Skip to main content
Top
Published in: Translational Neurodegeneration 1/2024

Open Access 01-12-2024 | Parkinson's Disease | Review

The role of the brain renin-angiotensin system in Parkinson´s disease

Authors: Jose Luis Labandeira-Garcia, Carmen M. Labandeira, Maria J. Guerra, Ana I. Rodriguez-Perez

Published in: Translational Neurodegeneration | Issue 1/2024

Login to get access

Abstract

The renin-angiotensin system (RAS) was classically considered a circulating hormonal system that regulates blood pressure. However, different tissues and organs, including the brain, have a local paracrine RAS. Mutual regulation between the dopaminergic system and RAS has been observed in several tissues. Dysregulation of these interactions leads to renal and cardiovascular diseases, as well as progression of dopaminergic neuron degeneration in a major brain center of dopamine/angiotensin interaction such as the nigrostriatal system. A decrease in the dopaminergic function induces upregulation of the angiotensin type-1 (AT1) receptor activity, leading to recovery of dopamine levels. However, AT1 receptor overactivity in dopaminergic neurons and microglial cells upregulates the cellular NADPH-oxidase-superoxide axis and Ca2+ release, which mediate several key events in oxidative stress, neuroinflammation, and α-synuclein aggregation, involved in Parkinson's disease (PD) pathogenesis. An intraneuronal antioxidative/anti-inflammatory RAS counteracts the effects of the pro-oxidative AT1 receptor overactivity. Consistent with this, an imbalance in RAS activity towards the pro-oxidative/pro-inflammatory AT1 receptor axis has been observed in the substantia nigra and striatum of several animal models of high vulnerability to dopaminergic degeneration. Interestingly, autoantibodies against angiotensin-converting enzyme 2 and AT1 receptors are increased in PD models and PD patients and contribute to blood–brain barrier (BBB) dysregulation and nigrostriatal pro-inflammatory RAS upregulation. Therapeutic strategies addressed to the modulation of brain RAS, by AT1 receptor blockers (ARBs) and/or activation of the antioxidative axis (AT2, Mas receptors), may be neuroprotective for individuals with a high risk of developing PD or in prodromal stages of PD to reduce progression of the disease.
Literature
1.
go back to reference Tigerstedt R, Bergman PQ. Niere und kreislauf. Skand Arch Physiol. 1898;8:223–71.CrossRef Tigerstedt R, Bergman PQ. Niere und kreislauf. Skand Arch Physiol. 1898;8:223–71.CrossRef
2.
go back to reference Nishimura H. Renin-angiotensin system in vertebrates: phylogenetic view of structure and function. Anat Sci Int. 2017;92:215–47.PubMedCrossRef Nishimura H. Renin-angiotensin system in vertebrates: phylogenetic view of structure and function. Anat Sci Int. 2017;92:215–47.PubMedCrossRef
3.
go back to reference Wong MKS, Takei Y. Molecular and evolutionary perspectives of the renin-angiotensin system from lamprey. Gen Comp Endocrinol. 2018;257:137–42.PubMedCrossRef Wong MKS, Takei Y. Molecular and evolutionary perspectives of the renin-angiotensin system from lamprey. Gen Comp Endocrinol. 2018;257:137–42.PubMedCrossRef
4.
go back to reference Lev-Ran A, Porta M. Salt and hypertension: a phylogenetic perspective. Diabetes Metab Res Rev. 2005;21:118–31.PubMedCrossRef Lev-Ran A, Porta M. Salt and hypertension: a phylogenetic perspective. Diabetes Metab Res Rev. 2005;21:118–31.PubMedCrossRef
5.
go back to reference Ganong WF. Origin of the angiotensin II secreted by cells. Proc Soc Exp Biol Med. 1994;205:213–9.PubMedCrossRef Ganong WF. Origin of the angiotensin II secreted by cells. Proc Soc Exp Biol Med. 1994;205:213–9.PubMedCrossRef
7.
go back to reference Ehringer H, Hornykiewicz O. Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Klin Wochenschr. 1960;38:1236–9.PubMedCrossRef Ehringer H, Hornykiewicz O. Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Klin Wochenschr. 1960;38:1236–9.PubMedCrossRef
8.
go back to reference Goldberg LI. Cardiovascular and renal actions of dopamine: potential clinical applications. Pharmacol Rev. 1972;24:1–29.PubMed Goldberg LI. Cardiovascular and renal actions of dopamine: potential clinical applications. Pharmacol Rev. 1972;24:1–29.PubMed
9.
10.
go back to reference Matt SM, Gaskill PJ. Where is dopamine and how do immune cells see it? Dopamine-mediated immune cell function in health and disease. J Neuroimmune Pharmacol. 2020;15:114–64.PubMedCrossRef Matt SM, Gaskill PJ. Where is dopamine and how do immune cells see it? Dopamine-mediated immune cell function in health and disease. J Neuroimmune Pharmacol. 2020;15:114–64.PubMedCrossRef
11.
go back to reference Mackie P, Lebowitz J, Saadatpour L, Nickoloff E, Gaskill P, Khoshbouei H. The dopamine transporter: an unrecognized nexus for dysfunctional peripheral immunity and signaling in Parkinson’s disease. Brain Behav Immun. 2018;70:21–35.PubMedPubMedCentralCrossRef Mackie P, Lebowitz J, Saadatpour L, Nickoloff E, Gaskill P, Khoshbouei H. The dopamine transporter: an unrecognized nexus for dysfunctional peripheral immunity and signaling in Parkinson’s disease. Brain Behav Immun. 2018;70:21–35.PubMedPubMedCentralCrossRef
12.
go back to reference Vidal PM, Pacheco R. The cross-talk between the dopaminergic and the immune system involved in schizophrenia. Front Pharmacol. 2020;11:3.CrossRef Vidal PM, Pacheco R. The cross-talk between the dopaminergic and the immune system involved in schizophrenia. Front Pharmacol. 2020;11:3.CrossRef
13.
go back to reference Chugh G, Lokhandwala MF, Asghar M. Altered functioning of both renal dopamine d1 and angiotensin II type 1 receptors causes hypertension in old rats. Hypertension. 2012;59:1029–36.PubMedCrossRef Chugh G, Lokhandwala MF, Asghar M. Altered functioning of both renal dopamine d1 and angiotensin II type 1 receptors causes hypertension in old rats. Hypertension. 2012;59:1029–36.PubMedCrossRef
14.
go back to reference Yang S, Yao B, Zhou Y, Yin H, Zhang MZ, Harris RC. Intrarenal dopamine modulates progressive angiotensin II-mediated renal injury. Am J Physiol Renal Physiol. 2012;302:F742–9.PubMedCrossRef Yang S, Yao B, Zhou Y, Yin H, Zhang MZ, Harris RC. Intrarenal dopamine modulates progressive angiotensin II-mediated renal injury. Am J Physiol Renal Physiol. 2012;302:F742–9.PubMedCrossRef
15.
go back to reference Garcia MI, Boehning D. Cardiac inositol 1,4,5-trisphosphate receptors. Biochim Biophys Acta Mol Cell Res. 2017;1864:907–14.PubMedCrossRef Garcia MI, Boehning D. Cardiac inositol 1,4,5-trisphosphate receptors. Biochim Biophys Acta Mol Cell Res. 2017;1864:907–14.PubMedCrossRef
16.
go back to reference Simo-Cheyou ER, Tan JJ, Grygorczyk R, Srivastava AK. Stim-1 and orai-1 channel mediate angiotensin-ii-induced expression of egr-1 in vascular smooth muscle cells. J Cell Physiol. 2017;232:3496–509.PubMedCrossRef Simo-Cheyou ER, Tan JJ, Grygorczyk R, Srivastava AK. Stim-1 and orai-1 channel mediate angiotensin-ii-induced expression of egr-1 in vascular smooth muscle cells. J Cell Physiol. 2017;232:3496–509.PubMedCrossRef
17.
go back to reference Basu U, Case AJ, Liu J, Tian J, Li YL, Zimmerman MC. Redox-sensitive calcium/calmodulin-dependent protein kinase iialpha in angiotensin II intra-neuronal signaling and hypertension. Redox Biol. 2019;27:101230.PubMedPubMedCentralCrossRef Basu U, Case AJ, Liu J, Tian J, Li YL, Zimmerman MC. Redox-sensitive calcium/calmodulin-dependent protein kinase iialpha in angiotensin II intra-neuronal signaling and hypertension. Redox Biol. 2019;27:101230.PubMedPubMedCentralCrossRef
18.
20.
go back to reference Belarbi K, Cuvelier E, Destee A, Gressier B, Chartier-Harlin MC. NADPH oxidases in Parkinson’s disease: a systematic review. Mol Neurodegener. 2017;12:84.PubMedPubMedCentralCrossRef Belarbi K, Cuvelier E, Destee A, Gressier B, Chartier-Harlin MC. NADPH oxidases in Parkinson’s disease: a systematic review. Mol Neurodegener. 2017;12:84.PubMedPubMedCentralCrossRef
21.
go back to reference Grammatopoulos TN, Jones SM, Ahmadi FA, Hoover BR, Snell LD, Skoch J, et al. Angiotensin type 1 receptor antagonist losartan, reduces MPTP-induced degeneration of dopaminergic neurons in substantia nigra. Mol Neurodegener. 2007;2:1.PubMedPubMedCentralCrossRef Grammatopoulos TN, Jones SM, Ahmadi FA, Hoover BR, Snell LD, Skoch J, et al. Angiotensin type 1 receptor antagonist losartan, reduces MPTP-induced degeneration of dopaminergic neurons in substantia nigra. Mol Neurodegener. 2007;2:1.PubMedPubMedCentralCrossRef
22.
go back to reference Rodriguez-Pallares J, Rey P, Parga JA, Munoz A, Guerra MJ, Labandeira-Garcia JL. Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ros. Neurobiol Dis. 2008;31:58–73.PubMedCrossRef Rodriguez-Pallares J, Rey P, Parga JA, Munoz A, Guerra MJ, Labandeira-Garcia JL. Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ros. Neurobiol Dis. 2008;31:58–73.PubMedCrossRef
23.
go back to reference Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hamakubo T, et al. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem. 1993;268:24543–6.PubMedCrossRef Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hamakubo T, et al. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem. 1993;268:24543–6.PubMedCrossRef
24.
go back to reference Nakajima M, Mukoyama M, Pratt RE, Horiuchi M, Dzau VJ. Cloning of cdna and analysis of the gene for mouse angiotensin II type 2 receptor. Biochem Biophys Res Commun. 1993;197:393–9.PubMedCrossRef Nakajima M, Mukoyama M, Pratt RE, Horiuchi M, Dzau VJ. Cloning of cdna and analysis of the gene for mouse angiotensin II type 2 receptor. Biochem Biophys Res Commun. 1993;197:393–9.PubMedCrossRef
25.
26.
go back to reference de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. Xxiii. The angiotensin II receptors. Pharmacol Rev. 2000;52:415–72.PubMed de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. Xxiii. The angiotensin II receptors. Pharmacol Rev. 2000;52:415–72.PubMed
27.
go back to reference Bhat SA, Sood A, Shukla R, Hanif K. At2r activation prevents microglia pro-inflammatory activation in a nox-dependent manner: inhibition of pkc activation and p47(phox) phosphorylation by pp2a. Mol Neurobiol. 2019;56:3005–23.PubMedCrossRef Bhat SA, Sood A, Shukla R, Hanif K. At2r activation prevents microglia pro-inflammatory activation in a nox-dependent manner: inhibition of pkc activation and p47(phox) phosphorylation by pp2a. Mol Neurobiol. 2019;56:3005–23.PubMedCrossRef
28.
go back to reference McCarthy CA, Widdop RE, Denton KM, Jones ES. Update on the angiotensin at(2) receptor. Curr Hypertens Rep. 2013;15:25–30.PubMedCrossRef McCarthy CA, Widdop RE, Denton KM, Jones ES. Update on the angiotensin at(2) receptor. Curr Hypertens Rep. 2013;15:25–30.PubMedCrossRef
29.
30.
go back to reference Garrido-Gil P, Pedrosa MA, Garcia-Garrote M, Pequeno-Valtierra A, Rodriguez-Castro J, Garcia-Souto D, et al. Microglial angiotensin type 2 receptors mediate sex-specific expression of inflammatory cytokines independently of circulating estrogen. Glia. 2022;70:2348–60.PubMedPubMedCentralCrossRef Garrido-Gil P, Pedrosa MA, Garcia-Garrote M, Pequeno-Valtierra A, Rodriguez-Castro J, Garcia-Souto D, et al. Microglial angiotensin type 2 receptors mediate sex-specific expression of inflammatory cytokines independently of circulating estrogen. Glia. 2022;70:2348–60.PubMedPubMedCentralCrossRef
32.
go back to reference Kostenis E, Milligan G, Christopoulos A, Sanchez-Ferrer CF, Heringer-Walther S, Sexton PM, et al. G-protein-coupled receptor mas is a physiological antagonist of the angiotensin II type 1 receptor. Circulation. 2005;111:1806–13.PubMedCrossRef Kostenis E, Milligan G, Christopoulos A, Sanchez-Ferrer CF, Heringer-Walther S, Sexton PM, et al. G-protein-coupled receptor mas is a physiological antagonist of the angiotensin II type 1 receptor. Circulation. 2005;111:1806–13.PubMedCrossRef
33.
go back to reference Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, et al. The ace2/angiotensin-(1–7)/mas axis of the renin-angiotensin system: Focus on angiotensin-(1–7). Physiol Rev. 2018;98:505–53.PubMedCrossRef Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, et al. The ace2/angiotensin-(1–7)/mas axis of the renin-angiotensin system: Focus on angiotensin-(1–7). Physiol Rev. 2018;98:505–53.PubMedCrossRef
34.
go back to reference Hrenak J, Paulis L, Simko F. Angiotensin a/alamandine/mrgd axis: another clue to understanding cardiovascular pathophysiology. Int J Mol Sci. 2016;17:1098.PubMedPubMedCentralCrossRef Hrenak J, Paulis L, Simko F. Angiotensin a/alamandine/mrgd axis: another clue to understanding cardiovascular pathophysiology. Int J Mol Sci. 2016;17:1098.PubMedPubMedCentralCrossRef
35.
go back to reference Valenzuela R, Rodriguez-Perez AI, Costa-Besada MA, Rivas-Santisteban R, Garrido-Gil P, Lopez-Lopez A, et al. An ace2/mas-related receptor mrge axis in dopaminergic neuron mitochondria. Redox Biol. 2021;46:102078.PubMedPubMedCentralCrossRef Valenzuela R, Rodriguez-Perez AI, Costa-Besada MA, Rivas-Santisteban R, Garrido-Gil P, Lopez-Lopez A, et al. An ace2/mas-related receptor mrge axis in dopaminergic neuron mitochondria. Redox Biol. 2021;46:102078.PubMedPubMedCentralCrossRef
37.
go back to reference Labandeira-Garcia JL, Rodriguez-Perez AI, Garrido-Gil P, Rodriguez-Pallares J, Lanciego JL, Guerra MJ. Brain renin-angiotensin system and microglial polarization: implications for aging and neurodegeneration. Front Aging Neurosci. 2017;9:129.PubMedPubMedCentralCrossRef Labandeira-Garcia JL, Rodriguez-Perez AI, Garrido-Gil P, Rodriguez-Pallares J, Lanciego JL, Guerra MJ. Brain renin-angiotensin system and microglial polarization: implications for aging and neurodegeneration. Front Aging Neurosci. 2017;9:129.PubMedPubMedCentralCrossRef
38.
go back to reference Labandeira-Garcia JL, Valenzuela R, Costa-Besada MA, Villar-Cheda B, Rodriguez-Perez AI. The intracellular renin-angiotensin system: Friend or foe. Some light from the dopaminergic neurons. Prog Neurobiol. 2021;199:101919.PubMedCrossRef Labandeira-Garcia JL, Valenzuela R, Costa-Besada MA, Villar-Cheda B, Rodriguez-Perez AI. The intracellular renin-angiotensin system: Friend or foe. Some light from the dopaminergic neurons. Prog Neurobiol. 2021;199:101919.PubMedCrossRef
39.
go back to reference Paz Ocaranza M, Riquelme JA, Garcia L, Jalil JE, Chiong M, Santos RAS, et al. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat Rev Cardiol. 2020;17:116–29.PubMedCrossRef Paz Ocaranza M, Riquelme JA, Garcia L, Jalil JE, Chiong M, Santos RAS, et al. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat Rev Cardiol. 2020;17:116–29.PubMedCrossRef
40.
go back to reference Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. Sars-cov-2 cell entry depends on ace2 and tmprss2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–80 e8.PubMedPubMedCentralCrossRef Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. Sars-cov-2 cell entry depends on ace2 and tmprss2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–80 e8.PubMedPubMedCentralCrossRef
41.
42.
go back to reference Brojakowska A, Narula J, Shimony R, Bander J. Clinical implications of sars-cov-2 interaction with renin angiotensin system: JACC review topic of the week. J Am Coll Cardiol. 2020;75:3085–95.PubMedPubMedCentralCrossRef Brojakowska A, Narula J, Shimony R, Bander J. Clinical implications of sars-cov-2 interaction with renin angiotensin system: JACC review topic of the week. J Am Coll Cardiol. 2020;75:3085–95.PubMedPubMedCentralCrossRef
43.
go back to reference Ferrara F, Vitiello A. The renin-angiotensin system and specifically angiotensin-converting enzyme 2 as a potential therapeutic target in sars-cov-2 infections. Naunyn Schmiedebergs Arch Pharmacol. 2021;394:1589–93.PubMedPubMedCentralCrossRef Ferrara F, Vitiello A. The renin-angiotensin system and specifically angiotensin-converting enzyme 2 as a potential therapeutic target in sars-cov-2 infections. Naunyn Schmiedebergs Arch Pharmacol. 2021;394:1589–93.PubMedPubMedCentralCrossRef
44.
go back to reference Wang S, Guo F, Liu K, Wang H, Rao S, Yang P, et al. Endocytosis of the receptor-binding domain of sars-cov spike protein together with virus receptor ace2. Virus Res. 2008;136:8–15.PubMedCrossRef Wang S, Guo F, Liu K, Wang H, Rao S, Yang P, et al. Endocytosis of the receptor-binding domain of sars-cov spike protein together with virus receptor ace2. Virus Res. 2008;136:8–15.PubMedCrossRef
45.
go back to reference South AM, Tomlinson L, Edmonston D, Hiremath S, Sparks MA. Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic. Nat Rev Nephrol. 2020;16:305–7.PubMedPubMedCentralCrossRef South AM, Tomlinson L, Edmonston D, Hiremath S, Sparks MA. Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic. Nat Rev Nephrol. 2020;16:305–7.PubMedPubMedCentralCrossRef
46.
go back to reference Wang K, Gheblawi M, Oudit GY. Angiotensin converting enzyme 2: A double-edged sword. Circulation. 2020;142:426–8.PubMedCrossRef Wang K, Gheblawi M, Oudit GY. Angiotensin converting enzyme 2: A double-edged sword. Circulation. 2020;142:426–8.PubMedCrossRef
47.
go back to reference Pedrosa MA, Valenzuela R, Garrido-Gil P, Labandeira CM, Navarro G, Franco R, et al. Experimental data using candesartan and captopril indicate no double-edged sword effect in COVID-19. Clin Sci (Lond). 2021;135:465–81.PubMedCrossRef Pedrosa MA, Valenzuela R, Garrido-Gil P, Labandeira CM, Navarro G, Franco R, et al. Experimental data using candesartan and captopril indicate no double-edged sword effect in COVID-19. Clin Sci (Lond). 2021;135:465–81.PubMedCrossRef
48.
go back to reference Valenzuela R, Pedrosa MA, Garrido-Gil P, Labandeira CM, Navarro G, Franco R, et al. Interactions between ibuprofen, ace2, renin-angiotensin system, and spike protein in the lung. Implications for COVID-19. Clin Transl Med. 2021;11:e371.PubMedPubMedCentralCrossRef Valenzuela R, Pedrosa MA, Garrido-Gil P, Labandeira CM, Navarro G, Franco R, et al. Interactions between ibuprofen, ace2, renin-angiotensin system, and spike protein in the lung. Implications for COVID-19. Clin Transl Med. 2021;11:e371.PubMedPubMedCentralCrossRef
49.
go back to reference Landolfo M, Maino A, Di Salvo E, Fiorini G, Peterlana D, Borghi C. Renin-angiotensin system modulation and outcomes in patients hospitalized for interstitial sars-cov2 pneumonia: a cohort study. Intern Emerg Med. 2022;17:1335–41.PubMedPubMedCentralCrossRef Landolfo M, Maino A, Di Salvo E, Fiorini G, Peterlana D, Borghi C. Renin-angiotensin system modulation and outcomes in patients hospitalized for interstitial sars-cov2 pneumonia: a cohort study. Intern Emerg Med. 2022;17:1335–41.PubMedPubMedCentralCrossRef
50.
go back to reference Nunez-Gil IJ, Olier I, Feltes G, Viana-Llamas MC, Maroun-Eid C, Romero R, et al. Renin-angiotensin system inhibitors effect before and during hospitalization in COVID-19 outcomes: Final analysis of the international hope COVID-19 (health outcome predictive evaluation for COVID-19) registry. Am Heart J. 2021;237:104–15.PubMedPubMedCentralCrossRef Nunez-Gil IJ, Olier I, Feltes G, Viana-Llamas MC, Maroun-Eid C, Romero R, et al. Renin-angiotensin system inhibitors effect before and during hospitalization in COVID-19 outcomes: Final analysis of the international hope COVID-19 (health outcome predictive evaluation for COVID-19) registry. Am Heart J. 2021;237:104–15.PubMedPubMedCentralCrossRef
51.
go back to reference Labandeira-Garcia JL, Labandeira CM, Valenzuela R, Pedrosa MA, Quijano A, Rodriguez-Perez AI. Drugs modulating renin-angiotensin system in COVID-19 treatment. Biomedicines. 2022;10:502.PubMedPubMedCentralCrossRef Labandeira-Garcia JL, Labandeira CM, Valenzuela R, Pedrosa MA, Quijano A, Rodriguez-Perez AI. Drugs modulating renin-angiotensin system in COVID-19 treatment. Biomedicines. 2022;10:502.PubMedPubMedCentralCrossRef
52.
go back to reference Smeyne RJ, Eells JB, Chatterjee D, Byrne M, Akula SM, Sriramula S, et al. COVID-19 infection enhances susceptibility to oxidative stress-induced Parkinsonism. Mov Disord. 2022;37:1394–404.PubMedPubMedCentralCrossRef Smeyne RJ, Eells JB, Chatterjee D, Byrne M, Akula SM, Sriramula S, et al. COVID-19 infection enhances susceptibility to oxidative stress-induced Parkinsonism. Mov Disord. 2022;37:1394–404.PubMedPubMedCentralCrossRef
53.
go back to reference Tiwari S, Yadav N, Singh S. COVID-19 and Parkinson’s disease: possible links in pathology and therapeutics. Neurotox Res. 2022;40:1586–96.PubMedCrossRef Tiwari S, Yadav N, Singh S. COVID-19 and Parkinson’s disease: possible links in pathology and therapeutics. Neurotox Res. 2022;40:1586–96.PubMedCrossRef
54.
go back to reference Li XC, Zhu D, Zheng X, Zhang J, Zhuo JL. Intratubular and intracellular renin-angiotensin system in the kidney: a unifying perspective in blood pressure control. Clin Sci (Lond). 2018;132:1383–401.PubMedCrossRef Li XC, Zhu D, Zheng X, Zhang J, Zhuo JL. Intratubular and intracellular renin-angiotensin system in the kidney: a unifying perspective in blood pressure control. Clin Sci (Lond). 2018;132:1383–401.PubMedCrossRef
55.
56.
go back to reference Costa-Besada MA, Valenzuela R, Garrido-Gil P, Villar-Cheda B, Parga JA, Lanciego JL, et al. Paracrine and intracrine angiotensin 1–7/mas receptor axis in the substantia nigra of rodents, monkeys, and humans. Mol Neurobiol. 2018;55:5847–67.PubMedCrossRef Costa-Besada MA, Valenzuela R, Garrido-Gil P, Villar-Cheda B, Parga JA, Lanciego JL, et al. Paracrine and intracrine angiotensin 1–7/mas receptor axis in the substantia nigra of rodents, monkeys, and humans. Mol Neurobiol. 2018;55:5847–67.PubMedCrossRef
57.
go back to reference Valenzuela R, Costa-Besada MA, Iglesias-Gonzalez J, Perez-Costas E, Villar-Cheda B, Garrido-Gil P, et al. Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration. Cell Death Dis. 2016;7:e2427.PubMedPubMedCentralCrossRef Valenzuela R, Costa-Besada MA, Iglesias-Gonzalez J, Perez-Costas E, Villar-Cheda B, Garrido-Gil P, et al. Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration. Cell Death Dis. 2016;7:e2427.PubMedPubMedCentralCrossRef
58.
go back to reference Villar-Cheda B, Costa-Besada MA, Valenzuela R, Perez-Costas E, Melendez-Ferro M, Labandeira-Garcia JL. The intracellular angiotensin system buffers deleterious effects of the extracellular paracrine system. Cell Death Dis. 2017;8:e3044.PubMedPubMedCentralCrossRef Villar-Cheda B, Costa-Besada MA, Valenzuela R, Perez-Costas E, Melendez-Ferro M, Labandeira-Garcia JL. The intracellular angiotensin system buffers deleterious effects of the extracellular paracrine system. Cell Death Dis. 2017;8:e3044.PubMedPubMedCentralCrossRef
59.
go back to reference Ferre S, Baler R, Bouvier M, Caron MG, Devi LA, Durroux T, et al. Building a new conceptual framework for receptor heteromers. Nat Chem Biol. 2009;5:131–4.PubMedPubMedCentralCrossRef Ferre S, Baler R, Bouvier M, Caron MG, Devi LA, Durroux T, et al. Building a new conceptual framework for receptor heteromers. Nat Chem Biol. 2009;5:131–4.PubMedPubMedCentralCrossRef
60.
go back to reference Durdagi S, Erol I, Salmas RE, Aksoydan B, Kantarcioglu I. Oligomerization and cooperativity in GPCRS from the perspective of the angiotensin AT1 and dopamine D2 receptors. Neurosci Lett. 2019;700:30–7.PubMedCrossRef Durdagi S, Erol I, Salmas RE, Aksoydan B, Kantarcioglu I. Oligomerization and cooperativity in GPCRS from the perspective of the angiotensin AT1 and dopamine D2 receptors. Neurosci Lett. 2019;700:30–7.PubMedCrossRef
61.
go back to reference Rivas-Santisteban R, Lillo J, Munoz A, Rodriguez-Perez AI, Labandeira-Garcia JL, Navarro G, et al. Novel interactions involving the MAS receptor show potential of the renin-angiotensin system in the regulation of microglia activation: altered expression in Parkinsonism and dyskinesia. Neurotherapeutics. 2021;18:998–1016.PubMedPubMedCentralCrossRef Rivas-Santisteban R, Lillo J, Munoz A, Rodriguez-Perez AI, Labandeira-Garcia JL, Navarro G, et al. Novel interactions involving the MAS receptor show potential of the renin-angiotensin system in the regulation of microglia activation: altered expression in Parkinsonism and dyskinesia. Neurotherapeutics. 2021;18:998–1016.PubMedPubMedCentralCrossRef
62.
go back to reference Rivas-Santisteban R, Lillo J, Raich I, Munoz A, Lillo A, Rodriguez-Perez AI, et al. The cannabinoid CB(1) receptor interacts with the angiotensin AT(2) receptor. Overexpression of AT(2)-CB(1) receptor heteromers in the striatum of 6-hydroxydopamine hemilesioned rats. Exp Neurol. 2023;362:114319.PubMedCrossRef Rivas-Santisteban R, Lillo J, Raich I, Munoz A, Lillo A, Rodriguez-Perez AI, et al. The cannabinoid CB(1) receptor interacts with the angiotensin AT(2) receptor. Overexpression of AT(2)-CB(1) receptor heteromers in the striatum of 6-hydroxydopamine hemilesioned rats. Exp Neurol. 2023;362:114319.PubMedCrossRef
63.
go back to reference Szalai B, Barkai L, Turu G, Szidonya L, Varnai P, Hunyady L. Allosteric interactions within the AT(1) angiotensin receptor homodimer: Role of the conserved dry motif. Biochem Pharmacol. 2012;84:477–85.PubMedCrossRef Szalai B, Barkai L, Turu G, Szidonya L, Varnai P, Hunyady L. Allosteric interactions within the AT(1) angiotensin receptor homodimer: Role of the conserved dry motif. Biochem Pharmacol. 2012;84:477–85.PubMedCrossRef
64.
go back to reference AbdAlla S, Lother H, Abdel-tawab AM, Quitterer U. The angiotensin II AT2 receptor is an at1 receptor antagonist. J Biol Chem. 2001;276:39721–6.PubMedCrossRef AbdAlla S, Lother H, Abdel-tawab AM, Quitterer U. The angiotensin II AT2 receptor is an at1 receptor antagonist. J Biol Chem. 2001;276:39721–6.PubMedCrossRef
65.
go back to reference Zeng C, Liu Y, Wang Z, He D, Huang L, Yu P, et al. Activation of d3 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells. Circ Res. 2006;99:494–500.PubMedCrossRef Zeng C, Liu Y, Wang Z, He D, Huang L, Yu P, et al. Activation of d3 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells. Circ Res. 2006;99:494–500.PubMedCrossRef
66.
go back to reference Rozenfeld R, Gupta A, Gagnidze K, Lim MP, Gomes I, Lee-Ramos D, et al. AT1R-CB(1)R heteromerization reveals a new mechanism for the pathogenic properties of angiotensin II. EMBO J. 2011;30:2350–63.PubMedPubMedCentralCrossRef Rozenfeld R, Gupta A, Gagnidze K, Lim MP, Gomes I, Lee-Ramos D, et al. AT1R-CB(1)R heteromerization reveals a new mechanism for the pathogenic properties of angiotensin II. EMBO J. 2011;30:2350–63.PubMedPubMedCentralCrossRef
67.
go back to reference Martinez-Pinilla E, Rodriguez-Perez AI, Navarro G, Aguinaga D, Moreno E, Lanciego JL, et al. Dopamine D2 and angiotensin II type 1 receptors form functional heteromers in rat striatum. Biochem Pharmacol. 2015;96:131–42.PubMedCrossRef Martinez-Pinilla E, Rodriguez-Perez AI, Navarro G, Aguinaga D, Moreno E, Lanciego JL, et al. Dopamine D2 and angiotensin II type 1 receptors form functional heteromers in rat striatum. Biochem Pharmacol. 2015;96:131–42.PubMedCrossRef
68.
go back to reference Phillips MI, de Oliveira EM. Brain renin angiotensin in disease. J Mol Med (Berl). 2008;86:715–22.PubMedCrossRef Phillips MI, de Oliveira EM. Brain renin angiotensin in disease. J Mol Med (Berl). 2008;86:715–22.PubMedCrossRef
69.
go back to reference Harding JW, Sullivan MJ, Hanesworth JM, Cushing LL, Wright JW. Inability of [125I]SAR1, ILE8-angiotensin II to move between the blood and cerebrospinal fluid compartments. J Neurochem. 1988;50:554–7.PubMedCrossRef Harding JW, Sullivan MJ, Hanesworth JM, Cushing LL, Wright JW. Inability of [125I]SAR1, ILE8-angiotensin II to move between the blood and cerebrospinal fluid compartments. J Neurochem. 1988;50:554–7.PubMedCrossRef
70.
go back to reference Hermann K, McDonald W, Unger T, Lang RE, Ganten D. Angiotensin biosynthesis and concentrations in brain of normotensive and hypertensive rats. J Physiol (Paris). 1984;79:471–80.PubMed Hermann K, McDonald W, Unger T, Lang RE, Ganten D. Angiotensin biosynthesis and concentrations in brain of normotensive and hypertensive rats. J Physiol (Paris). 1984;79:471–80.PubMed
71.
go back to reference Milsted A, Barna BP, Ransohoff RM, Brosnihan KB, Ferrario CM. Astrocyte cultures derived from human brain tissue express angiotensinogen mrna. Proc Natl Acad Sci U S A. 1990;87:5720–3.PubMedPubMedCentralCrossRef Milsted A, Barna BP, Ransohoff RM, Brosnihan KB, Ferrario CM. Astrocyte cultures derived from human brain tissue express angiotensinogen mrna. Proc Natl Acad Sci U S A. 1990;87:5720–3.PubMedPubMedCentralCrossRef
72.
go back to reference Stornetta RL, Hawelu-Johnson CL, Guyenet PG, Lynch KR. Astrocytes synthesize angiotensinogen in brain. Science. 1988;242:1444–6.PubMedCrossRef Stornetta RL, Hawelu-Johnson CL, Guyenet PG, Lynch KR. Astrocytes synthesize angiotensinogen in brain. Science. 1988;242:1444–6.PubMedCrossRef
73.
go back to reference Kumar A, Rassoli A, Raizada MK. Angiotensinogen gene expression in neuronal and glial cells in primary cultures of rat brain. J Neurosci Res. 1988;19:287–90.PubMedCrossRef Kumar A, Rassoli A, Raizada MK. Angiotensinogen gene expression in neuronal and glial cells in primary cultures of rat brain. J Neurosci Res. 1988;19:287–90.PubMedCrossRef
74.
go back to reference Thomas WG, Greenland KJ, Shinkel TA, Sernia C. Angiotensinogen is secreted by pure rat neuronal cell cultures. Brain Res. 1992;588:191–200.PubMedCrossRef Thomas WG, Greenland KJ, Shinkel TA, Sernia C. Angiotensinogen is secreted by pure rat neuronal cell cultures. Brain Res. 1992;588:191–200.PubMedCrossRef
75.
go back to reference van Thiel BS, Goes Martini A, Te Riet L, Severs D, Uijl E, Garrelds IM, et al. Brain renin-angiotensin system: Does it exist? Hypertension. 2017;69:1136–44.PubMedCrossRef van Thiel BS, Goes Martini A, Te Riet L, Severs D, Uijl E, Garrelds IM, et al. Brain renin-angiotensin system: Does it exist? Hypertension. 2017;69:1136–44.PubMedCrossRef
76.
go back to reference Bader M, Ganten D. It’s renin in the brain: transgenic animals elucidate the brain renin angiotensin system. Circ Res. 2002;90:8–10.PubMedCrossRef Bader M, Ganten D. It’s renin in the brain: transgenic animals elucidate the brain renin angiotensin system. Circ Res. 2002;90:8–10.PubMedCrossRef
77.
go back to reference Lavoie JL, Cassell MD, Gross KW, Sigmund CD. Localization of renin expressing cells in the brain, by use of a REN-EGFP transgenic model. Physiol Genomics. 2004;16:240–6.PubMedCrossRef Lavoie JL, Cassell MD, Gross KW, Sigmund CD. Localization of renin expressing cells in the brain, by use of a REN-EGFP transgenic model. Physiol Genomics. 2004;16:240–6.PubMedCrossRef
78.
go back to reference Lopez-Lopez A, Villar-Cheda B, Quijano A, Garrido-Gil P, Garcia-Garrote M, Diaz-Ruiz C, et al. NADPH-oxidase, rho-kinase and autophagy mediate the (pro)renin-induced pro-inflammatory microglial response and enhancement of dopaminergic neuron death. Antioxidants (Basel). 2021;10:1340.PubMedCrossRef Lopez-Lopez A, Villar-Cheda B, Quijano A, Garrido-Gil P, Garcia-Garrote M, Diaz-Ruiz C, et al. NADPH-oxidase, rho-kinase and autophagy mediate the (pro)renin-induced pro-inflammatory microglial response and enhancement of dopaminergic neuron death. Antioxidants (Basel). 2021;10:1340.PubMedCrossRef
79.
go back to reference Valenzuela R, Barroso-Chinea P, Villar-Cheda B, Joglar B, Munoz A, Lanciego JL, et al. Location of prorenin receptors in primate substantia nigra: effects on dopaminergic cell death. J Neuropathol Exp Neurol. 2010;69:1130–42.PubMedCrossRef Valenzuela R, Barroso-Chinea P, Villar-Cheda B, Joglar B, Munoz A, Lanciego JL, et al. Location of prorenin receptors in primate substantia nigra: effects on dopaminergic cell death. J Neuropathol Exp Neurol. 2010;69:1130–42.PubMedCrossRef
80.
go back to reference Labandeira CM, Pedrosa MA, Quijano A, Valenzuela R, Garrido-Gil P, Sanchez-Andrade M, et al. Angiotensin type-1 receptor and ACE2 autoantibodies in Parkinson’S disease. NPJ Parkinsons Dis. 2022;8:76.PubMedPubMedCentralCrossRef Labandeira CM, Pedrosa MA, Quijano A, Valenzuela R, Garrido-Gil P, Sanchez-Andrade M, et al. Angiotensin type-1 receptor and ACE2 autoantibodies in Parkinson’S disease. NPJ Parkinsons Dis. 2022;8:76.PubMedPubMedCentralCrossRef
81.
go back to reference Pedrosa MA, Labandeira CM, Valenzuela R, Quijano A, Sanchez-Andrade M, Suarez-Quintanilla JA, et al. AT1 receptor autoantibodies mediate effects of metabolic syndrome on dopaminergic vulnerability. Brain Behav Immun. 2023;108:255–68.PubMedCrossRef Pedrosa MA, Labandeira CM, Valenzuela R, Quijano A, Sanchez-Andrade M, Suarez-Quintanilla JA, et al. AT1 receptor autoantibodies mediate effects of metabolic syndrome on dopaminergic vulnerability. Brain Behav Immun. 2023;108:255–68.PubMedCrossRef
82.
go back to reference Allen AM, MacGregor DP, Chai SY, Donnan GA, Kaczmarczyk S, Richardson K, et al. Angiotensin II receptor binding associated with nigrostriatal dopaminergic neurons in human basal ganglia. Ann Neurol. 1992;32:339–44.PubMedCrossRef Allen AM, MacGregor DP, Chai SY, Donnan GA, Kaczmarczyk S, Richardson K, et al. Angiotensin II receptor binding associated with nigrostriatal dopaminergic neurons in human basal ganglia. Ann Neurol. 1992;32:339–44.PubMedCrossRef
83.
go back to reference Quinlan JT, Phillips MI. Immunoreactivity for an angiotensin II-like peptide in the human brain. Brain Res. 1981;205:212–8.PubMedCrossRef Quinlan JT, Phillips MI. Immunoreactivity for an angiotensin II-like peptide in the human brain. Brain Res. 1981;205:212–8.PubMedCrossRef
84.
go back to reference Simonnet G, Giorguieff-Chesselet MF, Carayon A, Bioulac B, Cesselin F, Glowinski J, et al. Angiotensin II and nigostriatal system (author’s transl). J Physiol (Paris). 1981;77:71–9.PubMed Simonnet G, Giorguieff-Chesselet MF, Carayon A, Bioulac B, Cesselin F, Glowinski J, et al. Angiotensin II and nigostriatal system (author’s transl). J Physiol (Paris). 1981;77:71–9.PubMed
85.
go back to reference Joglar B, Rodriguez-Pallares J, Rodriguez-Perez AI, Rey P, Guerra MJ, Labandeira-Garcia JL. The inflammatory response in the MPTP model of Parkinson’s disease is mediated by brain angiotensin: relevance to progression of the disease. J Neurochem. 2009;109:656–69.PubMedCrossRef Joglar B, Rodriguez-Pallares J, Rodriguez-Perez AI, Rey P, Guerra MJ, Labandeira-Garcia JL. The inflammatory response in the MPTP model of Parkinson’s disease is mediated by brain angiotensin: relevance to progression of the disease. J Neurochem. 2009;109:656–69.PubMedCrossRef
86.
go back to reference Garrido-Gil P, Rodriguez-Perez AI, Fernandez-Rodriguez P, Lanciego JL, Labandeira-Garcia JL. Expression of angiotensinogen and receptors for angiotensin and prorenin in the rat and monkey striatal neurons and glial cells. Brain Struct Funct. 2017;222:2559–71.PubMedCrossRef Garrido-Gil P, Rodriguez-Perez AI, Fernandez-Rodriguez P, Lanciego JL, Labandeira-Garcia JL. Expression of angiotensinogen and receptors for angiotensin and prorenin in the rat and monkey striatal neurons and glial cells. Brain Struct Funct. 2017;222:2559–71.PubMedCrossRef
87.
go back to reference Garrido-Gil P, Valenzuela R, Villar-Cheda B, Lanciego JL, Labandeira-Garcia JL. Expression of angiotensinogen and receptors for angiotensin and prorenin in the monkey and human substantia nigra: an intracellular renin-angiotensin system in the nigra. Brain Struct Funct. 2013;218:373–88.PubMedCrossRef Garrido-Gil P, Valenzuela R, Villar-Cheda B, Lanciego JL, Labandeira-Garcia JL. Expression of angiotensinogen and receptors for angiotensin and prorenin in the monkey and human substantia nigra: an intracellular renin-angiotensin system in the nigra. Brain Struct Funct. 2013;218:373–88.PubMedCrossRef
88.
go back to reference Rodriguez-Perez AI, Borrajo A, Rodriguez-Pallares J, Guerra MJ, Labandeira-Garcia JL. Interaction between NADPH-oxidase and rho-kinase in angiotensin II-induced microglial activation. Glia. 2015;63:466–82.PubMedCrossRef Rodriguez-Perez AI, Borrajo A, Rodriguez-Pallares J, Guerra MJ, Labandeira-Garcia JL. Interaction between NADPH-oxidase and rho-kinase in angiotensin II-induced microglial activation. Glia. 2015;63:466–82.PubMedCrossRef
89.
go back to reference Rodriguez-Perez AI, Garrido-Gil P, Pedrosa MA, Garcia-Garrote M, Valenzuela R, Navarro G, et al. Angiotensin type 2 receptors: Role in aging and neuroinflammation in the substantia nigra. Brain Behav Immun. 2020;87:256–71.PubMedCrossRef Rodriguez-Perez AI, Garrido-Gil P, Pedrosa MA, Garcia-Garrote M, Valenzuela R, Navarro G, et al. Angiotensin type 2 receptors: Role in aging and neuroinflammation in the substantia nigra. Brain Behav Immun. 2020;87:256–71.PubMedCrossRef
90.
go back to reference Kamath T, Abdulraouf A, Burris SJ, Langlieb J, Gazestani V, Nadaf NM, et al. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease. Nat Neurosci. 2022;25:588–95.PubMedPubMedCentralCrossRef Kamath T, Abdulraouf A, Burris SJ, Langlieb J, Gazestani V, Nadaf NM, et al. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease. Nat Neurosci. 2022;25:588–95.PubMedPubMedCentralCrossRef
91.
go back to reference Garrido-Gil P, Dominguez-Meijide A, Moratalla R, Guerra MJ, Labandeira-Garcia JL. Aging-related dysregulation in enteric dopamine and angiotensin system interactions: Implications for gastrointestinal dysfunction in the elderly. Oncotarget. 2018;9:10834–46.PubMedPubMedCentralCrossRef Garrido-Gil P, Dominguez-Meijide A, Moratalla R, Guerra MJ, Labandeira-Garcia JL. Aging-related dysregulation in enteric dopamine and angiotensin system interactions: Implications for gastrointestinal dysfunction in the elderly. Oncotarget. 2018;9:10834–46.PubMedPubMedCentralCrossRef
92.
go back to reference Garrido-Gil P, Rodriguez-Perez AI, Dominguez-Meijide A, Guerra MJ, Labandeira-Garcia JL. Bidirectional neural interaction between central dopaminergic and gut lesions in Parkinson’s disease models. Mol Neurobiol. 2018;55:7297–316.PubMedCrossRef Garrido-Gil P, Rodriguez-Perez AI, Dominguez-Meijide A, Guerra MJ, Labandeira-Garcia JL. Bidirectional neural interaction between central dopaminergic and gut lesions in Parkinson’s disease models. Mol Neurobiol. 2018;55:7297–316.PubMedCrossRef
93.
go back to reference Garrido-Gil P, Rodriguez-Perez AI, Lage L, Labandeira-Garcia JL. Estrogen deficiency and colonic function: surgical menopause and sex differences in angiotensin and dopamine receptor interaction. J Gerontol A Biol Sci Med Sci. 2021;76:1533–41.PubMedCrossRef Garrido-Gil P, Rodriguez-Perez AI, Lage L, Labandeira-Garcia JL. Estrogen deficiency and colonic function: surgical menopause and sex differences in angiotensin and dopamine receptor interaction. J Gerontol A Biol Sci Med Sci. 2021;76:1533–41.PubMedCrossRef
94.
95.
go back to reference Gildea JJ, Xu P, Kemp BA, Carey RM, Jose PA, Felder RA. The dopamine D(1) receptor and angiotensin II type-2 receptor are required for inhibition of sodium transport through a protein phosphatase 2A pathway. Hypertension. 2019;73:1258–65.PubMedCrossRef Gildea JJ, Xu P, Kemp BA, Carey RM, Jose PA, Felder RA. The dopamine D(1) receptor and angiotensin II type-2 receptor are required for inhibition of sodium transport through a protein phosphatase 2A pathway. Hypertension. 2019;73:1258–65.PubMedCrossRef
96.
go back to reference Brown DC, Steward LJ, Ge J, Barnes NM. Ability of angiotensin II to modulate striatal dopamine release via the AT1 receptor in vitro and in vivo. Br J Pharmacol. 1996;118:414–20.PubMedPubMedCentralCrossRef Brown DC, Steward LJ, Ge J, Barnes NM. Ability of angiotensin II to modulate striatal dopamine release via the AT1 receptor in vitro and in vivo. Br J Pharmacol. 1996;118:414–20.PubMedPubMedCentralCrossRef
97.
go back to reference Mendelsohn FA, Jenkins TA, Berkovic SF. Effects of angiotensin II on dopamine and serotonin turnover in the striatum of conscious rats. Brain Res. 1993;613:221–9.PubMedCrossRef Mendelsohn FA, Jenkins TA, Berkovic SF. Effects of angiotensin II on dopamine and serotonin turnover in the striatum of conscious rats. Brain Res. 1993;613:221–9.PubMedCrossRef
98.
go back to reference Aschrafi A, Berndt A, Kowalak JA, Gale JR, Gioio AE, Kaplan BB. Angiotensin II mediates the axonal trafficking of tyrosine hydroxylase and dopamine beta-hydroxylase mrnas and enhances norepinephrine synthesis in primary sympathetic neurons. J Neurochem. 2019;150:666–77.PubMedPubMedCentralCrossRef Aschrafi A, Berndt A, Kowalak JA, Gale JR, Gioio AE, Kaplan BB. Angiotensin II mediates the axonal trafficking of tyrosine hydroxylase and dopamine beta-hydroxylase mrnas and enhances norepinephrine synthesis in primary sympathetic neurons. J Neurochem. 2019;150:666–77.PubMedPubMedCentralCrossRef
99.
go back to reference Villar-Cheda B, Dominguez-Meijide A, Valenzuela R, Granado N, Moratalla R, Labandeira-Garcia JL. Aging-related dysregulation of dopamine and angiotensin receptor interaction. Neurobiol Aging. 2014;35:1726–38.PubMedCrossRef Villar-Cheda B, Dominguez-Meijide A, Valenzuela R, Granado N, Moratalla R, Labandeira-Garcia JL. Aging-related dysregulation of dopamine and angiotensin receptor interaction. Neurobiol Aging. 2014;35:1726–38.PubMedCrossRef
100.
go back to reference Villar-Cheda B, Rodriguez-Pallares J, Valenzuela R, Munoz A, Guerra MJ, Baltatu OC, et al. Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: implications for progression of Parkinson’s disease. Eur J Neurosci. 2010;32:1695–706.PubMedCrossRef Villar-Cheda B, Rodriguez-Pallares J, Valenzuela R, Munoz A, Guerra MJ, Baltatu OC, et al. Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: implications for progression of Parkinson’s disease. Eur J Neurosci. 2010;32:1695–706.PubMedCrossRef
101.
go back to reference Rivas-Santisteban R, Rodriguez-Perez AI, Munoz A, Reyes-Resina I, Labandeira-Garcia JL, Navarro G, et al. Angiotensin AT(1) and AT(2) receptor heteromer expression in the hemilesioned rat model of Parkinson’s disease that increases with levodopa-induced dyskinesia. J Neuroinflammation. 2020;17:243.PubMedPubMedCentralCrossRef Rivas-Santisteban R, Rodriguez-Perez AI, Munoz A, Reyes-Resina I, Labandeira-Garcia JL, Navarro G, et al. Angiotensin AT(1) and AT(2) receptor heteromer expression in the hemilesioned rat model of Parkinson’s disease that increases with levodopa-induced dyskinesia. J Neuroinflammation. 2020;17:243.PubMedPubMedCentralCrossRef
102.
go back to reference Dominguez-Meijide A, Rodriguez-Perez AI, Diaz-Ruiz C, Guerra MJ, Labandeira-Garcia JL. Dopamine modulates astroglial and microglial activity via glial renin-angiotensin system in cultures. Brain Behav Immun. 2017;62:277–90.PubMedCrossRef Dominguez-Meijide A, Rodriguez-Perez AI, Diaz-Ruiz C, Guerra MJ, Labandeira-Garcia JL. Dopamine modulates astroglial and microglial activity via glial renin-angiotensin system in cultures. Brain Behav Immun. 2017;62:277–90.PubMedCrossRef
103.
go back to reference Rey P, Lopez-Real A, Sanchez-Iglesias S, Munoz A, Soto-Otero R, Labandeira-Garcia JL. Angiotensin type-1-receptor antagonists reduce 6-hydroxydopamine toxicity for dopaminergic neurons. Neurobiol Aging. 2007;28:555–67.PubMedCrossRef Rey P, Lopez-Real A, Sanchez-Iglesias S, Munoz A, Soto-Otero R, Labandeira-Garcia JL. Angiotensin type-1-receptor antagonists reduce 6-hydroxydopamine toxicity for dopaminergic neurons. Neurobiol Aging. 2007;28:555–67.PubMedCrossRef
104.
go back to reference Sonsalla PK, Coleman C, Wong LY, Harris SL, Richardson JR, Gadad BS, et al. The angiotensin converting enzyme inhibitor captopril protects nigrostriatal dopamine neurons in animal models of Parkinsonism. Exp Neurol. 2013;250:376–83.PubMedPubMedCentralCrossRef Sonsalla PK, Coleman C, Wong LY, Harris SL, Richardson JR, Gadad BS, et al. The angiotensin converting enzyme inhibitor captopril protects nigrostriatal dopamine neurons in animal models of Parkinsonism. Exp Neurol. 2013;250:376–83.PubMedPubMedCentralCrossRef
105.
go back to reference Zawada WM, Banninger GP, Thornton J, Marriott B, Cantu D, Rachubinski AL, et al. Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J Neuroinflammation. 2011;8:129.PubMedPubMedCentralCrossRef Zawada WM, Banninger GP, Thornton J, Marriott B, Cantu D, Rachubinski AL, et al. Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J Neuroinflammation. 2011;8:129.PubMedPubMedCentralCrossRef
106.
go back to reference Rodriguez-Perez AI, Sucunza D, Pedrosa MA, Garrido-Gil P, Kulisevsky J, Lanciego JL, et al. Angiotensin type 1 receptor antagonists protect against alpha-synuclein-induced neuroinflammation and dopaminergic neuron death. Neurotherapeutics. 2018;15:1063–81.PubMedPubMedCentralCrossRef Rodriguez-Perez AI, Sucunza D, Pedrosa MA, Garrido-Gil P, Kulisevsky J, Lanciego JL, et al. Angiotensin type 1 receptor antagonists protect against alpha-synuclein-induced neuroinflammation and dopaminergic neuron death. Neurotherapeutics. 2018;15:1063–81.PubMedPubMedCentralCrossRef
107.
go back to reference Lopez-Real A, Rey P, Soto-Otero R, Mendez-Alvarez E, Labandeira-Garcia JL. Angiotensin-converting enzyme inhibition reduces oxidative stress and protects dopaminergic neurons in a 6-hydroxydopamine rat model of Parkinsonism. J Neurosci Res. 2005;81:865–73.PubMedCrossRef Lopez-Real A, Rey P, Soto-Otero R, Mendez-Alvarez E, Labandeira-Garcia JL. Angiotensin-converting enzyme inhibition reduces oxidative stress and protects dopaminergic neurons in a 6-hydroxydopamine rat model of Parkinsonism. J Neurosci Res. 2005;81:865–73.PubMedCrossRef
108.
go back to reference Munoz A, Rey P, Guerra MJ, Mendez-Alvarez E, Soto-Otero R, Labandeira-Garcia JL. Reduction of dopaminergic degeneration and oxidative stress by inhibition of angiotensin converting enzyme in a MPTP model of Parkinsonism. Neuropharmacology. 2006;51:112–20.PubMedCrossRef Munoz A, Rey P, Guerra MJ, Mendez-Alvarez E, Soto-Otero R, Labandeira-Garcia JL. Reduction of dopaminergic degeneration and oxidative stress by inhibition of angiotensin converting enzyme in a MPTP model of Parkinsonism. Neuropharmacology. 2006;51:112–20.PubMedCrossRef
109.
go back to reference Konings CH, Kuiper MA, Bergmans PL, Grijpma AM, van Kamp GJ, Wolters EC. Increased angiotensin-converting enzyme activity in cerebrospinal fluid of treated patients with Parkinson’s disease. Clin Chim Acta. 1994;231:101–6.PubMedCrossRef Konings CH, Kuiper MA, Bergmans PL, Grijpma AM, van Kamp GJ, Wolters EC. Increased angiotensin-converting enzyme activity in cerebrospinal fluid of treated patients with Parkinson’s disease. Clin Chim Acta. 1994;231:101–6.PubMedCrossRef
110.
go back to reference Lin JJ, Yueh KC, Chang DC, Lin SZ. Association between genetic polymorphism of angiotensin-converting enzyme gene and Parkinson’s disease. J Neurol Sci. 2002;199:25–9.PubMedCrossRef Lin JJ, Yueh KC, Chang DC, Lin SZ. Association between genetic polymorphism of angiotensin-converting enzyme gene and Parkinson’s disease. J Neurol Sci. 2002;199:25–9.PubMedCrossRef
111.
go back to reference Reardon KA, Mendelsohn FA, Chai SY, Horne MK. The angiotensin converting enzyme (ace) inhibitor, perindopril, modifies the clinical features of Parkinson’s disease. Aust N Z J Med. 2000;30:48–53.PubMedCrossRef Reardon KA, Mendelsohn FA, Chai SY, Horne MK. The angiotensin converting enzyme (ace) inhibitor, perindopril, modifies the clinical features of Parkinson’s disease. Aust N Z J Med. 2000;30:48–53.PubMedCrossRef
112.
go back to reference Becker C, Jick SS, Meier CR. Use of antihypertensives and the risk of Parkinson disease. Neurology. 2008;70:1438–44.PubMedCrossRef Becker C, Jick SS, Meier CR. Use of antihypertensives and the risk of Parkinson disease. Neurology. 2008;70:1438–44.PubMedCrossRef
113.
go back to reference Lee YC, Lin CH, Wu RM, Lin JW, Chang CH, Lai MS. Antihypertensive agents and risk of Parkinson’s disease: a nationwide cohort study. PLoS ONE. 2014;9:e98961.PubMedPubMedCentralCrossRef Lee YC, Lin CH, Wu RM, Lin JW, Chang CH, Lai MS. Antihypertensive agents and risk of Parkinson’s disease: a nationwide cohort study. PLoS ONE. 2014;9:e98961.PubMedPubMedCentralCrossRef
114.
go back to reference Ascherio A, Tanner CM. Use of antihypertensives and the risk of Parkinson disease. Neurology. 2009;72:578–9.PubMedCrossRef Ascherio A, Tanner CM. Use of antihypertensives and the risk of Parkinson disease. Neurology. 2009;72:578–9.PubMedCrossRef
115.
go back to reference Kulisevsky J, Martinez-Horta S, Campolongo A, Pascual-Sedano B, Marin-Lahoz J, Bejr-Kasem H, et al. A randomized clinical trial of candesartan for cognitive impairment in Parkinson’s disease. Parkinsonism Relat Disord. 2023;110:105367.PubMedCrossRef Kulisevsky J, Martinez-Horta S, Campolongo A, Pascual-Sedano B, Marin-Lahoz J, Bejr-Kasem H, et al. A randomized clinical trial of candesartan for cognitive impairment in Parkinson’s disease. Parkinsonism Relat Disord. 2023;110:105367.PubMedCrossRef
116.
go back to reference Udovin L, Otero-Losada M, Bordet S, Chevalier G, Quarracino C, Capani F, et al. Effects of angiotensin type 1 receptor antagonists on Parkinson’s disease progression: An exploratory study in the PPMI database. Parkinsonism Relat Disord. 2021;86:34–7.PubMedCrossRef Udovin L, Otero-Losada M, Bordet S, Chevalier G, Quarracino C, Capani F, et al. Effects of angiotensin type 1 receptor antagonists on Parkinson’s disease progression: An exploratory study in the PPMI database. Parkinsonism Relat Disord. 2021;86:34–7.PubMedCrossRef
117.
go back to reference Visanji NP, Madan P, Lacoste AMB, Buleje I, Han Y, Spangler S, et al. Using artificial intelligence to identify anti-hypertensives as possible disease modifying agents in Parkinson’s disease. Pharmacoepidemiol Drug Saf. 2021;30:201–9.PubMedCrossRef Visanji NP, Madan P, Lacoste AMB, Buleje I, Han Y, Spangler S, et al. Using artificial intelligence to identify anti-hypertensives as possible disease modifying agents in Parkinson’s disease. Pharmacoepidemiol Drug Saf. 2021;30:201–9.PubMedCrossRef
118.
go back to reference Jo Y, Kim S, Ye BS, Lee E, Yu YM. Protective effect of renin-angiotensin system inhibitors on Parkinson’s disease: a nationwide cohort study. Front Pharmacol. 2022;13:837890.PubMedPubMedCentralCrossRef Jo Y, Kim S, Ye BS, Lee E, Yu YM. Protective effect of renin-angiotensin system inhibitors on Parkinson’s disease: a nationwide cohort study. Front Pharmacol. 2022;13:837890.PubMedPubMedCentralCrossRef
119.
go back to reference Lin HC, Tseng YF, Shen AL, Chao JC, Hsu CY, Lin HL. Association of angiotensin receptor blockers with incident Parkinson disease in patients with hypertension: a retrospective cohort study. Am J Med. 2022;135:1001–7.PubMedCrossRef Lin HC, Tseng YF, Shen AL, Chao JC, Hsu CY, Lin HL. Association of angiotensin receptor blockers with incident Parkinson disease in patients with hypertension: a retrospective cohort study. Am J Med. 2022;135:1001–7.PubMedCrossRef
120.
go back to reference Labandeira-Garcia JL, Parga JA. Nigral neurons degenerating in Parkinson’s disease express the angiotensin receptor type 1 gene. Mov Disord. 2022;37:1610–1.PubMedPubMedCentralCrossRef Labandeira-Garcia JL, Parga JA. Nigral neurons degenerating in Parkinson’s disease express the angiotensin receptor type 1 gene. Mov Disord. 2022;37:1610–1.PubMedPubMedCentralCrossRef
121.
go back to reference Yamada T, McGeer PL, Baimbridge KG, McGeer EG. Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-d28k. Brain Res. 1990;526:303–7.PubMedCrossRef Yamada T, McGeer PL, Baimbridge KG, McGeer EG. Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-d28k. Brain Res. 1990;526:303–7.PubMedCrossRef
123.
go back to reference Gao HM, Liu B, Zhang W, Hong JS. Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB J. 2003;17:1954–6.PubMedCrossRef Gao HM, Liu B, Zhang W, Hong JS. Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB J. 2003;17:1954–6.PubMedCrossRef
124.
go back to reference Rodriguez-Pallares J, Parga JA, Munoz A, Rey P, Guerra MJ, Labandeira-Garcia JL. Mechanism of 6-hydroxydopamine neurotoxicity: The role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. J Neurochem. 2007;103:145–56.PubMedCrossRef Rodriguez-Pallares J, Parga JA, Munoz A, Rey P, Guerra MJ, Labandeira-Garcia JL. Mechanism of 6-hydroxydopamine neurotoxicity: The role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. J Neurochem. 2007;103:145–56.PubMedCrossRef
125.
go back to reference Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, et al. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2003;100:6145–50.PubMedPubMedCentralCrossRef Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, et al. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2003;100:6145–50.PubMedPubMedCentralCrossRef
126.
go back to reference Doughan AK, Harrison DG, Dikalov SI. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: Linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res. 2008;102:488–96.PubMedCrossRef Doughan AK, Harrison DG, Dikalov SI. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: Linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res. 2008;102:488–96.PubMedCrossRef
127.
go back to reference Wosniak J Jr, Santos CX, Kowaltowski AJ, Laurindo FR. Cross-talk between mitochondria and NADPH oxidase: Effects of mild mitochondrial dysfunction on angiotensin II-mediated increase in nox isoform expression and activity in vascular smooth muscle cells. Antioxid Redox Signal. 2009;11:1265–78.PubMedCrossRef Wosniak J Jr, Santos CX, Kowaltowski AJ, Laurindo FR. Cross-talk between mitochondria and NADPH oxidase: Effects of mild mitochondrial dysfunction on angiotensin II-mediated increase in nox isoform expression and activity in vascular smooth muscle cells. Antioxid Redox Signal. 2009;11:1265–78.PubMedCrossRef
128.
go back to reference Rodriguez-Pallares J, Parga JA, Joglar B, Guerra MJ, Labandeira-Garcia JL. The mitochondrial ATP-sensitive potassium channel blocker 5-hydroxydecanoate inhibits toxicity of 6-hydroxydopamine on dopaminergic neurons. Neurotox Res. 2009;15:82–95.PubMedCrossRef Rodriguez-Pallares J, Parga JA, Joglar B, Guerra MJ, Labandeira-Garcia JL. The mitochondrial ATP-sensitive potassium channel blocker 5-hydroxydecanoate inhibits toxicity of 6-hydroxydopamine on dopaminergic neurons. Neurotox Res. 2009;15:82–95.PubMedCrossRef
129.
go back to reference Rodriguez-Pallares J, Parga JA, Joglar B, Guerra MJ, Labandeira-Garcia JL. Mitochondrial ATP-sensitive potassium channels enhance angiotensin-induced oxidative damage and dopaminergic neuron degeneration. Relevance for aging-associated susceptibility to Parkinson’s disease. Age (Dordr). 2012;34:863–80.PubMedCrossRef Rodriguez-Pallares J, Parga JA, Joglar B, Guerra MJ, Labandeira-Garcia JL. Mitochondrial ATP-sensitive potassium channels enhance angiotensin-induced oxidative damage and dopaminergic neuron degeneration. Relevance for aging-associated susceptibility to Parkinson’s disease. Age (Dordr). 2012;34:863–80.PubMedCrossRef
130.
go back to reference Ruiz-Ortega M, Lorenzo O, Suzuki Y, Ruperez M, Egido J. Proinflammatory actions of angiotensins. Curr Opin Nephrol Hypertens. 2001;10:321–9.PubMedCrossRef Ruiz-Ortega M, Lorenzo O, Suzuki Y, Ruperez M, Egido J. Proinflammatory actions of angiotensins. Curr Opin Nephrol Hypertens. 2001;10:321–9.PubMedCrossRef
132.
go back to reference Michel PP, Hirsch EC, Hunot S. Understanding dopaminergic cell death pathways in Parkinson disease. Neuron. 2016;90:675–91.PubMedCrossRef Michel PP, Hirsch EC, Hunot S. Understanding dopaminergic cell death pathways in Parkinson disease. Neuron. 2016;90:675–91.PubMedCrossRef
133.
go back to reference Rittenhouse AR, Zigmond RE. Role of n- and l-type calcium channels in depolarization-induced activation of tyrosine hydroxylase and release of norepinephrine by sympathetic cell bodies and nerve terminals. J Neurobiol. 1999;40:137–48.PubMedCrossRef Rittenhouse AR, Zigmond RE. Role of n- and l-type calcium channels in depolarization-induced activation of tyrosine hydroxylase and release of norepinephrine by sympathetic cell bodies and nerve terminals. J Neurobiol. 1999;40:137–48.PubMedCrossRef
134.
go back to reference Kobiec T, Otero-Losada M, Chevalier G, Udovin L, Bordet S, Menendez-Maissonave C, et al. The renin-angiotensin system modulates dopaminergic neurotransmission: a new player on the scene. Front Synaptic Neurosci. 2021;13:638519.PubMedPubMedCentralCrossRef Kobiec T, Otero-Losada M, Chevalier G, Udovin L, Bordet S, Menendez-Maissonave C, et al. The renin-angiotensin system modulates dopaminergic neurotransmission: a new player on the scene. Front Synaptic Neurosci. 2021;13:638519.PubMedPubMedCentralCrossRef
135.
go back to reference Arreola R, Alvarez-Herrera S, Perez-Sanchez G, Becerril-Villanueva E, Cruz-Fuentes C, Flores-Gutierrez EO, et al. Immunomodulatory effects mediated by dopamine. J Immunol Res. 2016;2016:3160486.PubMedPubMedCentralCrossRef Arreola R, Alvarez-Herrera S, Perez-Sanchez G, Becerril-Villanueva E, Cruz-Fuentes C, Flores-Gutierrez EO, et al. Immunomodulatory effects mediated by dopamine. J Immunol Res. 2016;2016:3160486.PubMedPubMedCentralCrossRef
136.
go back to reference Sarkar C, Basu B, Chakroborty D, Dasgupta PS, Basu S. The immunoregulatory role of dopamine: an update. Brain Behav Immun. 2010;24:525–8.PubMedCrossRef Sarkar C, Basu B, Chakroborty D, Dasgupta PS, Basu S. The immunoregulatory role of dopamine: an update. Brain Behav Immun. 2010;24:525–8.PubMedCrossRef
137.
go back to reference Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell. 2015;160:62–73.PubMedCrossRef Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell. 2015;160:62–73.PubMedCrossRef
138.
go back to reference Zhu J, Hu Z, Han X, Wang D, Jiang Q, Ding J, et al. Dopamine d2 receptor restricts astrocytic NLRP3 inflammasome activation via enhancing the interaction of beta-arrestin2 and NLRP3. Cell Death Differ. 2018;25:2037–49.PubMedPubMedCentralCrossRef Zhu J, Hu Z, Han X, Wang D, Jiang Q, Ding J, et al. Dopamine d2 receptor restricts astrocytic NLRP3 inflammasome activation via enhancing the interaction of beta-arrestin2 and NLRP3. Cell Death Differ. 2018;25:2037–49.PubMedPubMedCentralCrossRef
139.
go back to reference Daiber A. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochim Biophys Acta. 2010;1797:897–906.PubMedCrossRef Daiber A. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochim Biophys Acta. 2010;1797:897–906.PubMedCrossRef
140.
go back to reference Quijano A, Diaz-Ruiz C, Lopez-Lopez A, Villar-Cheda B, Munoz A, Rodriguez-Perez AI, et al. Angiotensin type-1 receptor inhibition reduces nlrp3 inflammasome upregulation induced by aging and neurodegeneration in the substantia nigra of male rodents and primary mesencephalic cultures. Antioxidants (Basel). 2022;11:329.PubMedCrossRef Quijano A, Diaz-Ruiz C, Lopez-Lopez A, Villar-Cheda B, Munoz A, Rodriguez-Perez AI, et al. Angiotensin type-1 receptor inhibition reduces nlrp3 inflammasome upregulation induced by aging and neurodegeneration in the substantia nigra of male rodents and primary mesencephalic cultures. Antioxidants (Basel). 2022;11:329.PubMedCrossRef
141.
go back to reference Villar-Cheda B, Valenzuela R, Rodriguez-Perez AI, Guerra MJ, Labandeira-Garcia JL. Aging-related changes in the nigral angiotensin system enhances proinflammatory and pro-oxidative markers and 6-OHDA-induced dopaminergic degeneration. Neurobiol Aging. 2012;33(204):e1-11. Villar-Cheda B, Valenzuela R, Rodriguez-Perez AI, Guerra MJ, Labandeira-Garcia JL. Aging-related changes in the nigral angiotensin system enhances proinflammatory and pro-oxidative markers and 6-OHDA-induced dopaminergic degeneration. Neurobiol Aging. 2012;33(204):e1-11.
142.
go back to reference Diaz-Ruiz C, Villar-Cheda B, Dominguez-Meijide A, Garrido-Gil P, Guerra MJ, Labandeira-Garcia JL. Aging-related overactivity of the angiotensin/at1 axis decreases sirtuin 3 levels in the substantia nigra, which induces vulnerability to oxidative stress and neurodegeneration. J Gerontol A Biol Sci Med Sci. 2020;75:416–24.PubMed Diaz-Ruiz C, Villar-Cheda B, Dominguez-Meijide A, Garrido-Gil P, Guerra MJ, Labandeira-Garcia JL. Aging-related overactivity of the angiotensin/at1 axis decreases sirtuin 3 levels in the substantia nigra, which induces vulnerability to oxidative stress and neurodegeneration. J Gerontol A Biol Sci Med Sci. 2020;75:416–24.PubMed
143.
go back to reference Ishibashi K, Ishii K, Oda K, Kawasaki K, Mizusawa H, Ishiwata K. Regional analysis of age-related decline in dopamine transporters and dopamine D2-like receptors in human striatum. Synapse. 2009;63:282–90.PubMedCrossRef Ishibashi K, Ishii K, Oda K, Kawasaki K, Mizusawa H, Ishiwata K. Regional analysis of age-related decline in dopamine transporters and dopamine D2-like receptors in human striatum. Synapse. 2009;63:282–90.PubMedCrossRef
144.
go back to reference Wang Y, Chan GL, Holden JE, Dobko T, Mak E, Schulzer M, et al. Age-dependent decline of dopamine d1 receptors in human brain: a pet study. Synapse. 1998;30:56–61.PubMedCrossRef Wang Y, Chan GL, Holden JE, Dobko T, Mak E, Schulzer M, et al. Age-dependent decline of dopamine d1 receptors in human brain: a pet study. Synapse. 1998;30:56–61.PubMedCrossRef
145.
go back to reference Collier TJ, Lipton J, Daley BF, Palfi S, Chu Y, Sortwell C, et al. Aging-related changes in the nigrostriatal dopamine system and the response to mptp in nonhuman primates: Diminished compensatory mechanisms as a prelude to Parkinsonism. Neurobiol Dis. 2007;26:56–65.PubMedPubMedCentralCrossRef Collier TJ, Lipton J, Daley BF, Palfi S, Chu Y, Sortwell C, et al. Aging-related changes in the nigrostriatal dopamine system and the response to mptp in nonhuman primates: Diminished compensatory mechanisms as a prelude to Parkinsonism. Neurobiol Dis. 2007;26:56–65.PubMedPubMedCentralCrossRef
146.
go back to reference Kubis N, Faucheux BA, Ransmayr G, Damier P, Duyckaerts C, Henin D, et al. Preservation of midbrain catecholaminergic neurons in very old human subjects. Brain. 2000;123(Pt 2):366–73.PubMedCrossRef Kubis N, Faucheux BA, Ransmayr G, Damier P, Duyckaerts C, Henin D, et al. Preservation of midbrain catecholaminergic neurons in very old human subjects. Brain. 2000;123(Pt 2):366–73.PubMedCrossRef
147.
go back to reference Cassis P, Conti S, Remuzzi G, Benigni A. Angiotensin receptors as determinants of life span. Pflugers Arch. 2010;459:325–32.PubMedCrossRef Cassis P, Conti S, Remuzzi G, Benigni A. Angiotensin receptors as determinants of life span. Pflugers Arch. 2010;459:325–32.PubMedCrossRef
148.
go back to reference Min LJ, Mogi M, Iwai M, Horiuchi M. Signaling mechanisms of angiotensin II in regulating vascular senescence. Ageing Res Rev. 2009;8:113–21.PubMedCrossRef Min LJ, Mogi M, Iwai M, Horiuchi M. Signaling mechanisms of angiotensin II in regulating vascular senescence. Ageing Res Rev. 2009;8:113–21.PubMedCrossRef
149.
go back to reference Thompson MM, Oyama TT, Kelly FJ, Kennefick TM, Anderson S. Activity and responsiveness of the renin-angiotensin system in the aging rat. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1787–94.PubMedCrossRef Thompson MM, Oyama TT, Kelly FJ, Kennefick TM, Anderson S. Activity and responsiveness of the renin-angiotensin system in the aging rat. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1787–94.PubMedCrossRef
150.
go back to reference Chen J, Yang S, Hu S, Choudhry MA, Bland KI, Chaudry IH. Estrogen prevents intestinal inflammation after trauma-hemorrhage via downregulation of angiotensin II and angiotensin II subtype I receptor. Am J Physiol Gastrointest Liver Physiol. 2008;295:G1131–7.PubMedPubMedCentralCrossRef Chen J, Yang S, Hu S, Choudhry MA, Bland KI, Chaudry IH. Estrogen prevents intestinal inflammation after trauma-hemorrhage via downregulation of angiotensin II and angiotensin II subtype I receptor. Am J Physiol Gastrointest Liver Physiol. 2008;295:G1131–7.PubMedPubMedCentralCrossRef
151.
go back to reference Dean SA, Tan J, O’Brien ER, Leenen FH. 17beta-estradiol downregulates tissue angiotensin-converting enzyme and Ang II type 1 receptor in female rats. Am J Physiol Regul Integr Comp Physiol. 2005;288:R759–66.PubMedCrossRef Dean SA, Tan J, O’Brien ER, Leenen FH. 17beta-estradiol downregulates tissue angiotensin-converting enzyme and Ang II type 1 receptor in female rats. Am J Physiol Regul Integr Comp Physiol. 2005;288:R759–66.PubMedCrossRef
152.
go back to reference Rodriguez-Perez AI, Borrajo A, Valenzuela R, Lanciego JL, Labandeira-Garcia JL. Critical period for dopaminergic neuroprotection by hormonal replacement in menopausal rats. Neurobiol Aging. 2015;36:1194–208.PubMedCrossRef Rodriguez-Perez AI, Borrajo A, Valenzuela R, Lanciego JL, Labandeira-Garcia JL. Critical period for dopaminergic neuroprotection by hormonal replacement in menopausal rats. Neurobiol Aging. 2015;36:1194–208.PubMedCrossRef
153.
go back to reference Rodriguez-Perez AI, Valenzuela R, Joglar B, Garrido-Gil P, Guerra MJ, Labandeira-Garcia JL. Renin angiotensin system and gender differences in dopaminergic degeneration. Mol Neurodegener. 2011;6:58.PubMedPubMedCentralCrossRef Rodriguez-Perez AI, Valenzuela R, Joglar B, Garrido-Gil P, Guerra MJ, Labandeira-Garcia JL. Renin angiotensin system and gender differences in dopaminergic degeneration. Mol Neurodegener. 2011;6:58.PubMedPubMedCentralCrossRef
154.
go back to reference Rodriguez-Perez AI, Valenzuela R, Villar-Cheda B, Guerra MJ, Labandeira-Garcia JL. Dopaminergic neuroprotection of hormonal replacement therapy in young and aged menopausal rats: role of the brain angiotensin system. Brain. 2012;135:124–38.PubMedCrossRef Rodriguez-Perez AI, Valenzuela R, Villar-Cheda B, Guerra MJ, Labandeira-Garcia JL. Dopaminergic neuroprotection of hormonal replacement therapy in young and aged menopausal rats: role of the brain angiotensin system. Brain. 2012;135:124–38.PubMedCrossRef
155.
go back to reference Rodriguez-Perez AI, Valenzuela R, Villar-Cheda B, Guerra MJ, Lanciego JL, Labandeira-Garcia JL. Estrogen and angiotensin interaction in the substantia nigra. Relevance to postmenopausal Parkinson’s disease. Exp Neurol. 2010;224:517–26.PubMedCrossRef Rodriguez-Perez AI, Valenzuela R, Villar-Cheda B, Guerra MJ, Lanciego JL, Labandeira-Garcia JL. Estrogen and angiotensin interaction in the substantia nigra. Relevance to postmenopausal Parkinson’s disease. Exp Neurol. 2010;224:517–26.PubMedCrossRef
156.
go back to reference Lage L, Rodriguez-Perez AI, Villar-Cheda B, Labandeira-Garcia JL, Dominguez-Meijide A. Angiotensin type 1 receptor activation promotes neuronal and glial alpha-synuclein aggregation and transmission. NPJ Parkinsons Dis. 2024;10(1):37.PubMedPubMedCentralCrossRef Lage L, Rodriguez-Perez AI, Villar-Cheda B, Labandeira-Garcia JL, Dominguez-Meijide A. Angiotensin type 1 receptor activation promotes neuronal and glial alpha-synuclein aggregation and transmission. NPJ Parkinsons Dis. 2024;10(1):37.PubMedPubMedCentralCrossRef
157.
go back to reference Kitazaki Y, Ikawa M, Yamaguchi T, Enomoto S, Shirafuji N, Yamamura O, et al. Regional cortical hypoperfusion and atrophy correlate with striatal dopaminergic loss in Parkinson’s disease: a study using arterial spin labeling mr perfusion. Neuroradiology. 2023;65:569–77.PubMedCrossRef Kitazaki Y, Ikawa M, Yamaguchi T, Enomoto S, Shirafuji N, Yamamura O, et al. Regional cortical hypoperfusion and atrophy correlate with striatal dopaminergic loss in Parkinson’s disease: a study using arterial spin labeling mr perfusion. Neuroradiology. 2023;65:569–77.PubMedCrossRef
158.
go back to reference Papapetropoulos S, Ellul J, Argyriou AA, Talelli P, Chroni E, Papapetropoulos T. The effect of vascular disease on late onset Parkinson’s disease. Eur J Neurol. 2004;11:231–5.PubMedCrossRef Papapetropoulos S, Ellul J, Argyriou AA, Talelli P, Chroni E, Papapetropoulos T. The effect of vascular disease on late onset Parkinson’s disease. Eur J Neurol. 2004;11:231–5.PubMedCrossRef
159.
go back to reference Rodriguez-Perez AI, Dominguez-Meijide A, Lanciego JL, Guerra MJ, Labandeira-Garcia JL. Dopaminergic degeneration is enhanced by chronic brain hypoperfusion and inhibited by angiotensin receptor blockage. Age (Dordr). 2013;35:1675–90.PubMedCrossRef Rodriguez-Perez AI, Dominguez-Meijide A, Lanciego JL, Guerra MJ, Labandeira-Garcia JL. Dopaminergic degeneration is enhanced by chronic brain hypoperfusion and inhibited by angiotensin receptor blockage. Age (Dordr). 2013;35:1675–90.PubMedCrossRef
160.
go back to reference Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, et al. NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem. 2004;279:1415–21.PubMedCrossRef Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, et al. NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem. 2004;279:1415–21.PubMedCrossRef
161.
go back to reference Borrajo A, Rodriguez-Perez AI, Villar-Cheda B, Guerra MJ, Labandeira-Garcia JL. Inhibition of the microglial response is essential for the neuroprotective effects of rho-kinase inhibitors on MPTP-induced dopaminergic cell death. Neuropharmacology. 2014;85:1–8.PubMedCrossRef Borrajo A, Rodriguez-Perez AI, Villar-Cheda B, Guerra MJ, Labandeira-Garcia JL. Inhibition of the microglial response is essential for the neuroprotective effects of rho-kinase inhibitors on MPTP-induced dopaminergic cell death. Neuropharmacology. 2014;85:1–8.PubMedCrossRef
162.
go back to reference Villar-Cheda B, Dominguez-Meijide A, Joglar B, Rodriguez-Perez AI, Guerra MJ, Labandeira-Garcia JL. Involvement of microglial rhoa/rho-kinase pathway activation in the dopaminergic neuron death. Role of angiotensin via angiotensin type 1 receptors. Neurobiol Dis. 2012;47:268–79.PubMedCrossRef Villar-Cheda B, Dominguez-Meijide A, Joglar B, Rodriguez-Perez AI, Guerra MJ, Labandeira-Garcia JL. Involvement of microglial rhoa/rho-kinase pathway activation in the dopaminergic neuron death. Role of angiotensin via angiotensin type 1 receptors. Neurobiol Dis. 2012;47:268–79.PubMedCrossRef
163.
go back to reference Borrajo A, Rodriguez-Perez AI, Diaz-Ruiz C, Guerra MJ, Labandeira-Garcia JL. Microglial TNF-alpha mediates enhancement of dopaminergic degeneration by brain angiotensin. Glia. 2014;62:145–57.PubMedCrossRef Borrajo A, Rodriguez-Perez AI, Diaz-Ruiz C, Guerra MJ, Labandeira-Garcia JL. Microglial TNF-alpha mediates enhancement of dopaminergic degeneration by brain angiotensin. Glia. 2014;62:145–57.PubMedCrossRef
164.
go back to reference Garrido-Gil P, Rodriguez-Pallares J, Dominguez-Meijide A, Guerra MJ, Labandeira-Garcia JL. Brain angiotensin regulates iron homeostasis in dopaminergic neurons and microglial cells. Exp Neurol. 2013;250:384–96.PubMedCrossRef Garrido-Gil P, Rodriguez-Pallares J, Dominguez-Meijide A, Guerra MJ, Labandeira-Garcia JL. Brain angiotensin regulates iron homeostasis in dopaminergic neurons and microglial cells. Exp Neurol. 2013;250:384–96.PubMedCrossRef
165.
go back to reference Pedrosa MA, Labandeira CM, Lago-Baameiro N, Valenzuela R, Pardo M, Labandeira-Garcia JL, et al. Extracellular vesicles and their renin-angiotensin cargo as a link between metabolic syndrome and Parkinson’s disease. Antioxidants (Basel). 2023;12:2045.PubMedCrossRef Pedrosa MA, Labandeira CM, Lago-Baameiro N, Valenzuela R, Pardo M, Labandeira-Garcia JL, et al. Extracellular vesicles and their renin-angiotensin cargo as a link between metabolic syndrome and Parkinson’s disease. Antioxidants (Basel). 2023;12:2045.PubMedCrossRef
166.
go back to reference Fandriks L. The renin-angiotensin system and the gastrointestinal mucosa. Acta Physiol (Oxf). 2011;201:157–67.PubMedCrossRef Fandriks L. The renin-angiotensin system and the gastrointestinal mucosa. Acta Physiol (Oxf). 2011;201:157–67.PubMedCrossRef
167.
go back to reference Garg M, Angus PW, Burrell LM, Herath C, Gibson PR, Lubel JS. Review article: the pathophysiological roles of the renin-angiotensin system in the gastrointestinal tract. Aliment Pharmacol Ther. 2012;35:414–28.PubMedPubMedCentralCrossRef Garg M, Angus PW, Burrell LM, Herath C, Gibson PR, Lubel JS. Review article: the pathophysiological roles of the renin-angiotensin system in the gastrointestinal tract. Aliment Pharmacol Ther. 2012;35:414–28.PubMedPubMedCentralCrossRef
168.
go back to reference Shi Y, Liu T, He L, Dougherty U, Chen L, Adhikari S, et al. Activation of the renin-angiotensin system promotes colitis development. Sci Rep. 2016;6:27552.PubMedPubMedCentralCrossRef Shi Y, Liu T, He L, Dougherty U, Chen L, Adhikari S, et al. Activation of the renin-angiotensin system promotes colitis development. Sci Rep. 2016;6:27552.PubMedPubMedCentralCrossRef
170.
go back to reference Jaworska K, Koper M, Ufnal M. Gut microbiota and renin-angiotensin system: a complex interplay at local and systemic levels. Am J Physiol Gastrointest Liver Physiol. 2021;321:G355–66.PubMedPubMedCentralCrossRef Jaworska K, Koper M, Ufnal M. Gut microbiota and renin-angiotensin system: a complex interplay at local and systemic levels. Am J Physiol Gastrointest Liver Physiol. 2021;321:G355–66.PubMedPubMedCentralCrossRef
171.
go back to reference Mizoguchi R, Karashima S, Miyajima Y, Ogura K, Kometani M, Aono D, et al. Impact of gut microbiome on the renin-aldosterone system: shika-machi super preventive health examination results. Hypertens Res. 2023;46:2280–92.PubMedCrossRef Mizoguchi R, Karashima S, Miyajima Y, Ogura K, Kometani M, Aono D, et al. Impact of gut microbiome on the renin-aldosterone system: shika-machi super preventive health examination results. Hypertens Res. 2023;46:2280–92.PubMedCrossRef
172.
go back to reference Gawrys-Kopczynska M, Konop M, Maksymiuk K, Kraszewska K, Derzsi L, Sozanski K, et al. TMAO, a seafood-derived molecule, produces diuresis and reduces mortality in heart failure rats. Elife. 2020;9:e57028.PubMedPubMedCentralCrossRef Gawrys-Kopczynska M, Konop M, Maksymiuk K, Kraszewska K, Derzsi L, Sozanski K, et al. TMAO, a seafood-derived molecule, produces diuresis and reduces mortality in heart failure rats. Elife. 2020;9:e57028.PubMedPubMedCentralCrossRef
173.
go back to reference Dave LA, Hayes M, Montoya CA, Rutherfurd SM, Moughan PJ. Human gut endogenous proteins as a potential source of angiotensin-i-converting enzyme (ace-i)-, renin inhibitory and antioxidant peptides. Peptides. 2016;76:30–44.PubMedCrossRef Dave LA, Hayes M, Montoya CA, Rutherfurd SM, Moughan PJ. Human gut endogenous proteins as a potential source of angiotensin-i-converting enzyme (ace-i)-, renin inhibitory and antioxidant peptides. Peptides. 2016;76:30–44.PubMedCrossRef
174.
go back to reference Robles-Vera I, Toral M, de la Visitacion N, Sanchez M, Gomez-Guzman M, Munoz R, et al. Changes to the gut microbiota induced by losartan contributes to its antihypertensive effects. Br J Pharmacol. 2020;177:2006–23.PubMedPubMedCentralCrossRef Robles-Vera I, Toral M, de la Visitacion N, Sanchez M, Gomez-Guzman M, Munoz R, et al. Changes to the gut microbiota induced by losartan contributes to its antihypertensive effects. Br J Pharmacol. 2020;177:2006–23.PubMedPubMedCentralCrossRef
175.
go back to reference Karbach SH, Schonfelder T, Brandao I, Wilms E, Hormann N, Jackel S, et al. Gut microbiota promote angiotensin II-induced arterial hypertension and vascular dysfunction. J Am Heart Assoc. 2016;5:e003698.PubMedPubMedCentralCrossRef Karbach SH, Schonfelder T, Brandao I, Wilms E, Hormann N, Jackel S, et al. Gut microbiota promote angiotensin II-induced arterial hypertension and vascular dysfunction. J Am Heart Assoc. 2016;5:e003698.PubMedPubMedCentralCrossRef
176.
go back to reference Guimaraes VHD, Marinho BM, Motta-Santos D, Mendes G, Santos SHS. Nutritional implications in the mechanistic link between the intestinal microbiome, renin-angiotensin system, and the development of obesity and metabolic syndrome. J Nutr Biochem. 2023;113:109252.PubMedCrossRef Guimaraes VHD, Marinho BM, Motta-Santos D, Mendes G, Santos SHS. Nutritional implications in the mechanistic link between the intestinal microbiome, renin-angiotensin system, and the development of obesity and metabolic syndrome. J Nutr Biochem. 2023;113:109252.PubMedCrossRef
177.
go back to reference Koeglsperger T, Rumpf SL, Schliesser P, Struebing FL, Brendel M, Levin J, et al. Neuropathology of incidental Lewy body & prodromal Parkinson’s disease. Mol Neurodegener. 2023;18:32.PubMedPubMedCentralCrossRef Koeglsperger T, Rumpf SL, Schliesser P, Struebing FL, Brendel M, Levin J, et al. Neuropathology of incidental Lewy body & prodromal Parkinson’s disease. Mol Neurodegener. 2023;18:32.PubMedPubMedCentralCrossRef
178.
go back to reference Milber JM, Noorigian JV, Morley JF, Petrovitch H, White L, Ross GW, et al. Lewy pathology is not the first sign of degeneration in vulnerable neurons in Parkinson disease. Neurology. 2012;79:2307–14.PubMedPubMedCentralCrossRef Milber JM, Noorigian JV, Morley JF, Petrovitch H, White L, Ross GW, et al. Lewy pathology is not the first sign of degeneration in vulnerable neurons in Parkinson disease. Neurology. 2012;79:2307–14.PubMedPubMedCentralCrossRef
179.
180.
go back to reference Beach TG, Adler CH, Sue LI, Peirce JB, Bachalakuri J, Dalsing-Hernandez JE, et al. Reduced striatal tyrosine hydroxylase in incidental Lewy body disease. Acta Neuropathol. 2008;115:445–51.PubMedCrossRef Beach TG, Adler CH, Sue LI, Peirce JB, Bachalakuri J, Dalsing-Hernandez JE, et al. Reduced striatal tyrosine hydroxylase in incidental Lewy body disease. Acta Neuropathol. 2008;115:445–51.PubMedCrossRef
181.
go back to reference Dalfo E, Ferrer I. Early alpha-synuclein lipoxidation in neocortex in lewy body diseases. Neurobiol Aging. 2008;29:408–17.PubMedCrossRef Dalfo E, Ferrer I. Early alpha-synuclein lipoxidation in neocortex in lewy body diseases. Neurobiol Aging. 2008;29:408–17.PubMedCrossRef
182.
go back to reference Doorn KJ, Moors T, Drukarch B, van de Berg W, Lucassen PJ, van Dam AM. Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients. Acta Neuropathol Commun. 2014;2:90.PubMedPubMedCentral Doorn KJ, Moors T, Drukarch B, van de Berg W, Lucassen PJ, van Dam AM. Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients. Acta Neuropathol Commun. 2014;2:90.PubMedPubMedCentral
183.
go back to reference Cevenini E, Monti D, Franceschi C. Inflamm-ageing. Curr Opin Clin Nutr Metab Care. 2013;16:14–20.PubMedCrossRef Cevenini E, Monti D, Franceschi C. Inflamm-ageing. Curr Opin Clin Nutr Metab Care. 2013;16:14–20.PubMedCrossRef
184.
go back to reference Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol. 2018;9:586.PubMedPubMedCentralCrossRef Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol. 2018;9:586.PubMedPubMedCentralCrossRef
185.
go back to reference Choi DY, Zhang J, Bing G. Aging enhances the neuroinflammatory response and alpha-synuclein nitration in rats. Neurobiol Aging. 2010;31:1649–53.PubMedCrossRef Choi DY, Zhang J, Bing G. Aging enhances the neuroinflammatory response and alpha-synuclein nitration in rats. Neurobiol Aging. 2010;31:1649–53.PubMedCrossRef
186.
187.
go back to reference Panicker N, Kam TI, Wang H, Neifert S, Chou SC, Kumar M, et al. Neuronal NLRP3 is a Parkin substrate that drives neurodegeneration in Parkinson’s disease. Neuron. 2022;110:2422-37 e9.PubMedPubMedCentralCrossRef Panicker N, Kam TI, Wang H, Neifert S, Chou SC, Kumar M, et al. Neuronal NLRP3 is a Parkin substrate that drives neurodegeneration in Parkinson’s disease. Neuron. 2022;110:2422-37 e9.PubMedPubMedCentralCrossRef
188.
go back to reference Currie LJ, Harrison MB, Trugman JM, Bennett JP, Wooten GF. Postmenopausal estrogen use affects risk for Parkinson disease. Arch Neurol. 2004;61:886–8.PubMedCrossRef Currie LJ, Harrison MB, Trugman JM, Bennett JP, Wooten GF. Postmenopausal estrogen use affects risk for Parkinson disease. Arch Neurol. 2004;61:886–8.PubMedCrossRef
189.
go back to reference Ragonese P, D’Amelio M, Callari G, Salemi G, Morgante L, Savettieri G. Age at menopause predicts age at onset of Parkinson’s disease. Mov Disord. 2006;21:2211–4.PubMedCrossRef Ragonese P, D’Amelio M, Callari G, Salemi G, Morgante L, Savettieri G. Age at menopause predicts age at onset of Parkinson’s disease. Mov Disord. 2006;21:2211–4.PubMedCrossRef
190.
go back to reference Callier S, Le Saux M, Lhiaubet AM, Di Paolo T, Rostene W, Pelaprat D. Evaluation of the protective effect of oestradiol against toxicity induced by 6-hydroxydopamine and 1-methyl-4-phenylpyridinium ion (MPP+) towards dopaminergic mesencephalic neurons in primary culture. J Neurochem. 2002;80:307–16.PubMedCrossRef Callier S, Le Saux M, Lhiaubet AM, Di Paolo T, Rostene W, Pelaprat D. Evaluation of the protective effect of oestradiol against toxicity induced by 6-hydroxydopamine and 1-methyl-4-phenylpyridinium ion (MPP+) towards dopaminergic mesencephalic neurons in primary culture. J Neurochem. 2002;80:307–16.PubMedCrossRef
191.
go back to reference Leranth C, Roth RH, Elsworth JD, Naftolin F, Horvath TL, Redmond DE Jr. Estrogen is essential for maintaining nigrostriatal dopamine neurons in primates: Implications for Parkinson’s disease and memory. J Neurosci. 2000;20:8604–9.PubMedPubMedCentralCrossRef Leranth C, Roth RH, Elsworth JD, Naftolin F, Horvath TL, Redmond DE Jr. Estrogen is essential for maintaining nigrostriatal dopamine neurons in primates: Implications for Parkinson’s disease and memory. J Neurosci. 2000;20:8604–9.PubMedPubMedCentralCrossRef
192.
go back to reference Suzuki S, Brown CM, Dela Cruz CD, Yang E, Bridwell DA, Wise PM. Timing of estrogen therapy after ovariectomy dictates the efficacy of its neuroprotective and antiinflammatory actions. Proc Natl Acad Sci U S A. 2007;104:6013–8.PubMedPubMedCentralCrossRef Suzuki S, Brown CM, Dela Cruz CD, Yang E, Bridwell DA, Wise PM. Timing of estrogen therapy after ovariectomy dictates the efficacy of its neuroprotective and antiinflammatory actions. Proc Natl Acad Sci U S A. 2007;104:6013–8.PubMedPubMedCentralCrossRef
193.
go back to reference Vegeto E, Benedusi V, Maggi A. Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases. Front Neuroendocrinol. 2008;29:507–19.PubMedPubMedCentralCrossRef Vegeto E, Benedusi V, Maggi A. Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases. Front Neuroendocrinol. 2008;29:507–19.PubMedPubMedCentralCrossRef
194.
go back to reference Popat RA, Van Den Eeden SK, Tanner CM, McGuire V, Bernstein AL, Bloch DA, et al. Effect of reproductive factors and postmenopausal hormone use on the risk of Parkinson disease. Neurology. 2005;65:383–90.PubMedCrossRef Popat RA, Van Den Eeden SK, Tanner CM, McGuire V, Bernstein AL, Bloch DA, et al. Effect of reproductive factors and postmenopausal hormone use on the risk of Parkinson disease. Neurology. 2005;65:383–90.PubMedCrossRef
195.
go back to reference Shulman LM. Is there a connection between estrogen and Parkinson’s disease? Parkinsonism Relat Disord. 2002;8:289–95.PubMedCrossRef Shulman LM. Is there a connection between estrogen and Parkinson’s disease? Parkinsonism Relat Disord. 2002;8:289–95.PubMedCrossRef
196.
go back to reference Eskildsen SF, Iranzo A, Stokholm MG, Staer K, Ostergaard K, Serradell M, et al. Impaired cerebral microcirculation in isolated rem sleep behaviour disorder. Brain. 2021;144:1498–508.PubMedCrossRef Eskildsen SF, Iranzo A, Stokholm MG, Staer K, Ostergaard K, Serradell M, et al. Impaired cerebral microcirculation in isolated rem sleep behaviour disorder. Brain. 2021;144:1498–508.PubMedCrossRef
197.
go back to reference Harms AS, Ferreira SA, Romero-Ramos M. Periphery and brain, innate and adaptive immunity in Parkinson’s disease. Acta Neuropathol. 2021;141:527–45.PubMedPubMedCentralCrossRef Harms AS, Ferreira SA, Romero-Ramos M. Periphery and brain, innate and adaptive immunity in Parkinson’s disease. Acta Neuropathol. 2021;141:527–45.PubMedPubMedCentralCrossRef
198.
go back to reference Sabatino JJ Jr, Probstel AK, Zamvil SS. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci. 2019;20:728–45.PubMedCrossRef Sabatino JJ Jr, Probstel AK, Zamvil SS. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci. 2019;20:728–45.PubMedCrossRef
199.
go back to reference Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V. Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol. 2022;22:657–73.PubMedPubMedCentralCrossRef Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V. Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol. 2022;22:657–73.PubMedPubMedCentralCrossRef
200.
go back to reference Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1037–45.PubMedCrossRef Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1037–45.PubMedCrossRef
201.
go back to reference Sandu RE, Buga AM, Uzoni A, Petcu EB, Popa-Wagner A. Neuroinflammation and comorbidities are frequently ignored factors in cns pathology. Neural Regen Res. 2015;10:1349–55.PubMedPubMedCentralCrossRef Sandu RE, Buga AM, Uzoni A, Petcu EB, Popa-Wagner A. Neuroinflammation and comorbidities are frequently ignored factors in cns pathology. Neural Regen Res. 2015;10:1349–55.PubMedPubMedCentralCrossRef
202.
go back to reference Nam GE, Kim SM, Han K, Kim NH, Chung HS, Kim JW, et al. Metabolic syndrome and risk of Parkinson disease: a nationwide cohort study. PLoS Med. 2018;15:e1002640.PubMedPubMedCentralCrossRef Nam GE, Kim SM, Han K, Kim NH, Chung HS, Kim JW, et al. Metabolic syndrome and risk of Parkinson disease: a nationwide cohort study. PLoS Med. 2018;15:e1002640.PubMedPubMedCentralCrossRef
203.
go back to reference Park SH, Nam GE, Han K, Huh Y, Kim W, Lee MK, et al. Association of dynamic changes in metabolic syndrome status with the risk of Parkinson’s disease: a nationwide cohort study. J Parkinsons Dis. 2021;11:1751–9.PubMedCrossRef Park SH, Nam GE, Han K, Huh Y, Kim W, Lee MK, et al. Association of dynamic changes in metabolic syndrome status with the risk of Parkinson’s disease: a nationwide cohort study. J Parkinsons Dis. 2021;11:1751–9.PubMedCrossRef
204.
205.
go back to reference Bloch S, Obari D, Girouard H. Angiotensin and neurovascular coupling: beyond hypertension. Microcirculation. 2015;22:159–67.PubMedCrossRef Bloch S, Obari D, Girouard H. Angiotensin and neurovascular coupling: beyond hypertension. Microcirculation. 2015;22:159–67.PubMedCrossRef
206.
go back to reference Faraco G, Sugiyama Y, Lane D, Garcia-Bonilla L, Chang H, Santisteban MM, et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J Clin Invest. 2016;126:4674–89.PubMedPubMedCentralCrossRef Faraco G, Sugiyama Y, Lane D, Garcia-Bonilla L, Chang H, Santisteban MM, et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J Clin Invest. 2016;126:4674–89.PubMedPubMedCentralCrossRef
207.
go back to reference Fleegal-DeMotta MA, Doghu S, Banks WA. Angiotensin II modulates BBB permeability via activation of the AT(1) receptor in brain endothelial cells. J Cereb Blood Flow Metab. 2009;29:640–7.PubMedCrossRef Fleegal-DeMotta MA, Doghu S, Banks WA. Angiotensin II modulates BBB permeability via activation of the AT(1) receptor in brain endothelial cells. J Cereb Blood Flow Metab. 2009;29:640–7.PubMedCrossRef
208.
go back to reference Santisteban MM, Ahn SJ, Lane D, Faraco G, Garcia-Bonilla L, Racchumi G, et al. Endothelium-macrophage crosstalk mediates blood-brain barrier dysfunction in hypertension. Hypertension. 2020;76:795–807.PubMedCrossRef Santisteban MM, Ahn SJ, Lane D, Faraco G, Garcia-Bonilla L, Racchumi G, et al. Endothelium-macrophage crosstalk mediates blood-brain barrier dysfunction in hypertension. Hypertension. 2020;76:795–807.PubMedCrossRef
209.
go back to reference Setiadi A, Korim WS, Elsaafien K, Yao ST. The role of the blood-brain barrier in hypertension. Exp Physiol. 2018;103:337–42.PubMedCrossRef Setiadi A, Korim WS, Elsaafien K, Yao ST. The role of the blood-brain barrier in hypertension. Exp Physiol. 2018;103:337–42.PubMedCrossRef
210.
go back to reference Saunders BM, Rudnicka C, Filipovska A, Davies S, Ward N, Hricova J, et al. Shining light on the metabolic role of the cytokine tnfsf14 and the implications on hepatic il-6 production. Immunol Cell Biol. 2018;96:41–53.PubMedCrossRef Saunders BM, Rudnicka C, Filipovska A, Davies S, Ward N, Hricova J, et al. Shining light on the metabolic role of the cytokine tnfsf14 and the implications on hepatic il-6 production. Immunol Cell Biol. 2018;96:41–53.PubMedCrossRef
211.
go back to reference Tan X, Hu W, Yang S, Dai H, Xu S, Yang G, et al. Association of metabolic syndrome components with circulating levels of cytokine clusters in young women. Endocr Connect. 2021;10:66–75.PubMedCrossRef Tan X, Hu W, Yang S, Dai H, Xu S, Yang G, et al. Association of metabolic syndrome components with circulating levels of cytokine clusters in young women. Endocr Connect. 2021;10:66–75.PubMedCrossRef
212.
go back to reference Argaw AT, Zhang Y, Snyder BJ, Zhao ML, Kopp N, Lee SC, et al. IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J Immunol. 2006;177:5574–84.PubMedCrossRef Argaw AT, Zhang Y, Snyder BJ, Zhao ML, Kopp N, Lee SC, et al. IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J Immunol. 2006;177:5574–84.PubMedCrossRef
213.
go back to reference Rochfort KD, Cummins PM. The blood-brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem Soc Trans. 2015;43:702–6.PubMedCrossRef Rochfort KD, Cummins PM. The blood-brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem Soc Trans. 2015;43:702–6.PubMedCrossRef
214.
go back to reference Cano A, Ettcheto M, Bernuz M, Puerta R, Esteban de Antonio E, Sanchez-Lopez E, et al. Extracellular vesicles, the emerging mirrors of brain physiopathology. Int J Biol Sci. 2023;19:721–43.PubMedPubMedCentralCrossRef Cano A, Ettcheto M, Bernuz M, Puerta R, Esteban de Antonio E, Sanchez-Lopez E, et al. Extracellular vesicles, the emerging mirrors of brain physiopathology. Int J Biol Sci. 2023;19:721–43.PubMedPubMedCentralCrossRef
215.
go back to reference Gupte M, Boustany-Kari CM, Bharadwaj K, Police S, Thatcher S, Gong MC, et al. Ace2 is expressed in mouse adipocytes and regulated by a high-fat diet. Am J Physiol Regul Integr Comp Physiol. 2008;295:R781–8.PubMedPubMedCentralCrossRef Gupte M, Boustany-Kari CM, Bharadwaj K, Police S, Thatcher S, Gong MC, et al. Ace2 is expressed in mouse adipocytes and regulated by a high-fat diet. Am J Physiol Regul Integr Comp Physiol. 2008;295:R781–8.PubMedPubMedCentralCrossRef
216.
go back to reference Li JJ, Wang B, Kodali MC, Chen C, Kim E, Patters BJ, et al. In vivo evidence for the contribution of peripheral circulating inflammatory exosomes to neuroinflammation. J Neuroinflammation. 2018;15:8.PubMedPubMedCentralCrossRef Li JJ, Wang B, Kodali MC, Chen C, Kim E, Patters BJ, et al. In vivo evidence for the contribution of peripheral circulating inflammatory exosomes to neuroinflammation. J Neuroinflammation. 2018;15:8.PubMedPubMedCentralCrossRef
217.
go back to reference Morales-Prieto DM, Murrieta-Coxca JM, Stojiljkovic M, Diezel C, Streicher PE, Henao-Restrepo JA, et al. Small extracellular vesicles from peripheral blood of aged mice pass the blood-brain barrier and induce glial cell activation. Cells. 2022;11:625.PubMedPubMedCentralCrossRef Morales-Prieto DM, Murrieta-Coxca JM, Stojiljkovic M, Diezel C, Streicher PE, Henao-Restrepo JA, et al. Small extracellular vesicles from peripheral blood of aged mice pass the blood-brain barrier and induce glial cell activation. Cells. 2022;11:625.PubMedPubMedCentralCrossRef
218.
go back to reference Chiaradia E, Tancini B, Emiliani C, Delo F, Pellegrino RM, Tognoloni A, et al. Extracellular vesicles under oxidative stress conditions: biological properties and physiological roles. Cells. 2021;10:1763.PubMedPubMedCentralCrossRef Chiaradia E, Tancini B, Emiliani C, Delo F, Pellegrino RM, Tognoloni A, et al. Extracellular vesicles under oxidative stress conditions: biological properties and physiological roles. Cells. 2021;10:1763.PubMedPubMedCentralCrossRef
219.
go back to reference Engeli S, Schling P, Gorzelniak K, Boschmann M, Janke J, Ailhaud G, et al. The adipose-tissue renin-angiotensin-aldosterone system: role in the metabolic syndrome? Int J Biochem Cell Biol. 2003;35:807–25.PubMedCrossRef Engeli S, Schling P, Gorzelniak K, Boschmann M, Janke J, Ailhaud G, et al. The adipose-tissue renin-angiotensin-aldosterone system: role in the metabolic syndrome? Int J Biochem Cell Biol. 2003;35:807–25.PubMedCrossRef
220.
go back to reference Jones BH, Standridge MK, Taylor JW, Moustaid N. Angiotensinogen gene expression in adipose tissue: analysis of obese models and hormonal and nutritional control. Am J Physiol. 1997;273:R236–42.PubMed Jones BH, Standridge MK, Taylor JW, Moustaid N. Angiotensinogen gene expression in adipose tissue: analysis of obese models and hormonal and nutritional control. Am J Physiol. 1997;273:R236–42.PubMed
221.
go back to reference Pinheiro TA, Barcala-Jorge AS, Andrade JMO, Pinheiro TA, Ferreira ECN, Crespo TS, et al. Obesity and malnutrition similarly alter the renin-angiotensin system and inflammation in mice and human adipose. J Nutr Biochem. 2017;48:74–82.PubMedCrossRef Pinheiro TA, Barcala-Jorge AS, Andrade JMO, Pinheiro TA, Ferreira ECN, Crespo TS, et al. Obesity and malnutrition similarly alter the renin-angiotensin system and inflammation in mice and human adipose. J Nutr Biochem. 2017;48:74–82.PubMedCrossRef
222.
go back to reference Frigolet ME, Torres N, Tovar AR. The renin-angiotensin system in adipose tissue and its metabolic consequences during obesity. J Nutr Biochem. 2013;24:2003–15.PubMedCrossRef Frigolet ME, Torres N, Tovar AR. The renin-angiotensin system in adipose tissue and its metabolic consequences during obesity. J Nutr Biochem. 2013;24:2003–15.PubMedCrossRef
223.
go back to reference Braak H, de Vos RA, Bohl J, Del Tredici K. Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett. 2006;396:67–72.PubMedCrossRef Braak H, de Vos RA, Bohl J, Del Tredici K. Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett. 2006;396:67–72.PubMedCrossRef
224.
go back to reference Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Bjorklund T, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 2014;128:805–20.PubMedCrossRef Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Bjorklund T, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 2014;128:805–20.PubMedCrossRef
225.
go back to reference de Araujo IE, Ferreira JG, Tellez LA, Ren X, Yeckel CW. The gut-brain dopamine axis: a regulatory system for caloric intake. Physiol Behav. 2012;106:394–9.PubMedPubMedCentralCrossRef de Araujo IE, Ferreira JG, Tellez LA, Ren X, Yeckel CW. The gut-brain dopamine axis: a regulatory system for caloric intake. Physiol Behav. 2012;106:394–9.PubMedPubMedCentralCrossRef
226.
go back to reference Tellez LA, Medina S, Han W, Ferreira JG, Licona-Limon P, Ren X, et al. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science. 2013;341:800–2.PubMedCrossRef Tellez LA, Medina S, Han W, Ferreira JG, Licona-Limon P, Ren X, et al. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science. 2013;341:800–2.PubMedCrossRef
227.
go back to reference Cui H, Elford JD, Alitalo O, Perez-Pardo P, Tampio J, Huttunen KM, et al. Nigrostriatal 6-hydroxydopamine lesions increase alpha-synuclein levels and permeability in rat colon. Neurobiol Aging. 2023;129:62–71.PubMedCrossRef Cui H, Elford JD, Alitalo O, Perez-Pardo P, Tampio J, Huttunen KM, et al. Nigrostriatal 6-hydroxydopamine lesions increase alpha-synuclein levels and permeability in rat colon. Neurobiol Aging. 2023;129:62–71.PubMedCrossRef
228.
go back to reference Horsager J, Andersen KB, Knudsen K, Skjaerbaek C, Fedorova TD, Okkels N, et al. Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain. 2020;143:3077–88.PubMedCrossRef Horsager J, Andersen KB, Knudsen K, Skjaerbaek C, Fedorova TD, Okkels N, et al. Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain. 2020;143:3077–88.PubMedCrossRef
229.
go back to reference O’Donovan SM, Crowley EK, Brown JR, O’Sullivan O, O’Leary OF, Timmons S, et al. Nigral overexpression of alpha-synuclein in a rat Parkinson’s disease model indicates alterations in the enteric nervous system and the gut microbiome. Neurogastroenterol Motil. 2020;32:e13726.PubMedCrossRef O’Donovan SM, Crowley EK, Brown JR, O’Sullivan O, O’Leary OF, Timmons S, et al. Nigral overexpression of alpha-synuclein in a rat Parkinson’s disease model indicates alterations in the enteric nervous system and the gut microbiome. Neurogastroenterol Motil. 2020;32:e13726.PubMedCrossRef
230.
go back to reference Wang Q, Luo Y, Ray Chaudhuri K, Reynolds R, Tan EK, Pettersson S. The role of gut dysbiosis in Parkinson’s disease: mechanistic insights and therapeutic options. Brain. 2021;144:2571–93.PubMedCrossRef Wang Q, Luo Y, Ray Chaudhuri K, Reynolds R, Tan EK, Pettersson S. The role of gut dysbiosis in Parkinson’s disease: mechanistic insights and therapeutic options. Brain. 2021;144:2571–93.PubMedCrossRef
231.
go back to reference Ahmadi Badi S, Malek A, Paolini A, Rouhollahi Masoumi M, Seyedi SA, Amanzadeh A, et al. Downregulation of ace, agtr1, and ace2 genes mediating SARS-COV-2 pathogenesis by gut microbiota members and their postbiotics on CACO-2 cells. Microb Pathog. 2022;173:105798.PubMedPubMedCentralCrossRef Ahmadi Badi S, Malek A, Paolini A, Rouhollahi Masoumi M, Seyedi SA, Amanzadeh A, et al. Downregulation of ace, agtr1, and ace2 genes mediating SARS-COV-2 pathogenesis by gut microbiota members and their postbiotics on CACO-2 cells. Microb Pathog. 2022;173:105798.PubMedPubMedCentralCrossRef
232.
233.
go back to reference Danilenko V, Devyatkin A, Marsova M, Shibilova M, Ilyasov R, Shmyrev V. Common inflammatory mechanisms in COVID-19 and Parkinson’s diseases: the role of microbiome, pharmabiotics and postbiotics in their prevention. J Inflamm Res. 2021;14:6349–81.PubMedPubMedCentralCrossRef Danilenko V, Devyatkin A, Marsova M, Shibilova M, Ilyasov R, Shmyrev V. Common inflammatory mechanisms in COVID-19 and Parkinson’s diseases: the role of microbiome, pharmabiotics and postbiotics in their prevention. J Inflamm Res. 2021;14:6349–81.PubMedPubMedCentralCrossRef
234.
go back to reference Machado AS, Oliveira JR, Lelis DF, de Paula AMB, Guimaraes ALS, Andrade JMO, et al. Oral probiotic bifidobacterium longum supplementation improves metabolic parameters and alters the expression of the renin-angiotensin system in obese mice liver. Biol Res Nurs. 2021;23:100–8.PubMedCrossRef Machado AS, Oliveira JR, Lelis DF, de Paula AMB, Guimaraes ALS, Andrade JMO, et al. Oral probiotic bifidobacterium longum supplementation improves metabolic parameters and alters the expression of the renin-angiotensin system in obese mice liver. Biol Res Nurs. 2021;23:100–8.PubMedCrossRef
235.
go back to reference Buford TW, Sun Y, Roberts LM, Banerjee A, Peramsetty S, Knighton A, et al. Angiotensin (1–7) delivered orally via probiotic, but not subcutaneously, benefits the gut-brain axis in older rats. Geroscience. 2020;42:1307–21.PubMedPubMedCentralCrossRef Buford TW, Sun Y, Roberts LM, Banerjee A, Peramsetty S, Knighton A, et al. Angiotensin (1–7) delivered orally via probiotic, but not subcutaneously, benefits the gut-brain axis in older rats. Geroscience. 2020;42:1307–21.PubMedPubMedCentralCrossRef
236.
go back to reference Carey RM. Functional intracellular renin-angiotensin systems: potential for pathophysiology of disease. Am J Physiol Regul Integr Comp Physiol. 2012;302:R479–81.PubMedPubMedCentralCrossRef Carey RM. Functional intracellular renin-angiotensin systems: potential for pathophysiology of disease. Am J Physiol Regul Integr Comp Physiol. 2012;302:R479–81.PubMedPubMedCentralCrossRef
237.
go back to reference Cook JL, Re RN. Lessons from in vitro studies and a related intracellular angiotensin II transgenic mouse model. Am J Physiol Regul Integr Comp Physiol. 2012;302:R482–93.PubMedCrossRef Cook JL, Re RN. Lessons from in vitro studies and a related intracellular angiotensin II transgenic mouse model. Am J Physiol Regul Integr Comp Physiol. 2012;302:R482–93.PubMedCrossRef
238.
go back to reference Ou Z, Jiang T, Gao Q, Tian YY, Zhou JS, Wu L, et al. Mitochondrial-dependent mechanisms are involved in angiotensin II-induced apoptosis in dopaminergic neurons. J Renin Angiotensin Aldosterone Syst. 2016;17:1470320316672349.PubMedPubMedCentralCrossRef Ou Z, Jiang T, Gao Q, Tian YY, Zhou JS, Wu L, et al. Mitochondrial-dependent mechanisms are involved in angiotensin II-induced apoptosis in dopaminergic neurons. J Renin Angiotensin Aldosterone Syst. 2016;17:1470320316672349.PubMedPubMedCentralCrossRef
239.
go back to reference Parga JA, Rodriguez-Perez AI, Garcia-Garrote M, Rodriguez-Pallares J, Labandeira-Garcia JL. Angiotensin II induces oxidative stress and upregulates neuroprotective signaling from the NRF2 and KLF9 pathway in dopaminergic cells. Free Radic Biol Med. 2018;129:394–406.PubMedCrossRef Parga JA, Rodriguez-Perez AI, Garcia-Garrote M, Rodriguez-Pallares J, Labandeira-Garcia JL. Angiotensin II induces oxidative stress and upregulates neuroprotective signaling from the NRF2 and KLF9 pathway in dopaminergic cells. Free Radic Biol Med. 2018;129:394–406.PubMedCrossRef
Metadata
Title
The role of the brain renin-angiotensin system in Parkinson´s disease
Authors
Jose Luis Labandeira-Garcia
Carmen M. Labandeira
Maria J. Guerra
Ana I. Rodriguez-Perez
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Translational Neurodegeneration / Issue 1/2024
Electronic ISSN: 2047-9158
DOI
https://doi.org/10.1186/s40035-024-00410-3

Other articles of this Issue 1/2024

Translational Neurodegeneration 1/2024 Go to the issue