Skip to main content
Top
Published in: European Journal of Medical Research 1/2020

Open Access 01-12-2020 | Pseudomonas Aeruginosa | Research

Effect of glutathione-stabilized silver nanoparticles on expression of las I and las R of the genes in Pseudomonas aeruginosa strains

Authors: Mina Pourmbarak Mahnaie, Hassan Mahmoudi

Published in: European Journal of Medical Research | Issue 1/2020

Login to get access

Abstract

Background

Biofilm formation is regarded as a significant factor in the establishment of infections caused by Pseudomonas aeruginosa. P. aeruginosa is one of the most important causes of nosocomial infections. Today silver nanoparticles (Ag-NPs) are used as antimicrobials due to their well-known, chemical, biological, and physical properties. Exposure to nanoparticles could inhibit colonization of new bacteria onto the biofilm.

Methods

In the present work, the green synthesis of Ag-NPs was performed using the alcoholic extract of Eucalyptus camaldulensis. Ag-NPs and glutathione-stabilized silver nanoparticles (GSH–Ag-NPs) were characterized using X-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscope (SEM), and carbon, nitrogen, and hydrogen (CNH) and Fourier transform infrared spectroscopy (FTIR) techniques were applied to investigate the structure of the modified nanoparticles. Then, the antimicrobial and antibiofilm potential of the prepared Ag-NPs and GSH–Ag-NPs against P. aeruginosa strains was evaluated using microbroth dilution method and their effects on the expression of las I and las R genes.

Results

In this study, a total of 50 P. aeruginosa isolates were recovered from clinical samples. According to the results, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) value of Ag-NPs against P. aeruginosa was determined to be 512–256 μg/ml, respectively, while the MIC and MBC value of GS–Ag-NPs against P. aeruginosa clinical strains was determined in a range of 128–256 μg/ml and 256–512 μg/ml, respectively. The mean expression level in las R, las I genes in P. aeruginosa strains treated with ½ MIC of Ag-NPs was decreased by −5.7 and −8fold, respectively. The mean expression levels of las R, las I genes in P. aeruginosa strains treated with ½ MIC of GS–Ag-NPs were decreased by −8.7 and −10fold, respectively (P < 0.05).

Conclusions

The results of our study showed that Ag-NPs and GS–Ag-NPs are highly effective against P. aeruginosa strains. Moreover, this study also proves the promising potential of using nanoparticles as anti-biofilm formation and antibacterial agents.
Literature
1.
go back to reference Oluyombo O, Penfold CN, Diggle SP. Competition in biofilms between cystic fibrosis isolates of Pseudomonas aeruginosa is shaped by R-pyocins. mBio. 2019;10(1):e01828.PubMedPubMedCentralCrossRef Oluyombo O, Penfold CN, Diggle SP. Competition in biofilms between cystic fibrosis isolates of Pseudomonas aeruginosa is shaped by R-pyocins. mBio. 2019;10(1):e01828.PubMedPubMedCentralCrossRef
2.
go back to reference Cornut P-L, Thuret G, Creuzot-Garcher C, Maurin M, Pechinot A, Bron A, et al. Relationship between baseline clinical data and microbiologic spectrum in 100 patients with acute postcataract endophthalmitis. Retina. 2012;32(3):549–57.PubMedCrossRef Cornut P-L, Thuret G, Creuzot-Garcher C, Maurin M, Pechinot A, Bron A, et al. Relationship between baseline clinical data and microbiologic spectrum in 100 patients with acute postcataract endophthalmitis. Retina. 2012;32(3):549–57.PubMedCrossRef
3.
go back to reference Tsukayama D, Van Loon H, Cartwright C, Chmielewski B, Fluit A, Van der Werken C, et al. The evolution of Pseudomonas aeruginosa during antibiotic rotation in a medical intensive care unit: the RADAR-trial. Int J Antimicrob Agents. 2004;24(4):339–45.PubMedCrossRef Tsukayama D, Van Loon H, Cartwright C, Chmielewski B, Fluit A, Van der Werken C, et al. The evolution of Pseudomonas aeruginosa during antibiotic rotation in a medical intensive care unit: the RADAR-trial. Int J Antimicrob Agents. 2004;24(4):339–45.PubMedCrossRef
4.
go back to reference Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322–32.PubMedCrossRef Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322–32.PubMedCrossRef
5.
go back to reference Ghotaslou R, SalahiEshlaqghi B. Biofilm of pseudomonas aeruginosa and new preventive measures and anti-biofilm agents. J Rafsanjan Univ Med Sci. 2013;12(9):747–68. Ghotaslou R, SalahiEshlaqghi B. Biofilm of pseudomonas aeruginosa and new preventive measures and anti-biofilm agents. J Rafsanjan Univ Med Sci. 2013;12(9):747–68.
7.
go back to reference Köhler T, Guanella R, Carlet J, Van Delden C. Quorum sensing-dependent virulence during Pseudomonas aeruginosa colonisation and pneumonia in mechanically ventilated patients. Thorax. 2010;65(8):703–10.PubMedCrossRef Köhler T, Guanella R, Carlet J, Van Delden C. Quorum sensing-dependent virulence during Pseudomonas aeruginosa colonisation and pneumonia in mechanically ventilated patients. Thorax. 2010;65(8):703–10.PubMedCrossRef
8.
9.
go back to reference Paczkowski JE, Mukherjee S, McCready AR, Cong J-P, Aquino CJ, Kim H, et al. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J Biol Chem. 2017;292(10):4064–76.PubMedPubMedCentralCrossRef Paczkowski JE, Mukherjee S, McCready AR, Cong J-P, Aquino CJ, Kim H, et al. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J Biol Chem. 2017;292(10):4064–76.PubMedPubMedCentralCrossRef
10.
go back to reference Panigrahi T. Synthesis and characterization of silver nanoparticles using leaf extract of Azadirachta indica 2013. Panigrahi T. Synthesis and characterization of silver nanoparticles using leaf extract of Azadirachta indica 2013.
11.
go back to reference Kaler A, Patel N, Banerjee UC. Green synthesis of silver nanoparticles. Curr Res Inf Pharm Sci. 2010;11(4):68–71. Kaler A, Patel N, Banerjee UC. Green synthesis of silver nanoparticles. Curr Res Inf Pharm Sci. 2010;11(4):68–71.
12.
go back to reference Kwakye-Awuah B, Williams C, Kenward M, Radecka I. Antimicrobial action and efficiency of silver-loaded zeolite X. J Appl Microbiol. 2008;104(5):1516–24.PubMedCrossRef Kwakye-Awuah B, Williams C, Kenward M, Radecka I. Antimicrobial action and efficiency of silver-loaded zeolite X. J Appl Microbiol. 2008;104(5):1516–24.PubMedCrossRef
13.
go back to reference Asha S, Thirunavukkarasu P, Rajeshkumar S. Eco-friendly synthesis of silver nanoparticles using aqueous leaves extract of cleome gynandra and their antibacterial activity. Int J Pharmaceut Res. 2017;9:32–7. Asha S, Thirunavukkarasu P, Rajeshkumar S. Eco-friendly synthesis of silver nanoparticles using aqueous leaves extract of cleome gynandra and their antibacterial activity. Int J Pharmaceut Res. 2017;9:32–7.
14.
go back to reference Amirghofran Z. Medicinal plants as immunosuppressive agents in traditional Iranian medicine. Iran J Immunol. 2010;7(2):65–73.PubMed Amirghofran Z. Medicinal plants as immunosuppressive agents in traditional Iranian medicine. Iran J Immunol. 2010;7(2):65–73.PubMed
15.
go back to reference Mahmoudi H, Pourhajibagher M, Chiniforush N, Soltanian AR, Alikhani MY, Bahador A. Biofilm formation and antibiotic resistance in methicillin-resistant and methicillin-sensitive Staphylococcus aureus isolated from burns. J Wound Care. 2019;28(2):66–73.PubMedCrossRef Mahmoudi H, Pourhajibagher M, Chiniforush N, Soltanian AR, Alikhani MY, Bahador A. Biofilm formation and antibiotic resistance in methicillin-resistant and methicillin-sensitive Staphylococcus aureus isolated from burns. J Wound Care. 2019;28(2):66–73.PubMedCrossRef
16.
go back to reference Sabharwal N, Dhall S, Chhibber S, Harjai K. Molecular detection of virulence genes as markers in Pseudomonas aeruginosa isolated from urinary tract infections. Int J Mol Epidemiol Genet. 2014;5(3):125.PubMedPubMedCentral Sabharwal N, Dhall S, Chhibber S, Harjai K. Molecular detection of virulence genes as markers in Pseudomonas aeruginosa isolated from urinary tract infections. Int J Mol Epidemiol Genet. 2014;5(3):125.PubMedPubMedCentral
17.
go back to reference Lima JLC, Alves LR, Jacomé PRLA, Neto B, Pacífico J, Maciel MAV, et al. Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing. Braz J Infect Dis. 2018;22(2):129–36.PubMedCrossRef Lima JLC, Alves LR, Jacomé PRLA, Neto B, Pacífico J, Maciel MAV, et al. Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing. Braz J Infect Dis. 2018;22(2):129–36.PubMedCrossRef
18.
19.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8.CrossRefPubMed
20.
go back to reference Montazeri A, Salehzadeh A, Zamani H. Effect of silver nanoparticles conjugated to thiosemicarbazide on biofilm formation and expression of intercellular adhesion molecule genes, icaAD, in Staphylococcus aureus. Folia Microbiologica. 2019;1:1–8. Montazeri A, Salehzadeh A, Zamani H. Effect of silver nanoparticles conjugated to thiosemicarbazide on biofilm formation and expression of intercellular adhesion molecule genes, icaAD, in Staphylococcus aureus. Folia Microbiologica. 2019;1:1–8.
21.
go back to reference Olson ME, Ceri H, Morck DW, Buret AG, Read RR. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res. 2002;66(2):86.PubMedPubMedCentral Olson ME, Ceri H, Morck DW, Buret AG, Read RR. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res. 2002;66(2):86.PubMedPubMedCentral
22.
go back to reference Caufield PW, Dasanayake AP, Li Y, Pan Y, Hsu J, Hardin JM. Natural history of Streptococcus sanguinis in the oral cavity of infants: evidence for a discrete window of infectivity. Infect Immun. 2000;68(7):4018–23.PubMedPubMedCentralCrossRef Caufield PW, Dasanayake AP, Li Y, Pan Y, Hsu J, Hardin JM. Natural history of Streptococcus sanguinis in the oral cavity of infants: evidence for a discrete window of infectivity. Infect Immun. 2000;68(7):4018–23.PubMedPubMedCentralCrossRef
23.
go back to reference Singh M, Singh S, Prasad S, Gambhir I. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J Nanomater Biostruct. 2008;3(3):115–22. Singh M, Singh S, Prasad S, Gambhir I. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J Nanomater Biostruct. 2008;3(3):115–22.
24.
go back to reference Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E coli as a model for Gram-negative bacteria. J Coll Interface Sci. 2004;275(1):177–82.CrossRef Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E coli as a model for Gram-negative bacteria. J Coll Interface Sci. 2004;275(1):177–82.CrossRef
25.
go back to reference Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3(1):95–101.PubMedCrossRef Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3(1):95–101.PubMedCrossRef
26.
go back to reference Murariu M, Stoica I, Gradinaru R, Drochioiu G, Mangalagiu I. Glutathione-based silver nanoparticles with dual biomedical activity. Rev Roum Chim. 2014;59(10):867–74. Murariu M, Stoica I, Gradinaru R, Drochioiu G, Mangalagiu I. Glutathione-based silver nanoparticles with dual biomedical activity. Rev Roum Chim. 2014;59(10):867–74.
27.
go back to reference Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine. 2007;3(2):168–71.PubMedCrossRef Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine. 2007;3(2):168–71.PubMedCrossRef
28.
go back to reference Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine. 2012;8(6):916–24.PubMedCrossRef Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine. 2012;8(6):916–24.PubMedCrossRef
29.
go back to reference Besinis A, De Peralta T, Handy RD. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology. 2014;8(1):1–16.PubMedCrossRef Besinis A, De Peralta T, Handy RD. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology. 2014;8(1):1–16.PubMedCrossRef
30.
go back to reference Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim J-H. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Res Int. 2013;2013:535796.PubMedPubMedCentralCrossRef Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim J-H. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Res Int. 2013;2013:535796.PubMedPubMedCentralCrossRef
31.
go back to reference Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett. 2008;62(29):4411–3.CrossRef Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett. 2008;62(29):4411–3.CrossRef
32.
go back to reference Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, et al. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20(5):8856–74.PubMedPubMedCentralCrossRef Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, et al. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20(5):8856–74.PubMedPubMedCentralCrossRef
33.
go back to reference Ramasamy M, Lee J-H, Lee J. Direct one-pot synthesis of cinnamaldehyde immobilized on gold nanoparticles and their antibiofilm properties. Colloids Surf B. 2017;160:639–48.CrossRef Ramasamy M, Lee J-H, Lee J. Direct one-pot synthesis of cinnamaldehyde immobilized on gold nanoparticles and their antibiofilm properties. Colloids Surf B. 2017;160:639–48.CrossRef
34.
go back to reference Rajkumari J, Meena H, Gangatharan M, Busi S. Green synthesis of anisotropic gold nanoparticles using hordenine and their antibiofilm efficacy against Pseudomonas aeruginosa. IET Nanobiotechnol. 2017;11(8):987–94.PubMedCrossRefPubMedCentral Rajkumari J, Meena H, Gangatharan M, Busi S. Green synthesis of anisotropic gold nanoparticles using hordenine and their antibiofilm efficacy against Pseudomonas aeruginosa. IET Nanobiotechnol. 2017;11(8):987–94.PubMedCrossRefPubMedCentral
35.
go back to reference Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B. 2010;79(2):340–4.CrossRef Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B. 2010;79(2):340–4.CrossRef
36.
go back to reference Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, et al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology. 2002;148(1):87–102.PubMedCrossRef Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, et al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology. 2002;148(1):87–102.PubMedCrossRef
37.
go back to reference Nejabatdoust A, Zamani H, Salehzadeh A. Functionalization of ZnO nanoparticles by glutamic acid and conjugation with thiosemicarbazide alters expression of efflux pump genes in multiple drug-resistant Staphylococcus aureus strains. Microbial Drug Resist. 2019;25(7):966–74.CrossRef Nejabatdoust A, Zamani H, Salehzadeh A. Functionalization of ZnO nanoparticles by glutamic acid and conjugation with thiosemicarbazide alters expression of efflux pump genes in multiple drug-resistant Staphylococcus aureus strains. Microbial Drug Resist. 2019;25(7):966–74.CrossRef
38.
go back to reference Gheidar H, Haddadi A, Kalani BS, Amirmozafari N. Nanoparticles impact the expression of the genes involved in biofilm formation in S. aureus, a model antimicrobial-resistant species. J Med Bacteriol. 2018;7(34):30–41. Gheidar H, Haddadi A, Kalani BS, Amirmozafari N. Nanoparticles impact the expression of the genes involved in biofilm formation in S. aureus, a model antimicrobial-resistant species. J Med Bacteriol. 2018;7(34):30–41.
Metadata
Title
Effect of glutathione-stabilized silver nanoparticles on expression of las I and las R of the genes in Pseudomonas aeruginosa strains
Authors
Mina Pourmbarak Mahnaie
Hassan Mahmoudi
Publication date
01-12-2020
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2020
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-020-00415-4

Other articles of this Issue 1/2020

European Journal of Medical Research 1/2020 Go to the issue