Skip to main content
Top
Published in: Translational Neurodegeneration 1/2018

Open Access 01-12-2018 | Research

Objective assessment of bradykinesia in Parkinson’s disease using evolutionary algorithms: clinical validation

Authors: Chao Gao, Stephen Smith, Michael Lones, Stuart Jamieson, Jane Alty, Jeremy Cosgrove, Pingchen Zhang, Jin Liu, Yimeng Chen, Juanjuan Du, Shishuang Cui, Haiyan Zhou, Shengdi Chen

Published in: Translational Neurodegeneration | Issue 1/2018

Login to get access

Abstract

Background

There is an urgent need for developing objective, effective and convenient measurements to help clinicians accurately identify bradykinesia. The purpose of this study is to evaluate the accuracy of an objective approach assessing bradykinesia in finger tapping (FT) that uses evolutionary algorithms (EAs) and explore whether it can be used to identify early stage Parkinson’s disease (PD).

Methods

One hundred and seven PD, 41 essential tremor (ET) patients and 49 normal controls (NC) were recruited. Participants performed a standard FT task with two electromagnetic tracking sensors attached to the thumb and index finger. Readings from the sensors were transmitted to a tablet computer and subsequently analyzed by using EAs. The output from the device (referred to as "PD-Monitor") scaled from − 1 to + 1 (where higher scores indicate greater severity of bradykinesia). Meanwhile, the bradykinesia was rated clinically using the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) FT item.

Results

With an increasing MDS-UPDRS FT score, the PD-Monitor score from the same hand side increased correspondingly. PD-Monitor score correlated well with MDS-UPDRS FT score (right side: r = 0.819, P = 0.000; left side: r = 0.783, P = 0.000). Moreover, PD-Monitor scores in 97 PD patients with MDS-UPDRS FT bradykinesia and each PD subgroup (FT bradykinesia scored from 1 to 3) were all higher than that in NC. Receiver operating characteristic (ROC) curves revealed that PD-Monitor FT scores could detect different severity of bradykinesia with high accuracy (≥89.7%) in the right dominant hand. Furthermore, PD-Monitor scores could discriminate early stage PD from NC, with area under the ROC curve greater than or equal to 0.899. Additionally, ET without bradykinesia could be differentiated from PD by PD-Monitor scores. A positive correlation of PD-Monitor scores with modified Hoehn and Yahr stage was found in the left hand sides.

Conclusions

Our study demonstrated that a simple to use device employing classifiers derived from EAs could not only be used to accurately measure different severity of bradykinesia in PD, but also had the potential to differentiate early stage PD from normality.
Literature
1.
go back to reference Zhang ZX, Roman GC, Hong Z, et al. Parkinson’s disease in China: prevalence in Beijing, Xian, and Shanghai. Lancet. 2005;365(9459):595–7.CrossRefPubMed Zhang ZX, Roman GC, Hong Z, et al. Parkinson’s disease in China: prevalence in Beijing, Xian, and Shanghai. Lancet. 2005;365(9459):595–7.CrossRefPubMed
2.
go back to reference Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology. 2016;86(6):566–76.CrossRefPubMed Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology. 2016;86(6):566–76.CrossRefPubMed
3.
go back to reference Jankovic J. Distinguishing essential tremor from Parkinson’s disease. Practical Neurology. 2012:36–8. Jankovic J. Distinguishing essential tremor from Parkinson’s disease. Practical Neurology. 2012:36–8.
4.
go back to reference Thenganatt MA, Jankovic J. The relationship between essential tremor and Parkinson’s disease. Parkinsonism Relat Disord. 2016;22(Suppl 1):S162–5.CrossRefPubMed Thenganatt MA, Jankovic J. The relationship between essential tremor and Parkinson’s disease. Parkinsonism Relat Disord. 2016;22(Suppl 1):S162–5.CrossRefPubMed
5.
go back to reference Thenganatt MA, Louis ED. Distinguishing essential tremor from Parkinson’s disease: bedside tests and laboratory evaluations. Expert Rev Neurother. 2012;12(6):687–96.CrossRefPubMedPubMedCentral Thenganatt MA, Louis ED. Distinguishing essential tremor from Parkinson’s disease: bedside tests and laboratory evaluations. Expert Rev Neurother. 2012;12(6):687–96.CrossRefPubMedPubMedCentral
6.
go back to reference Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2015;30(12):1591–601.CrossRefPubMed Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2015;30(12):1591–601.CrossRefPubMed
7.
go back to reference Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–70.CrossRefPubMed Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–70.CrossRefPubMed
8.
go back to reference Heldman DA, Giuffrida JP, Chen R, et al. The modified bradykinesia rating scale for Parkinson’s disease: reliability and comparison with kinematic measures. Mov Disord. 2011;26(10):1859–63.CrossRefPubMedPubMedCentral Heldman DA, Giuffrida JP, Chen R, et al. The modified bradykinesia rating scale for Parkinson’s disease: reliability and comparison with kinematic measures. Mov Disord. 2011;26(10):1859–63.CrossRefPubMedPubMedCentral
9.
go back to reference Michael A, Lones SLS, Jane E, Alty SE, Lacy KL, Possin DR, Jamieson S, Tyrrell AM. Evolving classifiers to recognize the movement characteristics of Parkinson’s disease patients. IEEE Trans Evol Comput. 2014;18(4):559–76.CrossRef Michael A, Lones SLS, Jane E, Alty SE, Lacy KL, Possin DR, Jamieson S, Tyrrell AM. Evolving classifiers to recognize the movement characteristics of Parkinson’s disease patients. IEEE Trans Evol Comput. 2014;18(4):559–76.CrossRef
10.
go back to reference Bain P, Brin M, Deuschl G, et al. Criteria for the diagnosis of essential tremor. Neurology. 2000;54(11 Suppl 4):S7.PubMed Bain P, Brin M, Deuschl G, et al. Criteria for the diagnosis of essential tremor. Neurology. 2000;54(11 Suppl 4):S7.PubMed
11.
go back to reference Tombaugh TN, McIntyre NJ. The mini-mental state examination: a comprehensive review. J Am Geriatr Soc. 1992;40(9):922–35.CrossRefPubMed Tombaugh TN, McIntyre NJ. The mini-mental state examination: a comprehensive review. J Am Geriatr Soc. 1992;40(9):922–35.CrossRefPubMed
12.
go back to reference Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.CrossRefPubMed Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.CrossRefPubMed
13.
go back to reference Goetz CG, Poewe W, Rascol O, et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord. 2004;19(9):1020–8.CrossRefPubMed Goetz CG, Poewe W, Rascol O, et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord. 2004;19(9):1020–8.CrossRefPubMed
14.
go back to reference Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord. 2010;25(15):2649–53.CrossRefPubMed Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord. 2010;25(15):2649–53.CrossRefPubMed
15.
go back to reference Alty JE, Cosgrove J, Lones MA, Smith SL, Possin K, Schuff N, Jamieson S. Clinically ‘slight’ bradykinesia in Parkinson’s disease is accurately detected using evolutionary computation analysis of finger tapping. Mov Disord. 2016;31(suppl 2) Alty JE, Cosgrove J, Lones MA, Smith SL, Possin K, Schuff N, Jamieson S. Clinically ‘slight’ bradykinesia in Parkinson’s disease is accurately detected using evolutionary computation analysis of finger tapping. Mov Disord. 2016;31(suppl 2)
16.
go back to reference IBM Corp. IBM SPSS statistics for windows, version 22.0. Armonk: IBM Corp; 2013. IBM Corp. IBM SPSS statistics for windows, version 22.0. Armonk: IBM Corp; 2013.
17.
go back to reference Duval C, Sadikot AF, Panisset M. Bradykinesia in patients with essential tremor. Brain Res. 2006;1115(1):213–6.CrossRefPubMed Duval C, Sadikot AF, Panisset M. Bradykinesia in patients with essential tremor. Brain Res. 2006;1115(1):213–6.CrossRefPubMed
18.
go back to reference Jimenez-Jimenez FJ, Rubio L, Alonso-Navarro H, et al. Impairment of rapid repetitive finger movements and visual reaction time in patients with essential tremor. Eur J Neurol. 2010;17(1):152–9.CrossRefPubMed Jimenez-Jimenez FJ, Rubio L, Alonso-Navarro H, et al. Impairment of rapid repetitive finger movements and visual reaction time in patients with essential tremor. Eur J Neurol. 2010;17(1):152–9.CrossRefPubMed
19.
go back to reference Benbir G, Ozekmekci S, Oguz S, Kenangil G, Ertan S, Akalan E. Quantitative analysis of reduced arm swing frequency in essential tremor. Eur Neurol. 2010;63(5):302–6.CrossRefPubMed Benbir G, Ozekmekci S, Oguz S, Kenangil G, Ertan S, Akalan E. Quantitative analysis of reduced arm swing frequency in essential tremor. Eur Neurol. 2010;63(5):302–6.CrossRefPubMed
20.
go back to reference Lee CY, Kang SJ, Hong SK, Ma HI, Lee U, Kim YJ. A validation study of a smartphone-based finger tapping application for quantitative assessment of bradykinesia in Parkinson’s disease. PLoS One. 2016;11(7):e0158852.CrossRefPubMedPubMedCentral Lee CY, Kang SJ, Hong SK, Ma HI, Lee U, Kim YJ. A validation study of a smartphone-based finger tapping application for quantitative assessment of bradykinesia in Parkinson’s disease. PLoS One. 2016;11(7):e0158852.CrossRefPubMedPubMedCentral
21.
go back to reference Lainscsek C, Rowat P, Schettino L, et al. Finger tapping movements of Parkinson’s disease patients automatically rated using nonlinear delay differential equations. Chaos. 2012;22(1):013119.CrossRefPubMedPubMedCentral Lainscsek C, Rowat P, Schettino L, et al. Finger tapping movements of Parkinson’s disease patients automatically rated using nonlinear delay differential equations. Chaos. 2012;22(1):013119.CrossRefPubMedPubMedCentral
22.
go back to reference Taylor Tavares AL, Jefferis GS, Koop M, et al. Quantitative measurements of alternating finger tapping in Parkinson’s disease correlate with UPDRS motor disability and reveal the improvement in fine motor control from medication and deep brain stimulation. Mov Disord. 2005;20(10):1286–98.CrossRefPubMed Taylor Tavares AL, Jefferis GS, Koop M, et al. Quantitative measurements of alternating finger tapping in Parkinson’s disease correlate with UPDRS motor disability and reveal the improvement in fine motor control from medication and deep brain stimulation. Mov Disord. 2005;20(10):1286–98.CrossRefPubMed
23.
go back to reference Salarian A, Russmann H, Wider C, Burkhard PR, Vingerhoets FJ, Aminian K. Quantification of tremor and bradykinesia in Parkinson’s disease using a novel ambulatory monitoring system. IEEE Trans Biomed Eng. 2007;54(2):313–22.CrossRefPubMed Salarian A, Russmann H, Wider C, Burkhard PR, Vingerhoets FJ, Aminian K. Quantification of tremor and bradykinesia in Parkinson’s disease using a novel ambulatory monitoring system. IEEE Trans Biomed Eng. 2007;54(2):313–22.CrossRefPubMed
24.
go back to reference Niazmand KTK, Kalaras A, Fietzek UM, Mehrkens JH, Lueth TC. Quantitative evaluation of Parkinson’s disease using sensor based smart glove. IEEE Symposium on Computer-Based Medical Systems-CBMS; 2011. p. 1–8. Niazmand KTK, Kalaras A, Fietzek UM, Mehrkens JH, Lueth TC. Quantitative evaluation of Parkinson’s disease using sensor based smart glove. IEEE Symposium on Computer-Based Medical Systems-CBMS; 2011. p. 1–8.
25.
go back to reference Printy BP, Renken LM, Herrmann JP, et al. Smartphone application for classification of motor impairment severity in Parkinson’s disease. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:2686–9.PubMed Printy BP, Renken LM, Herrmann JP, et al. Smartphone application for classification of motor impairment severity in Parkinson’s disease. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:2686–9.PubMed
26.
27.
go back to reference Kim JWLJ, Kwon Y, Kim CS, Eom GM, Koh SB. Quantification of bradykinesia during clinical finger taps using a gyroscope in patients with Parkinson’s disease. Med Biol Eng Comput. 2011;49:365–71.CrossRefPubMed Kim JWLJ, Kwon Y, Kim CS, Eom GM, Koh SB. Quantification of bradykinesia during clinical finger taps using a gyroscope in patients with Parkinson’s disease. Med Biol Eng Comput. 2011;49:365–71.CrossRefPubMed
28.
go back to reference Spasojevic S, Ilic TV, Stojkovic I, Potkonjak V, Rodic A, Santos-Victor J. Quantitative assessment of the arm/hand movements in Parkinson’s disease using a wireless armband device. Front Neurol. 2017;8:388.CrossRefPubMedPubMedCentral Spasojevic S, Ilic TV, Stojkovic I, Potkonjak V, Rodic A, Santos-Victor J. Quantitative assessment of the arm/hand movements in Parkinson’s disease using a wireless armband device. Front Neurol. 2017;8:388.CrossRefPubMedPubMedCentral
29.
go back to reference Michael H, Li TAM, Susan H, Fox BT. Vision-Based Assessment of Parkinsonism and Levodopa-Induced Dyskinesia with Deep Learning Pose Estimation. arXiv. 2017; 1707.09416 Michael H, Li TAM, Susan H, Fox BT. Vision-Based Assessment of Parkinsonism and Levodopa-Induced Dyskinesia with Deep Learning Pose Estimation. arXiv. 2017; 1707.09416
30.
go back to reference Delrobaei M, Baktash N, Gilmore G, McIsaac K, Jog M. Using wearable technology to generate objective Parkinson's disease dyskinesia severity score: possibilities for home monitoring. IEEE Trans Neural Syst Rehabil Eng. 2017;25(10):1853–63.CrossRefPubMed Delrobaei M, Baktash N, Gilmore G, McIsaac K, Jog M. Using wearable technology to generate objective Parkinson's disease dyskinesia severity score: possibilities for home monitoring. IEEE Trans Neural Syst Rehabil Eng. 2017;25(10):1853–63.CrossRefPubMed
Metadata
Title
Objective assessment of bradykinesia in Parkinson’s disease using evolutionary algorithms: clinical validation
Authors
Chao Gao
Stephen Smith
Michael Lones
Stuart Jamieson
Jane Alty
Jeremy Cosgrove
Pingchen Zhang
Jin Liu
Yimeng Chen
Juanjuan Du
Shishuang Cui
Haiyan Zhou
Shengdi Chen
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Translational Neurodegeneration / Issue 1/2018
Electronic ISSN: 2047-9158
DOI
https://doi.org/10.1186/s40035-018-0124-x

Other articles of this Issue 1/2018

Translational Neurodegeneration 1/2018 Go to the issue