Skip to main content
Top
Published in: Translational Neurodegeneration 1/2019

Open Access 01-12-2019 | Parkinson's Disease | Review

Molecular targets for modulating the protein translation vital to proteostasis and neuron degeneration in Parkinson’s disease

Authors: Zhi Dong Zhou, Thevapriya Selvaratnam, Ji Chao Tristan Lee, Yin Xia Chao, Eng-King Tan

Published in: Translational Neurodegeneration | Issue 1/2019

Login to get access

Abstract

Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, which is characterized by the progressive loss of dopaminergic neurons in the Substantia Nigra pars compacta concomitant with Lewy body formation in affected brain areas. The detailed pathogenic mechanisms underlying the selective loss of dopaminergic neurons in PD are unclear, and no drugs or treatments have been developed to alleviate progressive dopaminergic neuron degeneration in PD. However, the formation of α-synuclein-positive protein aggregates in Lewy body has been identified as a common pathological feature of PD, possibly stemming from the consequence of protein misfolding and dysfunctional proteostasis. Proteostasis is the mechanism for maintaining protein homeostasis via modulation of protein translation, enhancement of chaperone capacity and the prompt clearance of misfolded protein by the ubiquitin proteasome system and autophagy. Deregulated protein translation and impaired capacities of chaperone or protein degradation can disturb proteostasis processes, leading to pathological protein aggregation and neurodegeneration in PD. In recent years, multiple molecular targets in the modulation of protein translation vital to proteostasis and dopaminergic neuron degeneration have been identified. The potential pathophysiological and therapeutic significance of these molecular targets to neurodegeneration in PD is highlighted.
Literature
1.
go back to reference Meara RJ. Review: The Pathophysiology of the Motor Signs in Parkinson’s Disease. Age Ageing. 1994;23:342–6.PubMedCrossRef Meara RJ. Review: The Pathophysiology of the Motor Signs in Parkinson’s Disease. Age Ageing. 1994;23:342–6.PubMedCrossRef
2.
go back to reference Tan LCS. Epidemiology of Parkinson’s disease. Neurol Asia. 2013;18:231–8. Tan LCS. Epidemiology of Parkinson’s disease. Neurol Asia. 2013;18:231–8.
4.
go back to reference Bravo-San Pedro JM, Gómez-Sánchez R, Pizarro-Estrella E, Niso-Santano M, González-Polo RA, Fuentes Rodríguez JM. Parkinsons disease: leucine-rich repeat kinase 2 and autophagy, intimate enemies. Parkinsons Dis. 2012;2012:151039.PubMedPubMedCentral Bravo-San Pedro JM, Gómez-Sánchez R, Pizarro-Estrella E, Niso-Santano M, González-Polo RA, Fuentes Rodríguez JM. Parkinsons disease: leucine-rich repeat kinase 2 and autophagy, intimate enemies. Parkinsons Dis. 2012;2012:151039.PubMedPubMedCentral
6.
go back to reference Lim KL, Lim TM. Molecular mechanisms of neurodegeneration in Parkinson’s disease: clues from Mendelian syndromes. IUBMB Life. 2003;55:315–22.PubMedCrossRef Lim KL, Lim TM. Molecular mechanisms of neurodegeneration in Parkinson’s disease: clues from Mendelian syndromes. IUBMB Life. 2003;55:315–22.PubMedCrossRef
7.
go back to reference Valente EM, Salvi S, Ialongo T, Marongiu R, Elia AE, Caputo V, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol. 2004;56:336–41.PubMedCrossRef Valente EM, Salvi S, Ialongo T, Marongiu R, Elia AE, Caputo V, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol. 2004;56:336–41.PubMedCrossRef
11.
go back to reference Di Fonzo A, Rohé CF, Ferreira J, Chien HF, Vacca L, Stocchi F, et al. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson’s disease. Lancet. 2005;365:412–5.PubMedCrossRef Di Fonzo A, Rohé CF, Ferreira J, Chien HF, Vacca L, Stocchi F, et al. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson’s disease. Lancet. 2005;365:412–5.PubMedCrossRef
12.
go back to reference Gibb WRG, Lees AJ. Occasional review the relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1988;51:745–52.PubMedPubMedCentralCrossRef Gibb WRG, Lees AJ. Occasional review the relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1988;51:745–52.PubMedPubMedCentralCrossRef
14.
18.
go back to reference DeGracia DJ, Kumar R, Owen CR, Krause GS, White BC. Molecular pathways of protein synthesis inhibition during brain reperfusion: implications for neuronal survival or death. J Cereb Blood Flow Metab. 2002;22:127–41.PubMedCrossRef DeGracia DJ, Kumar R, Owen CR, Krause GS, White BC. Molecular pathways of protein synthesis inhibition during brain reperfusion: implications for neuronal survival or death. J Cereb Blood Flow Metab. 2002;22:127–41.PubMedCrossRef
19.
go back to reference Merrick WC. Cap-dependent and cap-independent translation in eukaryotic systems. Gene. 2004;332:1–11.PubMedCrossRef Merrick WC. Cap-dependent and cap-independent translation in eukaryotic systems. Gene. 2004;332:1–11.PubMedCrossRef
20.
go back to reference Sokabe M, Fraser CS. Human eukaryotic initiation factor 2 (eIF2)-GTP-met-tRNAi ternary complex and eIF3 stabilize the 43 S preinitiation complex. J Biol Chem. 2014;289:31827–36.PubMedPubMedCentralCrossRef Sokabe M, Fraser CS. Human eukaryotic initiation factor 2 (eIF2)-GTP-met-tRNAi ternary complex and eIF3 stabilize the 43 S preinitiation complex. J Biol Chem. 2014;289:31827–36.PubMedPubMedCentralCrossRef
22.
go back to reference Jurado AR, Tan D, Jiao X, Kiledjian M, Tong L. Structure and function of pre-mRNA 5′-end capping quality control and 3′-end processing. Biochemistry. 2014;53:1882–98.PubMedCrossRef Jurado AR, Tan D, Jiao X, Kiledjian M, Tong L. Structure and function of pre-mRNA 5′-end capping quality control and 3′-end processing. Biochemistry. 2014;53:1882–98.PubMedCrossRef
23.
go back to reference Brina D, Grosso S, Miluzio A, Biffo S. Translational control by 80S formation and 60S availability: the central role of eIF6, a rate limiting factor in cell cycle progression and tumorigenesis. Cell Cycle. 2011;10:3441–6.PubMedCrossRef Brina D, Grosso S, Miluzio A, Biffo S. Translational control by 80S formation and 60S availability: the central role of eIF6, a rate limiting factor in cell cycle progression and tumorigenesis. Cell Cycle. 2011;10:3441–6.PubMedCrossRef
25.
go back to reference Kaul G, Pattan G, Rafeequi T. Eukaryotic elongation factor-2 (eEF2): its regulation and peptide chain elongation. Cell Biochem Funct. 2011;29:227–34.PubMedCrossRef Kaul G, Pattan G, Rafeequi T. Eukaryotic elongation factor-2 (eEF2): its regulation and peptide chain elongation. Cell Biochem Funct. 2011;29:227–34.PubMedCrossRef
26.
go back to reference Beringer M, Bruell C, Xiong L, Pfister P, Bieling P, Katunin VI, et al. Essential mechanisms in the catalysis of peptide bond formation on the ribosome. J Biol Chem. 2005;280:36065–72.PubMedCrossRef Beringer M, Bruell C, Xiong L, Pfister P, Bieling P, Katunin VI, et al. Essential mechanisms in the catalysis of peptide bond formation on the ribosome. J Biol Chem. 2005;280:36065–72.PubMedCrossRef
30.
go back to reference Stolboushkina EA, Garber MB. Eukaryotic type translation initiation factor 2: structure-functional aspects. Biochemistry (Mosc). 2011;76:283–94.PubMedCrossRef Stolboushkina EA, Garber MB. Eukaryotic type translation initiation factor 2: structure-functional aspects. Biochemistry (Mosc). 2011;76:283–94.PubMedCrossRef
31.
go back to reference Fernandez J, Yaman I, Sarnow P, Snider MD, Hatzoglou M. Regulation of internal ribosomal entry site-mediated translation by phosphorylation of the translation initiation factor eIF2α. J Biol Chem. 2002;277:19198–205.PubMedCrossRef Fernandez J, Yaman I, Sarnow P, Snider MD, Hatzoglou M. Regulation of internal ribosomal entry site-mediated translation by phosphorylation of the translation initiation factor eIF2α. J Biol Chem. 2002;277:19198–205.PubMedCrossRef
35.
go back to reference Oyadomari S, Harding HP, Zhang Y, Oyadomari M, Ron D. Dephosphorylation of translation initiation factor 2α enhances glucose tolerance and attenuates Hepatosteatosis in mice. Cell Metab. 2008;7:520–32.PubMedPubMedCentralCrossRef Oyadomari S, Harding HP, Zhang Y, Oyadomari M, Ron D. Dephosphorylation of translation initiation factor 2α enhances glucose tolerance and attenuates Hepatosteatosis in mice. Cell Metab. 2008;7:520–32.PubMedPubMedCentralCrossRef
36.
go back to reference Gerlitz G, Jagus R, Elroy-Stein O. Phosphorylation of initiation factor-2α is required for activation of internal translation initiation during cell differentiation. Eur J Biochem. 2002;269:2810–9.PubMedCrossRef Gerlitz G, Jagus R, Elroy-Stein O. Phosphorylation of initiation factor-2α is required for activation of internal translation initiation during cell differentiation. Eur J Biochem. 2002;269:2810–9.PubMedCrossRef
40.
go back to reference Bellucci A, Navarria L, Zaltieri M, Falarti E, Bodei S, Sigala S, et al. Induction of the unfolded protein response by α-synuclein in experimental models of Parkinson’s disease. J Neurochem. 2011;116:588–605.PubMedCrossRef Bellucci A, Navarria L, Zaltieri M, Falarti E, Bodei S, Sigala S, et al. Induction of the unfolded protein response by α-synuclein in experimental models of Parkinson’s disease. J Neurochem. 2011;116:588–605.PubMedCrossRef
41.
go back to reference Jiang P, Gan M, Ebrahim AS, Lin WL, Melrose HL, Yen SHC. ER stress response plays an important role in aggregation of -synuclein. Mol Neurodegener. 2010;5:1–16.CrossRef Jiang P, Gan M, Ebrahim AS, Lin WL, Melrose HL, Yen SHC. ER stress response plays an important role in aggregation of -synuclein. Mol Neurodegener. 2010;5:1–16.CrossRef
42.
go back to reference Liu M, Qin L, Wang L, Tan J, Zhang H, Tang J, et al. α-synuclein induces apoptosis of astrocytes by causing dysfunction of the endoplasmic reticulum-Golgi compartment. Mol Med Rep. 2018;18:322–32.PubMedPubMedCentral Liu M, Qin L, Wang L, Tan J, Zhang H, Tang J, et al. α-synuclein induces apoptosis of astrocytes by causing dysfunction of the endoplasmic reticulum-Golgi compartment. Mol Med Rep. 2018;18:322–32.PubMedPubMedCentral
44.
go back to reference Hoozemans JJM, van Haastert ES, Eikelenboom P, de Vos RAI, Rozemuller JM, Scheper W. Activation of the unfolded protein response in Parkinson’s disease. Biochem Biophys Res Commun. 2007;354:707–11.PubMedCrossRef Hoozemans JJM, van Haastert ES, Eikelenboom P, de Vos RAI, Rozemuller JM, Scheper W. Activation of the unfolded protein response in Parkinson’s disease. Biochem Biophys Res Commun. 2007;354:707–11.PubMedCrossRef
45.
go back to reference Mutez E, Nkiliza A, Belarbi K, de Broucker A, Vanbesien-Mailliot C, Bleuse S, et al. Involvement of the immune system, endocytosis and EIF2 signaling in both genetically determined and sporadic forms of Parkinson’s disease. Neurobiol Dis. 2014;63:165–70.PubMedCrossRef Mutez E, Nkiliza A, Belarbi K, de Broucker A, Vanbesien-Mailliot C, Bleuse S, et al. Involvement of the immune system, endocytosis and EIF2 signaling in both genetically determined and sporadic forms of Parkinson’s disease. Neurobiol Dis. 2014;63:165–70.PubMedCrossRef
47.
go back to reference Mercado G, Castillo V, Soto P, López N, Axten JM, Sardi SP, et al. Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson’s disease. Neurobiol Dis. 2018;112:136–48.PubMedCrossRef Mercado G, Castillo V, Soto P, López N, Axten JM, Sardi SP, et al. Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson’s disease. Neurobiol Dis. 2018;112:136–48.PubMedCrossRef
48.
go back to reference Sidrauski C, Tsai JC, Kampmann M, Hearn BR, Vedantham P, Jaishankar P, et al. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes theintegrated stress response. Elife. 2015;2015:1–27. Sidrauski C, Tsai JC, Kampmann M, Hearn BR, Vedantham P, Jaishankar P, et al. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes theintegrated stress response. Elife. 2015;2015:1–27.
51.
go back to reference Halliday M, Radford H, Zents KAM, Molloy C, Moreno JA, Verity NC, et al. Repurposed drugs targeting eIF2α-P-mediated translational repression prevent neurodegeneration in mice. Brain. 2017;140:1768–83.PubMedPubMedCentralCrossRef Halliday M, Radford H, Zents KAM, Molloy C, Moreno JA, Verity NC, et al. Repurposed drugs targeting eIF2α-P-mediated translational repression prevent neurodegeneration in mice. Brain. 2017;140:1768–83.PubMedPubMedCentralCrossRef
52.
go back to reference Takano K, Kitao Y, Tabata Y, Miura H, Sato K, Takuma K, et al. A dibenzoylmethane derivative protects dopaminergic neurons against both oxidative stress and endoplasmic reticulum stress. Am J Physiol Cell Physiol. 2007;293:1884–94.CrossRef Takano K, Kitao Y, Tabata Y, Miura H, Sato K, Takuma K, et al. A dibenzoylmethane derivative protects dopaminergic neurons against both oxidative stress and endoplasmic reticulum stress. Am J Physiol Cell Physiol. 2007;293:1884–94.CrossRef
53.
go back to reference Albanese A, Rossi P, Altavista MC. Can trazodone induce parkinsonism? Clin Neuropharmacol. 1988;11:180–2.PubMedCrossRef Albanese A, Rossi P, Altavista MC. Can trazodone induce parkinsonism? Clin Neuropharmacol. 1988;11:180–2.PubMedCrossRef
54.
go back to reference Mayor JS, Pacheco AP, Esperança S, Oliveira E, Silva A. Trazodone in the elderly: risk of extrapyramidal acute events. BMJ Case Rep. 2015;2015:bcr2015210726.CrossRef Mayor JS, Pacheco AP, Esperança S, Oliveira E, Silva A. Trazodone in the elderly: risk of extrapyramidal acute events. BMJ Case Rep. 2015;2015:bcr2015210726.CrossRef
55.
go back to reference Tsaytler P, Harding HP, Ron D, Bertolotti A. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science. 2011;332:91–4.PubMedCrossRef Tsaytler P, Harding HP, Ron D, Bertolotti A. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science. 2011;332:91–4.PubMedCrossRef
56.
go back to reference Neuber C, Uebeler J, Schulze T, Sotoud H, El-Armouche A, Eschenhagen T. Guanabenz interferes with ER stress and exerts protective effects in cardiac myocytes. PLoS One. 2014;9:1–9.CrossRef Neuber C, Uebeler J, Schulze T, Sotoud H, El-Armouche A, Eschenhagen T. Guanabenz interferes with ER stress and exerts protective effects in cardiac myocytes. PLoS One. 2014;9:1–9.CrossRef
57.
go back to reference Barbezier N, Chartier A, Bidet Y, Buttstedt A, Voisset C, Galons H, et al. Antiprion drugs 6-aminophenanthridine and guanabenz reduce PABPN1 toxicity and aggregation in oculopharyngeal muscular dystrophy. EMBO Mol Med. 2011;3:35–49.PubMedPubMedCentralCrossRef Barbezier N, Chartier A, Bidet Y, Buttstedt A, Voisset C, Galons H, et al. Antiprion drugs 6-aminophenanthridine and guanabenz reduce PABPN1 toxicity and aggregation in oculopharyngeal muscular dystrophy. EMBO Mol Med. 2011;3:35–49.PubMedPubMedCentralCrossRef
58.
go back to reference Bella ED, Tramacere I, Antonini G, Borghero G, Capasso M, Caponnetto C, et al. Protein misfolding, amyotrophic lateral sclerosis and guanabenz: protocol for a phase II RCT with futility design (ProMISe trial). BMJ Open. 2017;7:1–9.CrossRef Bella ED, Tramacere I, Antonini G, Borghero G, Capasso M, Caponnetto C, et al. Protein misfolding, amyotrophic lateral sclerosis and guanabenz: protocol for a phase II RCT with futility design (ProMISe trial). BMJ Open. 2017;7:1–9.CrossRef
61.
go back to reference Das I, Krzyzosiak A, Schneider K, Wrabetz L, D’Antonio M, Barry N, et al. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science. 2015;348:239–42.PubMedPubMedCentralCrossRef Das I, Krzyzosiak A, Schneider K, Wrabetz L, D’Antonio M, Barry N, et al. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science. 2015;348:239–42.PubMedPubMedCentralCrossRef
62.
go back to reference Crespillo-Casado A, Chambers JE, Fischer PM, Marciniak SJ, Ron D. PPP1R15A-mediated dephosphorylation of eIF2a is unaffected by sephin1 or guanabenz. Elife. 2017;6:1–29.CrossRef Crespillo-Casado A, Chambers JE, Fischer PM, Marciniak SJ, Ron D. PPP1R15A-mediated dephosphorylation of eIF2a is unaffected by sephin1 or guanabenz. Elife. 2017;6:1–29.CrossRef
63.
go back to reference Takigawa S, Chen A, Nishimura A, Liu S, Li BY, Sudo A, et al. Guanabenz downregulates inflammatory responses via eIF2α dependent and independent signaling. Int J Mol Sci. 2016;17:1–12. Takigawa S, Chen A, Nishimura A, Liu S, Li BY, Sudo A, et al. Guanabenz downregulates inflammatory responses via eIF2α dependent and independent signaling. Int J Mol Sci. 2016;17:1–12.
64.
go back to reference Pang Y, Kurella S, Voisset C, Samanta D, Banerjee D, Schabe A, et al. The antiprion compound 6-aminophenanthridine inhibits the protein folding activity of the ribosome by direct competition. J Biol Chem. 2013;288:19081–9.PubMedPubMedCentralCrossRef Pang Y, Kurella S, Voisset C, Samanta D, Banerjee D, Schabe A, et al. The antiprion compound 6-aminophenanthridine inhibits the protein folding activity of the ribosome by direct competition. J Biol Chem. 2013;288:19081–9.PubMedPubMedCentralCrossRef
67.
go back to reference Lindqvist LM, Vikström I, Chambers JM, McArthur K, Ann Anderson M, Henley KJ, et al. Translation inhibitors induce cell death by multiple mechanisms and Mcl-1 reduction is only a minor contributor. Cell Death Dis. 2012;3:1–9.CrossRef Lindqvist LM, Vikström I, Chambers JM, McArthur K, Ann Anderson M, Henley KJ, et al. Translation inhibitors induce cell death by multiple mechanisms and Mcl-1 reduction is only a minor contributor. Cell Death Dis. 2012;3:1–9.CrossRef
68.
go back to reference Caron S, Charon M, Cramer E, Sonenberg N, Dusanter-Fourt I. Selective modification of eukaryotic initiation factor 4F (eIF4F) at the onset of cell differentiation: recruitment of eIF4GII and long-lasting phosphorylation of eIF4E. Mol Cell Biol. 2004;24:4920–8.PubMedPubMedCentralCrossRef Caron S, Charon M, Cramer E, Sonenberg N, Dusanter-Fourt I. Selective modification of eukaryotic initiation factor 4F (eIF4F) at the onset of cell differentiation: recruitment of eIF4GII and long-lasting phosphorylation of eIF4E. Mol Cell Biol. 2004;24:4920–8.PubMedPubMedCentralCrossRef
71.
go back to reference Svitkin YV, Herdy B, Costa-Mattioli M, Gingras A-C, Raught B, Sonenberg N. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation. Mol Cell Biol. 2005;25:10556–65.PubMedPubMedCentralCrossRef Svitkin YV, Herdy B, Costa-Mattioli M, Gingras A-C, Raught B, Sonenberg N. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation. Mol Cell Biol. 2005;25:10556–65.PubMedPubMedCentralCrossRef
73.
go back to reference Contreras V, Richardson MA, Hao E, Keiper BD. Depletion of the cap-associated isoform of translation factor eIF4G induces germline apoptosis in C. Elegans. Cell Death Differ. 2008;15:1232–42.PubMedCrossRef Contreras V, Richardson MA, Hao E, Keiper BD. Depletion of the cap-associated isoform of translation factor eIF4G induces germline apoptosis in C. Elegans. Cell Death Differ. 2008;15:1232–42.PubMedCrossRef
74.
go back to reference Smith ED, Tsuchiya M, Fox LA, Dang N, Hu D, Kerr EO, et al. Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Res. 2008;18:564–70.PubMedPubMedCentralCrossRef Smith ED, Tsuchiya M, Fox LA, Dang N, Hu D, Kerr EO, et al. Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Res. 2008;18:564–70.PubMedPubMedCentralCrossRef
75.
go back to reference Chartier-Harlin MC, Dachsel JC, Vilariño-Güell C, Lincoln SJ, Leprêtre F, Hulihan MM, et al. Translation initiator EIF4G1 mutations in familial parkinson disease. Am J Hum Genet. 2011;89:398–406.PubMedPubMedCentralCrossRef Chartier-Harlin MC, Dachsel JC, Vilariño-Güell C, Lincoln SJ, Leprêtre F, Hulihan MM, et al. Translation initiator EIF4G1 mutations in familial parkinson disease. Am J Hum Genet. 2011;89:398–406.PubMedPubMedCentralCrossRef
77.
go back to reference Huttenlocher J, Krüger R, Capetian P, Lohmann K, Brockmann K, Csoti I, et al. EIF4G1 is neither a strong nor a common risk factor for Parkinson’s disease: evidence from large European cohorts. J Med Genet. 2015;52:37–41.PubMedCrossRef Huttenlocher J, Krüger R, Capetian P, Lohmann K, Brockmann K, Csoti I, et al. EIF4G1 is neither a strong nor a common risk factor for Parkinson’s disease: evidence from large European cohorts. J Med Genet. 2015;52:37–41.PubMedCrossRef
79.
go back to reference Schulte EC, Mollenhauer B, Zimprich A, Bereznai B, Lichtner P, Haubenberger D, et al. Variants in eukaryotic translation initiation factor 4G1 in sporadic Parkinson’s disease. Neurogenetics. 2012;13:281–5.PubMedCrossRef Schulte EC, Mollenhauer B, Zimprich A, Bereznai B, Lichtner P, Haubenberger D, et al. Variants in eukaryotic translation initiation factor 4G1 in sporadic Parkinson’s disease. Neurogenetics. 2012;13:281–5.PubMedCrossRef
81.
go back to reference Nichols N, Bras JM, Hernandez DG, Jansen IE, Lesage S, Lubbe S, et al. EIF4G1 mutations do not cause Parkinson’s disease. Neurobiol Aging. 2015;36:2444–2444.e4.PubMedPubMedCentralCrossRef Nichols N, Bras JM, Hernandez DG, Jansen IE, Lesage S, Lubbe S, et al. EIF4G1 mutations do not cause Parkinson’s disease. Neurobiol Aging. 2015;36:2444–2444.e4.PubMedPubMedCentralCrossRef
88.
go back to reference Zimprich A, Benet-Pagès A, Struhal W, Graf E, Eck SH, Offman MN, et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset parkinson disease. Am J Hum Genet. 2011;89:168–75.PubMedPubMedCentralCrossRef Zimprich A, Benet-Pagès A, Struhal W, Graf E, Eck SH, Offman MN, et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset parkinson disease. Am J Hum Genet. 2011;89:168–75.PubMedPubMedCentralCrossRef
90.
go back to reference Dyer JR, Michel S, Lee W, Castellucci VF, Wayne NL, Sossin WS. An activity-dependent switch to cap-independent translation triggered by elF4E dephosphorylation. Nat Neurosci. 2003;6:219–20.PubMedCrossRef Dyer JR, Michel S, Lee W, Castellucci VF, Wayne NL, Sossin WS. An activity-dependent switch to cap-independent translation triggered by elF4E dephosphorylation. Nat Neurosci. 2003;6:219–20.PubMedCrossRef
91.
go back to reference Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature. 2005;433:477–80.PubMedCrossRef Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature. 2005;433:477–80.PubMedCrossRef
93.
go back to reference Whalen SG, Gingras AC, Amankwa L, Mader S, Branton PE, Aebersold R, et al. Phosphorylation of eIF4E on Serine-209 by protein kinase C is inhibited by the translational repressors, 4E-binding proteins. J Biol Chem. 1996;271:11831–7.PubMedCrossRef Whalen SG, Gingras AC, Amankwa L, Mader S, Branton PE, Aebersold R, et al. Phosphorylation of eIF4E on Serine-209 by protein kinase C is inhibited by the translational repressors, 4E-binding proteins. J Biol Chem. 1996;271:11831–7.PubMedCrossRef
94.
go back to reference George A, Panda S, Kudmulwar D, Chhatbar SP, Nayak SC, Krishnan HH. Hepatitis C virus NS5A binds to the mRNA cap-binding eukaryotic translation initiation 4F (elF4F) complex and up-regulates host translation initiation machinery through elF4E-binding protein 1 inactivation. J Biol Chem. 2012;287:5042–58.PubMedCrossRef George A, Panda S, Kudmulwar D, Chhatbar SP, Nayak SC, Krishnan HH. Hepatitis C virus NS5A binds to the mRNA cap-binding eukaryotic translation initiation 4F (elF4F) complex and up-regulates host translation initiation machinery through elF4E-binding protein 1 inactivation. J Biol Chem. 2012;287:5042–58.PubMedCrossRef
95.
go back to reference Hershey PEC, Mcwhirter SM, Gross JD, Wagner G, Alber T, Sachs AB. NUCLEIC ACIDS , PROTEIN SYNTHESIS , AND MOLECULAR GENETICS: The cap-binding protein eIF4E promotes folding of a functional domain of yeast translation initiation factor eIF4G1. J Biol Chem. 1999;274:21297–304.PubMedCrossRef Hershey PEC, Mcwhirter SM, Gross JD, Wagner G, Alber T, Sachs AB. NUCLEIC ACIDS , PROTEIN SYNTHESIS , AND MOLECULAR GENETICS: The cap-binding protein eIF4E promotes folding of a functional domain of yeast translation initiation factor eIF4G1. J Biol Chem. 1999;274:21297–304.PubMedCrossRef
96.
go back to reference Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, Sonenberg N. Human eukaryotic translation initiation factor 4G (eIF4G) recruits Mnk1 to phosphorylate eIF4E. EMBO J. 1999;18:270–9.PubMedPubMedCentralCrossRef Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, Sonenberg N. Human eukaryotic translation initiation factor 4G (eIF4G) recruits Mnk1 to phosphorylate eIF4E. EMBO J. 1999;18:270–9.PubMedPubMedCentralCrossRef
98.
go back to reference Tee AR, Proud CG. Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. Mol Cell Biol. 2002;22:1674–83.PubMedPubMedCentralCrossRef Tee AR, Proud CG. Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. Mol Cell Biol. 2002;22:1674–83.PubMedPubMedCentralCrossRef
100.
go back to reference Zhang Y, Zheng XFS. MTOR-independent 4E-BP1 phosphorylation is associated with cancer resistance to mTOR kinase inhibitors. Cell Cycle. 2012;11:594–603.PubMedPubMedCentralCrossRef Zhang Y, Zheng XFS. MTOR-independent 4E-BP1 phosphorylation is associated with cancer resistance to mTOR kinase inhibitors. Cell Cycle. 2012;11:594–603.PubMedPubMedCentralCrossRef
101.
go back to reference Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of elF4G. Mol Cell. 1999;3:707–16.PubMedCrossRef Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of elF4G. Mol Cell. 1999;3:707–16.PubMedCrossRef
104.
go back to reference Murata T, Shimotohno K. Ubiquitination and proteasome-dependent degradation of human eukaryotic translation initiation factor 4E. J Biol Chem. 2006;281:20788–800.PubMedCrossRef Murata T, Shimotohno K. Ubiquitination and proteasome-dependent degradation of human eukaryotic translation initiation factor 4E. J Biol Chem. 2006;281:20788–800.PubMedCrossRef
106.
go back to reference Imai Y, Gehrke S, Wang HQ, Takahashi R, Hasegawa K, Oota E, et al. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J. 2008;27:2432–43.PubMedPubMedCentralCrossRef Imai Y, Gehrke S, Wang HQ, Takahashi R, Hasegawa K, Oota E, et al. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J. 2008;27:2432–43.PubMedPubMedCentralCrossRef
108.
109.
go back to reference Ferreira-Cerca S, Pöll G, Kühn H, Neueder A, Jakob S, Tschochner H, et al. Analysis of the in vivo assembly pathway of eukaryotic 40S ribosomal proteins. Mol Cell. 2007;28:446–57.PubMedCrossRef Ferreira-Cerca S, Pöll G, Kühn H, Neueder A, Jakob S, Tschochner H, et al. Analysis of the in vivo assembly pathway of eukaryotic 40S ribosomal proteins. Mol Cell. 2007;28:446–57.PubMedCrossRef
110.
go back to reference Kim H, Son I, Seol W. Effect of leucine-rich repeat kinase 2 (LRRK2) on protein synthesis. Animal Cells Syst (Seoul). 2018;22:15–21.CrossRef Kim H, Son I, Seol W. Effect of leucine-rich repeat kinase 2 (LRRK2) on protein synthesis. Animal Cells Syst (Seoul). 2018;22:15–21.CrossRef
111.
go back to reference Rouquette J, Choesmel V, Gleizes PE. Nuclear export and cytoplasmic processing of precursors to the 40S ribosomal subunits in mammalian cells. EMBO J. 2005;24:2862–72.PubMedPubMedCentralCrossRef Rouquette J, Choesmel V, Gleizes PE. Nuclear export and cytoplasmic processing of precursors to the 40S ribosomal subunits in mammalian cells. EMBO J. 2005;24:2862–72.PubMedPubMedCentralCrossRef
120.
go back to reference Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110:163–75.PubMedCrossRef Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110:163–75.PubMedCrossRef
123.
go back to reference Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol. 2016;82:1245–66.PubMedCrossRef Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol. 2016;82:1245–66.PubMedCrossRef
124.
go back to reference Santini E, Heiman M, Greengard P, Valjent E, Fisone G. Inhibition of mTOR signaling in parkinson’s disease prevents L-DOPA-induced dyskinesia. Sci Signal. 2009;2:1–11.CrossRef Santini E, Heiman M, Greengard P, Valjent E, Fisone G. Inhibition of mTOR signaling in parkinson’s disease prevents L-DOPA-induced dyskinesia. Sci Signal. 2009;2:1–11.CrossRef
126.
go back to reference Siracusa R, Paterniti I, Cordaro M, Crupi R, Bruschetta G, Campolo M, et al. Neuroprotective Effects of Temsirolimus in Animal Models of Parkinson’s Disease. Mol Neurobiol. 2017;55:1–17. Siracusa R, Paterniti I, Cordaro M, Crupi R, Bruschetta G, Campolo M, et al. Neuroprotective Effects of Temsirolimus in Animal Models of Parkinson’s Disease. Mol Neurobiol. 2017;55:1–17.
127.
go back to reference Lu M, Su C, Qiao C, Bian Y, Ding J, Hu G. Metformin prevents dopaminergic neuron death in MPTP/P-induced mouse model of Parkinson’s disease via autophagy and mitochondrial ROS clearance. Int J Neuropsychopharmacol. 2016;19:1–11.CrossRef Lu M, Su C, Qiao C, Bian Y, Ding J, Hu G. Metformin prevents dopaminergic neuron death in MPTP/P-induced mouse model of Parkinson’s disease via autophagy and mitochondrial ROS clearance. Int J Neuropsychopharmacol. 2016;19:1–11.CrossRef
128.
go back to reference Ataie-Kachoie P, Pourgholami MH, Bahrami-B F, Badar S, Morris DL. Minocycline attenuates hypoxia-inducible factor-1α expression correlated with modulation of p53 and AKT/mTOR/p70S6K/4E-BP1 pathway in ovarian cancer: in vitro and in vivo studies. Am J Cancer Res. 2015;5:575–88. https://www.ncbi.nlm.nih.gov/pubmed/25973298. Ataie-Kachoie P, Pourgholami MH, Bahrami-B F, Badar S, Morris DL. Minocycline attenuates hypoxia-inducible factor-1α expression correlated with modulation of p53 and AKT/mTOR/p70S6K/4E-BP1 pathway in ovarian cancer: in vitro and in vivo studies. Am J Cancer Res. 2015;5:575–88. https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25973298.
129.
go back to reference Ma J, Han LZ, Liang H, Mi C, Shi H, Lee JJ, et al. Celastrol inhibits the HIF-1α pathway by inhibition of mTOR/p70S6K/eIF4E and ERK1/2 phosphorylation in human hepatoma cells. Oncol Rep. 2014;32:235–42.PubMedCrossRef Ma J, Han LZ, Liang H, Mi C, Shi H, Lee JJ, et al. Celastrol inhibits the HIF-1α pathway by inhibition of mTOR/p70S6K/eIF4E and ERK1/2 phosphorylation in human hepatoma cells. Oncol Rep. 2014;32:235–42.PubMedCrossRef
130.
go back to reference Liu S, Lu B. Reduction of protein translation and activation of autophagy protect against PINK1 pathogenesis in drosophila melanogaster. PLoS Genet. 2010;6:1–12. Liu S, Lu B. Reduction of protein translation and activation of autophagy protect against PINK1 pathogenesis in drosophila melanogaster. PLoS Genet. 2010;6:1–12.
134.
go back to reference Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol. 2006;16:1865–70.PubMedCrossRef Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol. 2006;16:1865–70.PubMedCrossRef
135.
go back to reference Conciatori F, Ciuffreda L, Bazzichetto C, Falcone I, Pilotto S, Bria E, et al. MTOR cross-talk in cancer and potential for combination therapy. Cancers (Basel). 2018;10:E23.PubMedCrossRef Conciatori F, Ciuffreda L, Bazzichetto C, Falcone I, Pilotto S, Bria E, et al. MTOR cross-talk in cancer and potential for combination therapy. Cancers (Basel). 2018;10:E23.PubMedCrossRef
137.
go back to reference Chuang CL, Lu YN, Wang HC, Chang HY. Genetic dissection reveals that Akt is the critical kinase downstream of LRRK2 to phosphorylate and inhibit FOXO1, and promotes neuron survival. Hum Mol Genet. 2014;23:5649–58.PubMedCrossRef Chuang CL, Lu YN, Wang HC, Chang HY. Genetic dissection reveals that Akt is the critical kinase downstream of LRRK2 to phosphorylate and inhibit FOXO1, and promotes neuron survival. Hum Mol Genet. 2014;23:5649–58.PubMedCrossRef
138.
go back to reference Yerbury JJ, Ooi L, Dillin A, Saunders DN, Hatters DM, Beart PM, et al. Walking the tightrope: Proteostasis and neurodegenerative disease. J Neurochem. 2016;137:489–505.PubMedCrossRef Yerbury JJ, Ooi L, Dillin A, Saunders DN, Hatters DM, Beart PM, et al. Walking the tightrope: Proteostasis and neurodegenerative disease. J Neurochem. 2016;137:489–505.PubMedCrossRef
144.
go back to reference Jousse C, Oyadomari S, Novoa I, Lu P, Zhang Y, Harding HP, et al. Inhibition of a constitutive translation initiation factor 2α phosphatase, CReP, promotes survival of stressed cells. J Cell Biol. 2003;163:767–75.PubMedPubMedCentralCrossRef Jousse C, Oyadomari S, Novoa I, Lu P, Zhang Y, Harding HP, et al. Inhibition of a constitutive translation initiation factor 2α phosphatase, CReP, promotes survival of stressed cells. J Cell Biol. 2003;163:767–75.PubMedPubMedCentralCrossRef
Metadata
Title
Molecular targets for modulating the protein translation vital to proteostasis and neuron degeneration in Parkinson’s disease
Authors
Zhi Dong Zhou
Thevapriya Selvaratnam
Ji Chao Tristan Lee
Yin Xia Chao
Eng-King Tan
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Translational Neurodegeneration / Issue 1/2019
Electronic ISSN: 2047-9158
DOI
https://doi.org/10.1186/s40035-019-0145-0

Other articles of this Issue 1/2019

Translational Neurodegeneration 1/2019 Go to the issue