Skip to main content
Top
Published in: European Journal of Medical Research 1/2020

Open Access 01-12-2020 | Nephrectomy | Research

Limb ischemic preconditioning ameliorates renal microcirculation through activation of PI3K/Akt/eNOS signaling pathway after acute kidney injury

Authors: Cheng Chen, Li Sun, Wanfen Zhang, Yushang Tang, Xiaoping Li, Ran Jing, Tongqiang Liu

Published in: European Journal of Medical Research | Issue 1/2020

Login to get access

Abstract

Purpose

Contrast-induced acute kidney injury (CI-AKI) resulting from administration of iodinated contrast media (CM) is the third leading cause of hospital-acquired acute kidney injury and is associated with substantial morbidity and mortality. Deteriorated renal microcirculation plays an important role in CI-AKI. Limb ischemic preconditioning (LIPC), where brief and non-injurious ischemia/reperfusion is applied to a limb prior to the administration of the contrast agent, is emerging as a promising strategy for CI-AKI prevention. However, it is not known whether the renal protection of LIPC against CI-AKI is mediated by regulation of renal microcirculation and the molecular mechanisms remain largely unknown.

Methods

In this study, we examined the renal cortical and medullary blood flow in a stable CI-AKI model using 5/6-nephrectomized (NE) rat. The LIPC and sham procedures were performed prior to the injection of CM. Furthermore, we analyzed renal medulla hypoxia using in vivo labeling of hypoxyprobe. Pharmacological inhibitions and western blotting were used to determine the underlying molecular mechanisms.

Results

In this study, we found LIPC significantly ameliorated CM-induced reduction of medullary blood flow and attenuated CM-induced hypoxia. PI3K inhibitor (wortmannin) treatment blocked the regulation of medullary blood flow and the attenuation of hypoxia of LIPC. Phosphorylation of Akt/eNOS was significantly decreased via wortmannin treatment compared with LIPC. Nitric oxide synthase-inhibitor [Nω-nitro-l-arginine methyl ester (L-NAME)] treatment abolished the above effects and decreased phosphorylation of eNOS, but not Akt.

Conclusions

Collectively, the results demonstrate that LIPC ameliorates CM-induced renal vasocontraction and is mediated by activation of PI3K/Akt/eNOS signaling pathway.
Literature
1.
go back to reference Go RS, Adjei AA. Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. J Clin Oncol. 1999;17:409–22.PubMedCrossRef Go RS, Adjei AA. Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. J Clin Oncol. 1999;17:409–22.PubMedCrossRef
2.
go back to reference Mitchell AM, Jones AE, Tumlin JA, et al. Incidence of contrast-induced nephropathy after contrast-enhanced computed tomography in the outpatient setting. Clin J Am Soc Nephrol. 2010;5:4–9.PubMedPubMedCentralCrossRef Mitchell AM, Jones AE, Tumlin JA, et al. Incidence of contrast-induced nephropathy after contrast-enhanced computed tomography in the outpatient setting. Clin J Am Soc Nephrol. 2010;5:4–9.PubMedPubMedCentralCrossRef
3.
go back to reference Dugbartey GJ, Redington AN. Prevention of contrast-induced nephropathy by limb ischemic preconditioning: underlying mechanisms and clinical effects. Am J Physiol Renal Physiol. 2018;314:F319–F328328.PubMedCrossRef Dugbartey GJ, Redington AN. Prevention of contrast-induced nephropathy by limb ischemic preconditioning: underlying mechanisms and clinical effects. Am J Physiol Renal Physiol. 2018;314:F319–F328328.PubMedCrossRef
4.
go back to reference Pistolesi V, Regolisti G, Morabito S, et al. Contrast medium induced acute kidney injury: a narrative review. J Nephrol. 2018;31:797–812.PubMedCrossRef Pistolesi V, Regolisti G, Morabito S, et al. Contrast medium induced acute kidney injury: a narrative review. J Nephrol. 2018;31:797–812.PubMedCrossRef
5.
go back to reference Atanda AC, Olafiranye O. Contrast-induced acute kidney injury in interventional cardiology: emerging evidence and unifying mechanisms of protection by remote ischemic conditioning. Cardiovasc Revasc Med. 2017;18:549–53.PubMedPubMedCentralCrossRef Atanda AC, Olafiranye O. Contrast-induced acute kidney injury in interventional cardiology: emerging evidence and unifying mechanisms of protection by remote ischemic conditioning. Cardiovasc Revasc Med. 2017;18:549–53.PubMedPubMedCentralCrossRef
6.
go back to reference Heyman SN, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia adaptation, and the pathogenesis of radiocontrast nephropathy. Clin J Am Soc Nephrol. 2008;3:288–96.PubMedCrossRef Heyman SN, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia adaptation, and the pathogenesis of radiocontrast nephropathy. Clin J Am Soc Nephrol. 2008;3:288–96.PubMedCrossRef
7.
8.
go back to reference Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.PubMedCrossRef Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.PubMedCrossRef
9.
go back to reference Menting TP, Sterenborg TB, de Waal Y, et al. Remote ischemic preconditioning to reduce contrast-induced nephropathy: a randomized controlled trial. Eur J Vasc Endovasc Surg. 2015;50:527–32.PubMedCrossRef Menting TP, Sterenborg TB, de Waal Y, et al. Remote ischemic preconditioning to reduce contrast-induced nephropathy: a randomized controlled trial. Eur J Vasc Endovasc Surg. 2015;50:527–32.PubMedCrossRef
10.
go back to reference Er F, Nia AM, Dopp H, et al. Ischemic preconditioning for prevention of contrast medium-induced nephropathy: randomized pilot RenPro Trial (Renal Protection Trial). Circulation. 2012;126:296–303.PubMedCrossRef Er F, Nia AM, Dopp H, et al. Ischemic preconditioning for prevention of contrast medium-induced nephropathy: randomized pilot RenPro Trial (Renal Protection Trial). Circulation. 2012;126:296–303.PubMedCrossRef
11.
go back to reference Koch C, Chaudru S, Lederlin M, et al. Remote ischemic preconditioning and contrast-induced nephropathy: a systematic review. Ann Vasc Surg. 2016;32:176–87.PubMedCrossRef Koch C, Chaudru S, Lederlin M, et al. Remote ischemic preconditioning and contrast-induced nephropathy: a systematic review. Ann Vasc Surg. 2016;32:176–87.PubMedCrossRef
12.
go back to reference Zhou CC, Yao WT, Ge YZ, et al. Remote ischemic conditioning for the prevention of contrast-induced acute kidney injury in patients undergoing intravascular contrast administration: a meta-analysis and trial sequential analysis of 16 randomized controlled trials. Oncotarget. 2017;8:79323–36.PubMedPubMedCentral Zhou CC, Yao WT, Ge YZ, et al. Remote ischemic conditioning for the prevention of contrast-induced acute kidney injury in patients undergoing intravascular contrast administration: a meta-analysis and trial sequential analysis of 16 randomized controlled trials. Oncotarget. 2017;8:79323–36.PubMedPubMedCentral
13.
go back to reference Myers SI, Wang L, Liu F, et al. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis. J Vasc Surg. 2006;44:383–91.PubMedCrossRef Myers SI, Wang L, Liu F, et al. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis. J Vasc Surg. 2006;44:383–91.PubMedCrossRef
14.
go back to reference Liu ZZ, Schmerbach K, Lu Y, et al. Iodinated contrast media cause direct tubular cell damage, leading to oxidative stress, low nitric oxide, and impairment of tubuloglomerular feedback. Am J Physiol Renal Physiol. 2014;306:F864–F872872.PubMedPubMedCentralCrossRef Liu ZZ, Schmerbach K, Lu Y, et al. Iodinated contrast media cause direct tubular cell damage, leading to oxidative stress, low nitric oxide, and impairment of tubuloglomerular feedback. Am J Physiol Renal Physiol. 2014;306:F864–F872872.PubMedPubMedCentralCrossRef
15.
go back to reference Arab HH, Salama SA, Maghrabi IA. Camel milk attenuates methotrexate-induced kidney injury via activation of PI3K/Akt/eNOS signaling and intervention with oxidative aberrations. Food Funct. 2018;9:2661–722.PubMedCrossRef Arab HH, Salama SA, Maghrabi IA. Camel milk attenuates methotrexate-induced kidney injury via activation of PI3K/Akt/eNOS signaling and intervention with oxidative aberrations. Food Funct. 2018;9:2661–722.PubMedCrossRef
16.
go back to reference Liu T, Fang Y, Liu S, et al. Limb ischemic preconditioning protects against contrast-induced acute kidney injury in rats via phosphorylation of GSK-3beta. Free Radic Biol Med. 2015;81:170–82.PubMedCrossRef Liu T, Fang Y, Liu S, et al. Limb ischemic preconditioning protects against contrast-induced acute kidney injury in rats via phosphorylation of GSK-3beta. Free Radic Biol Med. 2015;81:170–82.PubMedCrossRef
17.
go back to reference Kinaci MK, Erkasap N, Kucuk A, et al. Effects of quercetin on apoptosis, NF-kappaB and NOS gene expression in renal ischemia/reperfusion injury. Exp Ther Med. 2012;3:249–54.PubMedCrossRef Kinaci MK, Erkasap N, Kucuk A, et al. Effects of quercetin on apoptosis, NF-kappaB and NOS gene expression in renal ischemia/reperfusion injury. Exp Ther Med. 2012;3:249–54.PubMedCrossRef
19.
go back to reference Liu TQ, Luo WL, Tan X, et al. A novel contrast-induced acute kidney injury model based on the 5/6-nephrectomy rat and nephrotoxicological evaluation of iohexol and iodixanol in vivo. Oxid Med Cell Longev. 2014;2014:427560.PubMedPubMedCentral Liu TQ, Luo WL, Tan X, et al. A novel contrast-induced acute kidney injury model based on the 5/6-nephrectomy rat and nephrotoxicological evaluation of iohexol and iodixanol in vivo. Oxid Med Cell Longev. 2014;2014:427560.PubMedPubMedCentral
20.
go back to reference Heyman SN, Goldfarb M, Shina A, et al. N-Acetylcysteine ameliorates renal microcirculation: studies in rats. Kidney Int. 2003;63:634–41.PubMedCrossRef Heyman SN, Goldfarb M, Shina A, et al. N-Acetylcysteine ameliorates renal microcirculation: studies in rats. Kidney Int. 2003;63:634–41.PubMedCrossRef
21.
go back to reference Heyman SN, Goldfarb M, Carmeli F, et al. Effect of radiocontrast agents on intrarenal nitric oxide (NO) and NO synthase activity. Exp Nephrol. 1998;6:557–62.PubMedCrossRef Heyman SN, Goldfarb M, Carmeli F, et al. Effect of radiocontrast agents on intrarenal nitric oxide (NO) and NO synthase activity. Exp Nephrol. 1998;6:557–62.PubMedCrossRef
22.
go back to reference Raleigh JA, Koch CJ. Importance of thiols in the reductive binding of 2-nitroimidazoles to macromolecules. Biochem Pharmacol. 1990;40:2457–64.PubMedCrossRef Raleigh JA, Koch CJ. Importance of thiols in the reductive binding of 2-nitroimidazoles to macromolecules. Biochem Pharmacol. 1990;40:2457–64.PubMedCrossRef
23.
go back to reference Nygren A, Ulfendahl HR, Hansell P, et al. Effects of intravenous contrast media on cortical and medullary blood flow in the rat kidney. Invest Radiol. 1988;23:753–61.PubMedCrossRef Nygren A, Ulfendahl HR, Hansell P, et al. Effects of intravenous contrast media on cortical and medullary blood flow in the rat kidney. Invest Radiol. 1988;23:753–61.PubMedCrossRef
24.
go back to reference Liss P, Nygren A, Olsson U, et al. Effects of contrast media and mannitol on renal medullary blood flow and red cell aggregation in the rat kidney. Kidney Int. 1996;49:1268–75.PubMedCrossRef Liss P, Nygren A, Olsson U, et al. Effects of contrast media and mannitol on renal medullary blood flow and red cell aggregation in the rat kidney. Kidney Int. 1996;49:1268–75.PubMedCrossRef
25.
go back to reference Beltowski J. Hypoxia in the renal medulla: implications for hydrogen sulfide signaling. J Pharmacol Exp Ther. 2010;334:358–63.PubMedCrossRef Beltowski J. Hypoxia in the renal medulla: implications for hydrogen sulfide signaling. J Pharmacol Exp Ther. 2010;334:358–63.PubMedCrossRef
26.
go back to reference Liss P. Effects of contrast media on renal microcirculation and oxygen tension. An experimental study in the rat. Acta Radiol Suppl. 1997;409:1–29.PubMed Liss P. Effects of contrast media on renal microcirculation and oxygen tension. An experimental study in the rat. Acta Radiol Suppl. 1997;409:1–29.PubMed
27.
go back to reference Liss P, Nygren A, Erikson U, et al. Injection of low and iso-osmolar contrast medium decreases oxygen tension in the renal medulla. Kidney Int. 1998;53:698–702.PubMedCrossRef Liss P, Nygren A, Erikson U, et al. Injection of low and iso-osmolar contrast medium decreases oxygen tension in the renal medulla. Kidney Int. 1998;53:698–702.PubMedCrossRef
28.
go back to reference Siedek F, Persigehl T, Mueller RU, et al. Assessing renal changes after remote ischemic preconditioning (RIPC) of the upper extremity using BOLD imaging at 3T. MAGMA. 2018;31:367–74.PubMedCrossRef Siedek F, Persigehl T, Mueller RU, et al. Assessing renal changes after remote ischemic preconditioning (RIPC) of the upper extremity using BOLD imaging at 3T. MAGMA. 2018;31:367–74.PubMedCrossRef
29.
go back to reference Robert R, Vinet M, Jamet A, et al. Effect of non-invasive remote ischemic preconditioning on intra-renal perfusion in volunteers. J Nephrol. 2017;30:393–5.PubMedCrossRef Robert R, Vinet M, Jamet A, et al. Effect of non-invasive remote ischemic preconditioning on intra-renal perfusion in volunteers. J Nephrol. 2017;30:393–5.PubMedCrossRef
30.
go back to reference Szijarto A, Hahn O, Lotz G, et al. Effect of ischemic preconditioning on rat liver microcirculation monitored with laser Doppler flowmetry. J Surg Res. 2006;131:150–7.PubMedCrossRef Szijarto A, Hahn O, Lotz G, et al. Effect of ischemic preconditioning on rat liver microcirculation monitored with laser Doppler flowmetry. J Surg Res. 2006;131:150–7.PubMedCrossRef
31.
go back to reference Koti RS, Yang W, Dashwood MR, et al. Effect of ischemic preconditioning on hepatic microcirculation and function in a rat model of ischemia reperfusion injury. Liver Transpl. 2002;8:1182–91.PubMedCrossRef Koti RS, Yang W, Dashwood MR, et al. Effect of ischemic preconditioning on hepatic microcirculation and function in a rat model of ischemia reperfusion injury. Liver Transpl. 2002;8:1182–91.PubMedCrossRef
32.
go back to reference Zvara D, Zboyovski JM, Deal DD, et al. Spinal cord blood flow after ischemic preconditioning in a rat model of spinal cord ischemia. Sci World J. 2004;4:892–8.CrossRef Zvara D, Zboyovski JM, Deal DD, et al. Spinal cord blood flow after ischemic preconditioning in a rat model of spinal cord ischemia. Sci World J. 2004;4:892–8.CrossRef
33.
go back to reference Agmon Y, Peleg H, Greenfeld Z, et al. Nitric oxide and prostanoids protect the renal outer medulla from radiocontrast toxicity in the rat. J Clin Invest. 1994;94:1069–75.PubMedPubMedCentralCrossRef Agmon Y, Peleg H, Greenfeld Z, et al. Nitric oxide and prostanoids protect the renal outer medulla from radiocontrast toxicity in the rat. J Clin Invest. 1994;94:1069–75.PubMedPubMedCentralCrossRef
34.
go back to reference Rassaf T, Totzeck M, Hendgen-Cotta UB, et al. Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res. 2014;114:1601–10.PubMedCrossRef Rassaf T, Totzeck M, Hendgen-Cotta UB, et al. Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res. 2014;114:1601–10.PubMedCrossRef
35.
go back to reference Peng B, Guo QL, He ZJ, et al. Remote ischemic postconditioning protects the brain from global cerebral ischemia/reperfusion injury by up-regulating endothelial nitric oxide synthase through the PI3K/Akt pathway. Brain Res. 2012;1445:92–102.PubMedCrossRef Peng B, Guo QL, He ZJ, et al. Remote ischemic postconditioning protects the brain from global cerebral ischemia/reperfusion injury by up-regulating endothelial nitric oxide synthase through the PI3K/Akt pathway. Brain Res. 2012;1445:92–102.PubMedCrossRef
36.
go back to reference Gao X, Zhang H, Takahashi T, et al. The Akt signaling pathway contributes to postconditioning's protection against stroke; the protection is associated with the MAPK and PKC pathways. J Neurochem. 2008;105:943–55.PubMedPubMedCentralCrossRef Gao X, Zhang H, Takahashi T, et al. The Akt signaling pathway contributes to postconditioning's protection against stroke; the protection is associated with the MAPK and PKC pathways. J Neurochem. 2008;105:943–55.PubMedPubMedCentralCrossRef
37.
go back to reference Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med. 2005;15:69–75.PubMedCrossRef Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med. 2005;15:69–75.PubMedCrossRef
38.
go back to reference Fulton D, Gratton JP, McCabe TJ, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999;399:597–601.PubMedPubMedCentralCrossRef Fulton D, Gratton JP, McCabe TJ, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999;399:597–601.PubMedPubMedCentralCrossRef
39.
go back to reference Hashiguchi A, Yano S, Morioka M, et al. Up-regulation of endothelial nitric oxide synthase via phosphatidylinositol 3-kinase pathway contributes to ischemic tolerance in the CA1 subfield of gerbil hippocampus. J Cereb Blood Flow Metab. 2004;24:271–9.PubMedCrossRef Hashiguchi A, Yano S, Morioka M, et al. Up-regulation of endothelial nitric oxide synthase via phosphatidylinositol 3-kinase pathway contributes to ischemic tolerance in the CA1 subfield of gerbil hippocampus. J Cereb Blood Flow Metab. 2004;24:271–9.PubMedCrossRef
40.
go back to reference Zhu J, Chen X, Wang H, et al. Catalpol protects mice against renal ischemia/reperfusion injury via suppressing PI3K/Akt-eNOS signaling and inflammation. Int J Clin Exp Med. 2015;8:2038–44.PubMedPubMedCentral Zhu J, Chen X, Wang H, et al. Catalpol protects mice against renal ischemia/reperfusion injury via suppressing PI3K/Akt-eNOS signaling and inflammation. Int J Clin Exp Med. 2015;8:2038–44.PubMedPubMedCentral
41.
go back to reference Li XD, Cheng YT, Yang YJ, et al. PKA-mediated eNOS phosphorylation in the protection of ischemic preconditioning against no-reflow. Microvasc Res. 2012;84:44–54.PubMedCrossRef Li XD, Cheng YT, Yang YJ, et al. PKA-mediated eNOS phosphorylation in the protection of ischemic preconditioning against no-reflow. Microvasc Res. 2012;84:44–54.PubMedCrossRef
42.
go back to reference Yang C, Talukder MA, Varadharaj S, et al. Early ischaemic preconditioning requires Akt- and PKA-mediated activation of eNOS via serine1176 phosphorylation. Cardiovasc Res. 2013;97:33–43.PubMedCrossRef Yang C, Talukder MA, Varadharaj S, et al. Early ischaemic preconditioning requires Akt- and PKA-mediated activation of eNOS via serine1176 phosphorylation. Cardiovasc Res. 2013;97:33–43.PubMedCrossRef
43.
go back to reference Zhang S, Xin H, Li Y, et al. Skimmin, a coumarin from hydrangea paniculata, slows down the progression of membranous glomerulonephritis by anti-inflammatory effects and inhibiting immune complex deposition. Evid Based Complement Alternat Med. 2013;2013:819296.PubMedPubMedCentral Zhang S, Xin H, Li Y, et al. Skimmin, a coumarin from hydrangea paniculata, slows down the progression of membranous glomerulonephritis by anti-inflammatory effects and inhibiting immune complex deposition. Evid Based Complement Alternat Med. 2013;2013:819296.PubMedPubMedCentral
44.
go back to reference Sen Z, Jie M, Jingzhi Y, et al. Total coumarins from Hydrangea paniculata protect against cisplatin-induced acute kidney damage in mice by suppressing renal inflammation and apoptosis. Evid Based Complement Alternat Med. 2017;2017:5350161.PubMedPubMedCentralCrossRef Sen Z, Jie M, Jingzhi Y, et al. Total coumarins from Hydrangea paniculata protect against cisplatin-induced acute kidney damage in mice by suppressing renal inflammation and apoptosis. Evid Based Complement Alternat Med. 2017;2017:5350161.PubMedPubMedCentralCrossRef
45.
go back to reference Sendeski MM. Pathophysiology of renal tissue damage by iodinated contrast media. Clin Exp Pharmacol Physiol. 2011;38:292–9.PubMedCrossRef Sendeski MM. Pathophysiology of renal tissue damage by iodinated contrast media. Clin Exp Pharmacol Physiol. 2011;38:292–9.PubMedCrossRef
46.
go back to reference Wink DA, Miranda KM, Espey MG, et al. Mechanisms of the antioxidant effects of nitric oxide. Antioxid Redox Signal. 2001;3:203–13.PubMedCrossRef Wink DA, Miranda KM, Espey MG, et al. Mechanisms of the antioxidant effects of nitric oxide. Antioxid Redox Signal. 2001;3:203–13.PubMedCrossRef
47.
go back to reference Koivisto A, Pittner J, Froelich M, et al. Oxygen-dependent inhibition of respiration in isolated renal tubules by nitric oxide. Kidney Int. 1999;55:2368–75.PubMedCrossRef Koivisto A, Pittner J, Froelich M, et al. Oxygen-dependent inhibition of respiration in isolated renal tubules by nitric oxide. Kidney Int. 1999;55:2368–75.PubMedCrossRef
48.
go back to reference Koivisto A, Matthias A, Bronnikov G, et al. Kinetics of the inhibition of mitochondrial respiration by NO. FEBS Lett. 1997;417:75–80.PubMedCrossRef Koivisto A, Matthias A, Bronnikov G, et al. Kinetics of the inhibition of mitochondrial respiration by NO. FEBS Lett. 1997;417:75–80.PubMedCrossRef
49.
go back to reference Liss P, Hansell P, Fasching A, et al. Iodinated contrast media inhibit oxygen consumption in freshly isolated proximal tubular cells from elderly humans and diabetic rats: Influence of nitric oxide. Ups J Med Sci. 2016;121:12–6.PubMedPubMedCentralCrossRef Liss P, Hansell P, Fasching A, et al. Iodinated contrast media inhibit oxygen consumption in freshly isolated proximal tubular cells from elderly humans and diabetic rats: Influence of nitric oxide. Ups J Med Sci. 2016;121:12–6.PubMedPubMedCentralCrossRef
50.
go back to reference Ii M, Nishimura H, Iwakura A, et al. Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via "imported" nitric oxide synthase activity. Circulation. 2005;111:1114–20.PubMedCrossRef Ii M, Nishimura H, Iwakura A, et al. Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via "imported" nitric oxide synthase activity. Circulation. 2005;111:1114–20.PubMedCrossRef
51.
go back to reference Liu H, Wu R, Jia RP, et al. Ischemic preconditioning increases endothelial progenitor cell number to attenuate partial nephrectomy-induced ischemia/reperfusion injury. PLoS ONE. 2013;8:e55389.PubMedPubMedCentralCrossRef Liu H, Wu R, Jia RP, et al. Ischemic preconditioning increases endothelial progenitor cell number to attenuate partial nephrectomy-induced ischemia/reperfusion injury. PLoS ONE. 2013;8:e55389.PubMedPubMedCentralCrossRef
Metadata
Title
Limb ischemic preconditioning ameliorates renal microcirculation through activation of PI3K/Akt/eNOS signaling pathway after acute kidney injury
Authors
Cheng Chen
Li Sun
Wanfen Zhang
Yushang Tang
Xiaoping Li
Ran Jing
Tongqiang Liu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2020
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-020-00407-4

Other articles of this Issue 1/2020

European Journal of Medical Research 1/2020 Go to the issue