor microenvironment. Science 348:74–80CrossRef Joyce JA, Fearon DT (2015) T cell exclusion, immune privilege, and the tumor microenvironment. Science 348:74–80CrossRef
32.
go back to reference Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS et al (2013) Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A 110:20212–20217CrossRef Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS et al (2013) Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A 110:20212–20217CrossRef
33.
go back to reference Miao L, Li J, Liu Q, Feng R, Das M, Lin CM et al (2017) Transient and local expression of chemokine and immune checkpoint traps to treat pancreatic cancer. ACS Nano 11:8690–8706CrossRef Miao L, Li J, Liu Q, Feng R, Das M, Lin CM et al (2017) Transient and local expression of chemokine and immune checkpoint traps to treat pancreatic cancer. ACS Nano 11:8690–8706CrossRef
34.
go back to reference Mace TA, Shakya R, Pitarresi JR, Swanson B, McQuinn CW, Loftus S et al (2018) IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut 67:320–332CrossRef Mace TA, Shakya R, Pitarresi JR, Swanson B, McQuinn CW, Loftus S et al (2018) IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut 67:320–332CrossRef
35.
go back to reference Zhao Y, Shen M, Feng Y, He R, Xu X, Xie Y et al (2017) Regulatory B cells induced by pancreatic cancer cell-derived interleukin-18 promote immune tolerance via the PD-1/PD-L1 pathway. Oncotarget 9:14803–14814PubMedPubMedCentral Zhao Y, Shen M, Feng Y, He R, Xu X, Xie Y et al (2017) Regulatory B cells induced by pancreatic cancer cell-derived interleukin-18 promote immune tolerance via the PD-1/PD-L1 pathway. Oncotarget 9:14803–14814PubMedPubMedCentral
36.
go back to reference Steele CW, Karim SA, Leach JDG, Bailey P, Upstill-Goddard R, Rishi L et al (2016) CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell 29:832–845CrossRef Steele CW, Karim SA, Leach JDG, Bailey P, Upstill-Goddard R, Rishi L et al (2016) CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell 29:832–845CrossRef
37.
go back to reference Janson C, Jung H, Ertl L, Liu S, Dang T, Zeng Y et al (2017) Inhibition of CCR2 potentiates checkpoint inhibitor immunotherapy in murine model of pancreatic cancer [abstract]. Cancer Res 77:Abstr nr 5655CrossRef Janson C, Jung H, Ertl L, Liu S, Dang T, Zeng Y et al (2017) Inhibition of CCR2 potentiates checkpoint inhibitor immunotherapy in murine model of pancreatic cancer [abstract]. Cancer Res 77:Abstr nr 5655CrossRef
38.
go back to reference Dougan M, Ingram JR, Jeong HJ, Mosaheb MM, Bruck PT, Ali L et al (2018) Targeting cytokine therapy to the pancreatic tumor microenvironment using PD-L1-specific VHHs. Cancer Immunol Res 6:389–401CrossRef Dougan M, Ingram JR, Jeong HJ, Mosaheb MM, Bruck PT, Ali L et al (2018) Targeting cytokine therapy to the pancreatic tumor microenvironment using PD-L1-specific VHHs. Cancer Immunol Res 6:389–401CrossRef
40.
go back to reference Rataj F, Kraus F, Grassmann S, Chaloupka M, Ogonek J, Zhang J et al (2018) Preclinical characterization of a PD-1-CD28 fusion receptor in CD4+ T cells for T cell-based immunotherapy of pancreatic cancer and Non-Hodgkin Lymphoma [abstract]. Eur J Cancer 92:Abstr nr A7CrossRef Rataj F, Kraus F, Grassmann S, Chaloupka M, Ogonek J, Zhang J et al (2018) Preclinical characterization of a PD-1-CD28 fusion receptor in CD4+ T cells for T cell-based immunotherapy of pancreatic cancer and Non-Hodgkin Lymphoma [abstract]. Eur J Cancer 92:Abstr nr A7CrossRef
41.
go back to reference Luheshi NM, Coates-Ulrichsen J, Harper J, Mullins S, Sulikowski MG, Martin P et al (2016) Transformation of the tumour microenvironment by a CD40 agonist antibody correlates with improved responses to PD-L1 blockade in a mouse orthotopic pancreatic tumour model. Oncotarget 7:18508–18520CrossRef Luheshi NM, Coates-Ulrichsen J, Harper J, Mullins S, Sulikowski MG, Martin P et al (2016) Transformation of the tumour microenvironment by a CD40 agonist antibody correlates with improved responses to PD-L1 blockade in a mouse orthotopic pancreatic tumour model. Oncotarget 7:18508–18520CrossRef
42.
go back to reference Winograd R, Byrne KT, Evans RA, Odorizzi PM, Meyer AR, Bajor DL et al (2015) Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol Res 3:399–411CrossRef Winograd R, Byrne KT, Evans RA, Odorizzi PM, Meyer AR, Bajor DL et al (2015) Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol Res 3:399–411CrossRef
43.
go back to reference Mehla K, Tremayne J, Grunkemeyer JA, O’Connell KA, Steele MM, Caffrey TC et al (2018) Combination of mAb-AR20.5, anti-PD-L1 and PolyICLC inhibits tumor progression and prolongs survival of MUC1.Tg mice challenged with pancreatic tumors. Cancer Immunol Immunother 67:445–457CrossRef Mehla K, Tremayne J, Grunkemeyer JA, O’Connell KA, Steele MM, Caffrey TC et al (2018) Combination of mAb-AR20.5, anti-PD-L1 and PolyICLC inhibits tumor progression and prolongs survival of MUC1.Tg mice challenged with pancreatic tumors. Cancer Immunol Immunother 67:445–457CrossRef
44.
go back to reference Mihailidou C, Papakotoulas P, Schizas D, Papalampros A, Vailas M, Felekouras E et al (2017) Effect of ciclopirox olamine in immunotherapy effect by stimulating immunogenic cell death in pancreatic cancer [abstract]. Ann Oncol 28:Abstr nr 74PCrossRef Mihailidou C, Papakotoulas P, Schizas D, Papalampros A, Vailas M, Felekouras E et al (2017) Effect of ciclopirox olamine in immunotherapy effect by stimulating immunogenic cell death in pancreatic cancer [abstract]. Ann Oncol 28:Abstr nr 74PCrossRef
45.
go back to reference Le DT, Lutz E, Uram JN, Sugar EA, Onners B, Solt S et al (2013) Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother 36:382–389CrossRef Le DT, Lutz E, Uram JN, Sugar EA, Onners B, Solt S et al (2013) Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother 36:382–389CrossRef
46.
go back to reference Nesselhut J, Marx D, Cillien N, Lange H, Regalo G, Herrmann M et al (2015) Dendritic cells generated with PDL-1 checkpoint blockade for treatment of advanced pancreatic cancer [abstract]. J Clin Oncol 33:Abstr nr 4128 Nesselhut J, Marx D, Cillien N, Lange H, Regalo G, Herrmann M et al (2015) Dendritic cells generated with PDL-1 checkpoint blockade for treatment of advanced pancreatic cancer [abstract]. J Clin Oncol 33:Abstr nr 4128
47.
go back to reference Nesselhut J, Marx D, Lange H, Regalo G, Cillien N, Chang RY et al (2016) Systemic treatment with anti-PD-1 antibody nivolumab in combination with vaccine therapy in advanced pancreatic cancer [abstract]. J Clin Oncol 34:Abstr nr 3092CrossRef Nesselhut J, Marx D, Lange H, Regalo G, Cillien N, Chang RY et al (2016) Systemic treatment with anti-PD-1 antibody nivolumab in combination with vaccine therapy in advanced pancreatic cancer [abstract]. J Clin Oncol 34:Abstr nr 3092CrossRef
48.
go back to reference Aglietta M, Barone C, Sawyer MB, Moore MJ, Miller WH, Bagalà C et al (2014) A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. Ann Oncol 25:1750–1755CrossRef Aglietta M, Barone C, Sawyer MB, Moore MJ, Miller WH, Bagalà C et al (2014) A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. Ann Oncol 25:1750–1755CrossRef
49.
go back to reference Weiss GJ, Waypa J, Blaydorn L, Coats J, McGahey K, Sangal A et al (2017) A phase Ib study of pembrolizumab plus chemotherapy in patients with advanced cancer (PembroPlus). Br J Cancer 117:33–40CrossRef Weiss GJ, Waypa J, Blaydorn L, Coats J, McGahey K, Sangal A et al (2017) A phase Ib study of pembrolizumab plus chemotherapy in patients with advanced cancer (PembroPlus). Br J Cancer 117:33–40CrossRef
50.
go back to reference Weiss GJ, Blaydorn L, Beck J, Bornemann-Kolatzki K, Urnovitz H, Schütz E et al (2018) Phase Ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma. Invest New Drugs 36:96–102CrossRef Weiss GJ, Blaydorn L, Beck J, Bornemann-Kolatzki K, Urnovitz H, Schütz E et al (2018) Phase Ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma. Invest New Drugs 36:96–102CrossRef
51.
go back to reference Kalyan A, Kircher SM, Mohindra NA, Nimeiri HS, Maurer V, Rademaker A et al (2016) Ipilimumab and gemcitabine for advanced pancreas cancer: a phase Ib study [abstract]. J Clin Oncol 34:Abstr nr e15747CrossRef Kalyan A, Kircher SM, Mohindra NA, Nimeiri HS, Maurer V, Rademaker A et al (2016) Ipilimumab and gemcitabine for advanced pancreas cancer: a phase Ib study [abstract]. J Clin Oncol 34:Abstr nr e15747CrossRef
52.
go back to reference Wainberg ZA, Hochster HS, George B, Gutierrez M, Johns ME, Chiorean EG et al (2017) Phase I study of nivolumab (nivo) + nab-paclitaxel (nab-P) ± gemcitabine (Gem) in solid tumors: Interim results from the pancreatic cancer (PC) cohorts [abstract]. J Clin Oncol 35:Abstr nr 412CrossRef Wainberg ZA, Hochster HS, George B, Gutierrez M, Johns ME, Chiorean EG et al (2017) Phase I study of nivolumab (nivo) + nab-paclitaxel (nab-P) ± gemcitabine (Gem) in solid tumors: Interim results from the pancreatic cancer (PC) cohorts [abstract]. J Clin Oncol 35:Abstr nr 412CrossRef
53.
go back to reference Katz MHG, Varadhachary GR, Bauer TW, Acquavella N, Merchant NB, Le TM et al (2017) Preliminary safety data from a randomized multicenter phase Ib/II study of neoadjuvant chemoradiation therapy (CRT) alone or in combination with pembrolizumab in patients with resectable or borderline resectable pancreatic cancer [abstract]. J Clin Oncol 35:Abstr nr 4125CrossRef Katz MHG, Varadhachary GR, Bauer TW, Acquavella N, Merchant NB, Le TM et al (2017) Preliminary safety data from a randomized multicenter phase Ib/II study of neoadjuvant chemoradiation therapy (CRT) alone or in combination with pembrolizumab in patients with resectable or borderline resectable pancreatic cancer [abstract]. J Clin Oncol 35:Abstr nr 4125CrossRef
54.
go back to reference Renouf DJ, Dhani NC, Kavan P, Jonker DJ, Chia-chi Wei A, Hsu T et al (2018) The Canadian Cancer Trials Group PA.7 trial: results from the safety run in of a randomized phase II study of gemcitabine (GEM) and nab-paclitaxel (Nab-P) versus GEM, nab-P, durvalumab (D), and tremelimumab (T) as first-line therapy in metastatic pancreatic ductal adenocarcinoma (mPDAC) [abstract]. J Clin Oncol 36:Abstr nr 349CrossRef Renouf DJ, Dhani NC, Kavan P, Jonker DJ, Chia-chi Wei A, Hsu T et al (2018) The Canadian Cancer Trials Group PA.7 trial: results from the safety run in of a randomized phase II study of gemcitabine (GEM) and nab-paclitaxel (Nab-P) versus GEM, nab-P, durvalumab (D), and tremelimumab (T) as first-line therapy in metastatic pancreatic ductal adenocarcinoma (mPDAC) [abstract]. J Clin Oncol 36:Abstr nr 349CrossRef
55.
go back to reference Friedlander M, Meniawy T, Markman B, Mileshkin LR, Harnett PR, Millward M et al (2017) A phase 1b study of the anti-PD-1 monoclonal antibody BGB-A317 (A317) in combination with the PARP inhibitor BGB-290 (290) in advanced solid tumors [abstract]. J Clin Oncol 35:Abstr nr 3013CrossRef Friedlander M, Meniawy T, Markman B, Mileshkin LR, Harnett PR, Millward M et al (2017) A phase 1b study of the anti-PD-1 monoclonal antibody BGB-A317 (A317) in combination with the PARP inhibitor BGB-290 (290) in advanced solid tumors [abstract]. J Clin Oncol 35:Abstr nr 3013CrossRef
56.
go back to reference Fujiwara Y, Shitara K, Shimizu T, Yonemori K, Matsubara N, Ohno I et al (2018) INCB024360 (Epacadostat) monotherapy and in combination with pembrolizumab in patients with advanced solid tumors: primary results from first-in-Japanese phase I study (KEYNOTE-434) [abstract]. Mol Cancer Ther 17:Abstr nr A204CrossRef Fujiwara Y, Shitara K, Shimizu T, Yonemori K, Matsubara N, Ohno I et al (2018) INCB024360 (Epacadostat) monotherapy and in combination with pembrolizumab in patients with advanced solid tumors: primary results from first-in-Japanese phase I study (KEYNOTE-434) [abstract]. Mol Cancer Ther 17:Abstr nr A204CrossRef
57.
go back to reference O’Reilly EM, Oh D, Dhani N, Renouf DJ, Lee MA, Sun W et al (2018) A randomized phase 2 study of durvalumab monotherapy and in combination with tremelimumab in patients with metastatic pancreatic ductal adenocarcinoma (mPDAC): ALPS study [abstract]. J Clin Oncol 36:Abstr nr 217 O’Reilly EM, Oh D, Dhani N, Renouf DJ, Lee MA, Sun W et al (2018) A randomized phase 2 study of durvalumab monotherapy and in combination with tremelimumab in patients with metastatic pancreatic ductal adenocarcinoma (mPDAC): ALPS study [abstract]. J Clin Oncol 36:Abstr nr 217
58.
go back to reference Strauss J, Heery CR, Schlom J, Madan RA, Cao L, Kang Z et al (2018) Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFβ, in advanced solid tumors. Clin Cancer Res 24:1287–1295CrossRef Strauss J, Heery CR, Schlom J, Madan RA, Cao L, Kang Z et al (2018) Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFβ, in advanced solid tumors. Clin Cancer Res 24:1287–1295CrossRef
59.
go back to reference Banerjee K, Kumar S, Ross KA, Gautam S, Poelaert B, Nasser MW et al (2018) Emerging trends in the immunotherapy of pancreatic cancer. Cancer Lett 417:35–46CrossRef Banerjee K, Kumar S, Ross KA, Gautam S, Poelaert B, Nasser MW et al (2018) Emerging trends in the immunotherapy of pancreatic cancer. Cancer Lett 417:35–46CrossRef
60.
go back to reference Xu JW, Wang L, Cheng YG, Zhang GY, Hu SY, Zhou B et al (2018) Immunotherapy for pancreatic cancer: a long and hopeful journey. Cancer Lett 425:143–151CrossRef Xu JW, Wang L, Cheng YG, Zhang GY, Hu SY, Zhou B et al (2018) Immunotherapy for pancreatic cancer: a long and hopeful journey. Cancer Lett 425:143–151CrossRef
61.
go back to reference Feng M, Xiong G, Cao Z, Yang G, Zheng S, Song X et al (2017) PD-1/PD-L1 and immunotherapy for pancreatic cancer. Cancer Lett 407:57–65CrossRef Feng M, Xiong G, Cao Z, Yang G, Zheng S, Song X et al (2017) PD-1/PD-L1 and immunotherapy for pancreatic cancer. Cancer Lett 407:57–65CrossRef
62.
go back to reference Chowdhury PS, Chamoto K, Honjo T (2018) Combination therapy strategies for improving PD-1 blockade efficacy: a new era in cancer immunotherapy. J Intern Med 283:110–120CrossRef Chowdhury PS, Chamoto K, Honjo T (2018) Combination therapy strategies for improving PD-1 blockade efficacy: a new era in cancer immunotherapy. J Intern Med 283:110–120CrossRef
63.
go back to reference Mahoney KM, Rennert PD, Freeman GJ (2015) Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 14:561–584CrossRef Mahoney KM, Rennert PD, Freeman GJ (2015) Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 14:561–584CrossRef
64.
go back to reference Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161:205–214CrossRef Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161:205–214CrossRef
65.
go back to reference Thomas-Schoemann A, Lemare F, Mongaret C, Bermudez E, Chéreau C, Nicco C et al (2011) Bystander effect of vinorelbine alters antitumor immune response. Int J Cancer 129:1511–1518CrossRef Thomas-Schoemann A, Lemare F, Mongaret C, Bermudez E, Chéreau C, Nicco C et al (2011) Bystander effect of vinorelbine alters antitumor immune response. Int J Cancer 129:1511–1518CrossRef
66.
go back to reference Smyth MJ, Ngiow SF, Ribas A, Teng MW (2016) Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol 13:143–158CrossRef Smyth MJ, Ngiow SF, Ribas A, Teng MW (2016) Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol 13:143–158CrossRef
67.
go back to reference Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR, Tiriac H et al (2014) Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159:80–93CrossRef Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR, Tiriac H et al (2014) Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159:80–93CrossRef
68.
go back to reference Vonderheide RH (2018) The immune revolution: a case for priming, not checkpoint. Cancer Cell 33:563–569CrossRef Vonderheide RH (2018) The immune revolution: a case for priming, not checkpoint. Cancer Cell 33:563–569CrossRef
69.
go back to reference Ott PA, Hodi FS, Kaufman HL, Wigginton JM, Wolchok JD (2017) Combination immunotherapy: a road map. J Immunother Cancer 5:16CrossRef Ott PA, Hodi FS, Kaufman HL, Wigginton JM, Wolchok JD (2017) Combination immunotherapy: a road map. J Immunother Cancer 5:16CrossRef
71.
go back to reference Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R et al (2017) Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med 377:1919–1929CrossRef Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R et al (2017) Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med 377:1919–1929CrossRef
72.
go back to reference Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR, Hellmann MD et al (2018) Neoadjuvant PD-1 blockade in resectable lung cancer. N Engl J Med 378:1976–1986CrossRef Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR, Hellmann MD et al (2018) Neoadjuvant PD-1 blockade in resectable lung cancer. N Engl J Med 378:1976–1986CrossRef
73.
go back to reference Weber J, Mandala M, Del Vecchio M, Gogas HJ, Arance AM, Cowey CL et al (2017) Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med 377:1824–1835CrossRef Weber J, Mandala M, Del Vecchio M, Gogas HJ, Arance AM, Cowey CL et al (2017) Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med 377:1824–1835CrossRef
74.
go back to reference Eggermont AM, Chiarion-Sileni V, Grob JJ, Dummer R, Wolchok JD, Schmidt H et al (2015) Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol 16:522–530CrossRef Eggermont AM, Chiarion-Sileni V, Grob JJ, Dummer R, Wolchok JD, Schmidt H et al (2015) Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol 16:522–530CrossRef
75.
go back to reference Eggermont AMM, Blank CU, Mandala M, Long GV, Atkinson V, Dalle S et al (2018) Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med 378:1789–1801CrossRef Eggermont AMM, Blank CU, Mandala M, Long GV, Atkinson V, Dalle S et al (2018) Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med 378:1789–1801CrossRef
76.
go back to reference Gao HL, Liu L, Qi ZH, Xu HX, Wang WQ, Wu CT et al (2018) The clinicopathological and prognostic significance of PD-L1 expression in pancreatic cancer: a meta-analysis. Hepatobiliary Pancreat Dis Int 17:95–100CrossRef Gao HL, Liu L, Qi ZH, Xu HX, Wang WQ, Wu CT et al (2018) The clinicopathological and prognostic significance of PD-L1 expression in pancreatic cancer: a meta-analysis. Hepatobiliary Pancreat Dis Int 17:95–100CrossRef
77.
go back to reference Zhuan-Sun Y, Huang F, Feng M, Zhao X, Chen W, Zhu Z et al (2017) Prognostic value of PD-L1 overexpression for pancreatic cancer: evidence from a meta-analysis. Onco Targets Ther 10:5005–5012CrossRef Zhuan-Sun Y, Huang F, Feng M, Zhao X, Chen W, Zhu Z et al (2017) Prognostic value of PD-L1 overexpression for pancreatic cancer: evidence from a meta-analysis. Onco Targets Ther 10:5005–5012CrossRef
78.
go back to reference Campbell BB, Light N, Fabrizio D, Zatzman M, Fuligni F, de Borja R et al (2017) Comprehensive analysis of hypermutation in human cancer. Cell 171:1042–1056CrossRef Campbell BB, Light N, Fabrizio D, Zatzman M, Fuligni F, de Borja R et al (2017) Comprehensive analysis of hypermutation in human cancer. Cell 171:1042–1056CrossRef
79.
go back to reference Hu ZI, Shia J, Stadler ZK, Varghese AM, Capanu M, Salo-Mullen E et al (2018) Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: challenges and recommendations. Clin Cancer Res 24:1326–1336CrossRef Hu ZI, Shia J, Stadler ZK, Varghese AM, Capanu M, Salo-Mullen E et al (2018) Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: challenges and recommendations. Clin Cancer Res 24:1326–1336CrossRef
80.
go back to reference Balli D, Rech AJ, Stanger BZ, Vonderheide RH (2017) Immune cytolytic activity stratifies molecular subsets of human pancreatic cancer. Clin Cancer Res 23:3129–3138CrossRef Balli D, Rech AJ, Stanger BZ, Vonderheide RH (2017) Immune cytolytic activity stratifies molecular subsets of human pancreatic cancer. Clin Cancer Res 23:3129–3138CrossRef
81.
go back to reference Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A et al (2018) The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov 8:403–416CrossRef Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A et al (2018) The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov 8:403–416CrossRef
Metadata
Title
Combination systemic therapies with immune checkpoint inhibitors in pancreatic cancer: overcoming resistance to single-agent checkpoint blockade
Authors
Jun Gong
Andrew Hendifar
Richard Tuli
Jeremy Chuang
May Cho
Vincent Chung
Daneng Li
Ravi Salgia
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2018
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-018-0210-9

Other articles of this Issue 1/2018

Clinical and Translational Medicine 1/2018 Go to the issue